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Module L101: Machine Learning for Language Processing

Discriminative Models

• Classification requires the class-posterior P (ωj|x)

– can just directly model the posterior distribution
– avoids the complexity of modelling the joint distribution P (x, ωj)

• Form of model called a discriminative model

• Many debates of generative versus discriminative models:

– discriminative model criterion more closely related to classification process
– not dependent on generative process being correct
– joint distribution can be very complicated to accurately model
– only final posterior distribution needs to be a valid distribution
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Module L101: Machine Learning for Language Processing

Recap on Tagging

• Find the best tag sequence given the sentence (conditional probability):

argmax
t1...tn

p(t1 . . . tn|w1 . . . wn)

• Alternatively maximise p(t1 . . . tn, w1 . . . wn) (joint probability):

argmax
t1...tn

p(t1 . . . tn|w1 . . . wn) = argmax
t1...tn

p(t1 . . . tn, w1 . . . wn)

p(w1 . . . wn)

= argmax
t1...tn

p(t1 . . . tn, w1 . . . wn)
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Recap on Markov Model Tagging

• Maximise the joint probability:

p(t1 . . . tn, w1 . . . wn) = p(t1 . . . tn)p(w1 . . . wn|t1 . . . tn)

• Tag sequence probability (first order Markov Model):

p(t1 . . . tn) ≈ p(t1)p(t2|t1)p(t3|t2) · · · p(tn|tn−1)

• Word sequence probability (given the tags):

p(w1 . . . wn|t1 . . . tn) ≈ p(w1|t1)p(w2|t2) · · · p(wn|tn)
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Module L101: Machine Learning for Language Processing

Problems with Markov Model Taggers

• unreliable zero or very low counts

– does a zero count indicate an impossible event?

=⇒ smoothing the counts solves this problem

• Words not seen in the data are especially problematic
=⇒ would like to include word internal information

e.g. capitalisation or suffix information

• Cannot incorporate diverse pieces of evidence for predicting tags
e.g. global document information
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Module L101: Machine Learning for Language Processing

Feature-based Models

• Features encode evidence from the context for a particular tag:

(title caps, NNP) Citibank, Mr.
(suffix -ing, VBG) running, cooking

(next word Inc., I-ORG) Lotus Inc.
(previous word said, I-PER) said Mr. Vinken
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Complex Features

• Features can be arbitrarily complex

– e.g. document level features
(document = cricket & current word = Lancashire, I-ORG)
=⇒ hopefully tag Lancashire as I-ORG not I-LOC

• Features can be combinations of atomic features

– (current word = Miss & next word = Selfridges, I-ORG)
=⇒ hopefully tag Miss as I-ORG not I-PER

• Features are not assumed to be (conditionally) independent (given the label)
– unlike the Naive Bayes classifier
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Module L101: Machine Learning for Language Processing

Feature-based Tagging

• How do we incorporate features into a probabilistic tagger?

• Hack the Markov Model tagger to incorporate features

• Maximum Entropy (MaxEnt) Tagging

– principled way of incorporating features
– requires sophisticated estimation method
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Module L101: Machine Learning for Language Processing

Features in Maximum Entropy Models

• Features encode elements of the context C useful for predicting tag t

• Features are binary valued functions, e.g.

fi(C, t) =

{

1 if word(C) = Moody & t = I-ORG
0 otherwise

• word(C) = Moody is a contextual predicate

• Features determine (contextual predicate, tag) pairs
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Module L101: Machine Learning for Language Processing

The Model

p(t|C) =
1

Z(C)
exp

(

n
∑

i=1

λifi(C, t)

)

• fi is a feature

• λi is a weight (large value implies informative feature)

• Z(C) is a normalisation constant ensuring a proper probability distribution

• Also known as a log-linear model

• Makes no independence assumptions about the features

• Can be used as a general classifer (outside of tagging, e.g. text classification)
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Tagging with Maximum Entropy Models

• The conditional probability of a tag sequence t1 . . . tn is

p(t1 . . . tn|w1 . . . wn) ≈
n
∏

i=1

p(ti|Ci)

given a sentence w1 . . . wn and contexts C1 . . . Cn

• The context includes previously assigned tags (for a fixed history)

• Beam search or Viterbi is used to find the most probable sequence (Ratnaparkhi,
1996)

• Later in the course we will see an alternative (more principled) conditional
formulation of the global probability (in the form of CRFs)
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Module L101: Machine Learning for Language Processing

