Maximum Entropy Models (for tagging)

Stephen Clark

Lent 2013

Machine Learning for Language Processing: Lecture 2

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Discriminative Models

- Classification requires the class-posterior $P(\omega_j | \boldsymbol{x})$
 - can just directly model the posterior distribution
 - avoids the complexity of modelling the joint distribution $P({m x},\omega_j)$
- Form of model called a discriminative model
- Many debates of generative versus discriminative models:
 - discriminative model criterion more closely related to classification process
 - not dependent on generative process being correct
 - joint distribution can be very complicated to accurately model
 - only final posterior distribution needs to be a valid distribution

Recap on Tagging

• Find the best tag sequence given the sentence (conditional probability):

$$\operatorname*{argmax}_{t_1...t_n} p(t_1 \dots t_n | w_1 \dots w_n)$$

• Alternatively maximise $p(t_1 \dots t_n, w_1 \dots w_n)$ (joint probability):

$$\operatorname{argmax}_{t_1\dots t_n} p(t_1 \dots t_n | w_1 \dots w_n) = \operatorname{argmax}_{t_1\dots t_n} \frac{p(t_1 \dots t_n, w_1 \dots w_n)}{p(w_1 \dots w_n)}$$
$$= \operatorname{argmax}_{t_1\dots t_n} p(t_1 \dots t_n, w_1 \dots w_n)$$

Recap on Markov Model Tagging

• Maximise the joint probability:

$$p(t_1 \dots t_n, w_1 \dots w_n) = p(t_1 \dots t_n) p(w_1 \dots w_n | t_1 \dots t_n)$$

• Tag sequence probability (first order Markov Model):

 $p(t_1...t_n) \approx p(t_1)p(t_2|t_1)p(t_3|t_2)\cdots p(t_n|t_{n-1})$

• Word sequence probability (given the tags):

$$p(w_1 \dots w_n | t_1 \dots t_n) \approx p(w_1 | t_1) p(w_2 | t_2) \cdots p(w_n | t_n)$$

Problems with Markov Model Taggers

- unreliable zero or very low counts
 - does a zero count indicate an impossible event?

 \implies smoothing the counts solves this problem

- Words not seen in the data are especially problematic
 ⇒ would like to include word internal information
 e.g. capitalisation or suffix information
- Cannot incorporate diverse pieces of evidence for predicting tags e.g. global document information

Feature-based Models

• Features encode evidence from the context for a particular tag:

(title caps, NNP)Citibank, Mr.(suffix -ing, VBG)running, cooking

(next word Inc., I-ORG) Lotus Inc. (previous word said, I-PER) said Mr. Vinken

Complex Features

• Features can be arbitrarily complex

- e.g. document level features (document = cricket & current word = Lancashire, I-ORG) ⇒ hopefully tag Lancashire as I-ORG not I-LOC

- Features can be combinations of atomic features
 - (current word = Miss & next word = Selfridges, I-ORG) \implies hopefully tag Miss as I-ORG not I-PER
- Features are not assumed to be (conditionally) independent (given the label)
 unlike the Naive Bayes classifier

Feature-based Tagging

- How do we incorporate features into a probabilistic tagger?
- Hack the Markov Model tagger to incorporate features
- Maximum Entropy (MaxEnt) Tagging
 - principled way of incorporating features
 - requires sophisticated estimation method

Features in Maximum Entropy Models

- Features encode elements of the context ${\cal C}$ useful for predicting tag t
- Features are binary valued functions, e.g.

$$f_i(C,t) = \left\{ \begin{array}{ll} 1 \ \text{if } \texttt{word}(C) = \texttt{Moody} \ \& \ t = \texttt{I-ORG} \\ 0 \ \text{otherwise} \end{array} \right.$$

- word(C) = Moody is a contextual predicate
- Features determine (contextual_predicate, tag) pairs

The Model

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- f_i is a feature
- λ_i is a weight (large value implies informative feature)
- Z(C) is a normalisation constant ensuring a proper probability distribution
- Also known as a *log-linear* model
- Makes no independence assumptions about the features
- Can be used as a general classifer (outside of tagging, e.g. text classification)

Tagging with Maximum Entropy Models

• The conditional probability of a tag sequence $t_1 \dots t_n$ is

$$p(t_1 \dots t_n | w_1 \dots w_n) \approx \prod_{i=1}^n p(t_i | C_i)$$

given a sentence $w_1 \ldots w_n$ and contexts $C_1 \ldots C_n$

- The context includes previously assigned tags (for a fixed history)
- Beam search or Viterbi is used to find the most probable sequence (Ratnaparkhi, 1996)
- Later in the course we will see an alternative (more principled) conditional formulation of the global probability (in the form of CRFs)

Model Estimation

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- Model estimation involves setting the weight values λ_i
- The model should reflect the data \implies use the data to *constrain* the model
- What form should the constraints take? \implies constrain the *expected value* of each feature f_i

The Constraints

$$E_p f_i = \sum_{C,t} p(C,t) f_i(C,t) = K_i$$

- Expected value of