Model Estimation

p(t|C) =
1

Z(C)
exp

(

n
∑

i=1

λifi(C, t)

)

• Model estimation involves setting the weight values λi

• The model should reflect the data
=⇒ use the data to constrain the model

• What form should the constraints take?
=⇒ constrain the expected value of each feature fi
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The Constraints

Epfi =
∑

C,t

p(C, t)fi(C, t) = Ki

• Expected value of each feature must satisfy some constraint Ki

• A natural choice for Ki is the average empirical count:

Ki = Ep̃fi =
1

N

N
∑

j=1

fi(Cj, tj)

derived from the training data (C1, t1), . . . , (CN , tN)
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Module L101: Machine Learning for Language Processing

Choosing the Maximum Entropy Model

• The constraints do not uniquely identify a model

• From those models satisfying the constraints:
choose the Maximum Entropy model

• Conditional entropy of a model p:

H(p) = −
∑

C,t

p̃(C)p(t|C) log p(t|C)
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Module L101: Machine Learning for Language Processing

The Maximum Entropy Model

• The maximum entropy model is the most uniform model

=⇒ makes no assumptions in addition to what we know from the data

• MaxEnt model is also the Maximum Likelihood Log-Linear model

• Set the weights to give the MaxEnt model satisfying the constraints
=⇒ use Generalised Iterative Scaling (GIS)

MPhil in Advanced Computer Science 14



Module L101: Machine Learning for Language Processing

Generalised Iterative Scaling (GIS)

• Set λ
(0)
i equal to some arbitrary value (e.g. zero)

• Repeat until convergence:

λ
(t+1)
i = λ

(t)
i +

1

C
log

Ep̃fi

Ep(t)fi

where

C = max
x,y

n
∑

i=1

fi(x, y)

• Many formulations of GIS specify the need for a “correction feature”, but see
Curran and Clark (2003)
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Module L101: Machine Learning for Language Processing

Smoothing

• Models which satisfy the constraints exactly tend to overfit the data

• In particular, empirical counts for low frequency features can be unreliable

– often leads to very large weight values

• Common smoothing technique is to ignore low frequency features

– but low frequency features may be important

• Use a prior distribution on the parameters

– encodes our knowledge that weight values should not be too large

MPhil in Advanced Computer Science 16



Module L101: Machine Learning for Language Processing

Smoothing

• Standard technique is to use a Gaussian prior over the parameters (Chen and
Rosenfeld 1999)

– penalises models with extreme feature weights

• This is a form of maximum a posteriori (MAP) estimation

• Can be thought of as relaxing the model constraints - requires a modification
to the update rule

• Can also be thought of as a form of regularisation
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Pos Tagger Features

• The tagger uses binary valued features, e.g.

fi(x, y) =

{

1 if word(x) = the & y = DT
0 otherwise

• word(x) = the is a contextual predicate

• Contextual predicates:

ti−1 = X previous tag history

ti−2ti−1 = XY previous two tags history

wi = X current word

wi−1 = X previous word

wi−2 = X previous previous word

wi+1 = X next word

wi+2 = X next next word
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Module L101: Machine Learning for Language Processing

Pos Tagger Features for Rare Words

• These predicates apply to words seen less than 5 times in the data

X is prefix of wi, |X | ≤ 4
X is suffix of wi, |X | ≤ 4
wi contains a digit
wi contains uppercase char
wi contains a hyphen

• Otherwise the current word predicate applies
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Module L101: Machine Learning for Language Processing

Evaluation Measures

Acc overall per-word accuracy

Uword accuracy on previously unseen words

Utag accuracy on previously unseen word-tag pairs

Amb accuracy on words seen with more than one tag in the Treebank

• Training data sections 2-21, development section 00, testing section 23 from
the WSJ Penn Treebank
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Module L101: Machine Learning for Language Processing

Results on the Development Set

Tagger Acc Uword Utag Amb

MXPOST 96.59 85.81 30.04 94.82
base 96.58 85.70 29.28 94.82
smoothed 96.75 86.74 33.08 95.06

• MXPOST is Ratnaparkhi’s original tagger (feature cutoff 5, no smoothing)

• Gaussian smoothing improves results
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Module L101: Machine Learning for Language Processing

Results with varying feature cut-offs

Cut-off Acc Uword Utag Amb

≥1 96.82 87.20 30.80 95.07
≥2 96.77 87.02 31.18 95.00
≥3 96.72 86.62 31.94 94.94
≥4 96.72 87.08 34.22 94.96

• No cutoff gives best results

• Gaussian smoothing allows all features to be used without overfitting
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Module L101: Machine Learning for Language Processing

Results on the Test Set

Tagger Acc Uword Utag Amb

MXPOST 97.05 83.63 30.20 95.44
C&C 97.27 85.21 28.98 95.69

Cross-validation results

Tagger Acc σ Uword Utag Amb

MXPOST 96.72 0.12 85.50 32.16 95.00
TNT 96.48 0.13 85.31 0.00 94.26
C&C 96.86 0.12 86.43 30.42 95.08
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Performance

• Training takes around 10 minutes for 100 GIS iterations

• Tagging is very fast (around 100,000 words per second)
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Module L101: Machine Learning for Language Processing

Named Entity Tagging

• Language independent NER for CoNLL-02, CoNLL-03 competitions

• English, German, Dutch

• LOC, PER, ORG, MISC, O
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Module L101: Machine Learning for Language Processing

Contextual Predicates used by the NE tagger

Condition Contextual predicate

f(wi) < 5 X is prefix/suffix of wi, |X | ≤ 4
wi contains a digit
wi contains uppercase character
wi contains a hyphen

∀wi wi = X

wi−1 = X , wi−2 = X

wi+1 = X , wi+2 = X

∀wi POSi = X

POSi−1 = X , POSi−2 = X

POSi+1 = X , POSi+2 = X

∀wi NEi−1 = X

NEi−2NEi−1 = XY
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Module L101: Machine Learning for Language Processing

Additional Contextual Predicates

Condition Contextual predicate

f(wi) < 5 wi contains period
wi contains punctuation
wi is only digits
wi is a number
wi is {upper,lower,title,mixed} case
wi is alphanumeric
length of wi

wi has only Roman numerals
wi is an initial (x.)
wi is an acronym (abc, a.b.c.)
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Module L101: Machine Learning for Language Processing

Additional Contextual Predicates

Condition Contextual predicate

∀wi memory NE tag for wi

unigram tag of wi+1

unigram tag of wi+2

∀wi wi in a gazetteer
wi−1 in a gazetteer
wi+1 in a gazetteer

∀wi wi not lowercase and flc > fuc
∀wi unigrams of word type

bigrams of word types
trigrams of word types
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Module L101: Machine Learning for Language Processing

The Word Type Features

• Moody =⇒ Aa

• A.B.C. =⇒ A.A.A.

• 1,345.00 =⇒ 0,0.0

• Mr. Smith =⇒ Aa. Aa
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Module L101: Machine Learning for Language Processing

Baseline Results on English Data

English Precision Recall Fβ=1

location 90.78% 90.58% 90.68%
misc 85.80% 81.24% 83.45%
organisation 82.24% 80.09% 81.15%
person 92.02% 92.67% 92.35%
overall 88.53% 87.41% 87.97%

• Reuters newswire data

• 200,000 words training, 50,000 words test
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Full System Results on English Data

English Precision Recall Fβ=1

location 91.75% 93.20% 92.47%
misc 88.34% 82.97% 85.57%
organisation 83.54% 85.53% 84.52%
person 94.26% 95.39% 94.82%
overall 90.15% 90.56% 90.35%

• Good NER performance requires a wide range of features

• One of the best performing systems in CoNLL-03
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German Results

German Precision Recall Fβ=1

location 70.91% 71.11% 71.01%
misc 68.51% 46.12% 55.13%
organisation 68.43% 50.19% 57.91%
person 88.04% 72.05% 79.25%
overall 75.61% 62.46% 68.41%

• German newspaper text (200k training, 50k test)

• German is harder than English (capitalisation)
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Conclusion

• Tagging (and other NLP tasks) require a wide range of features for good
performance

• Maximum entropy models (with Gaussian smoothing) can handle a large
number of diverse features

• GIS is relatively simple and performs well for maximum entropy taggers
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Other Work

• MaxEnt (CRF) models for wide-coverage CCG parsing (Clark & Curran, 2007)

• Statistical parsing requires a wide range of features for good performance

• Generative parsing models lack the flexibility of maximum entropy models

• Training is computationally expensive and requires dynamic programming
methods

• GIS is too slow for parsing models - use more general numerical optimisation
methods
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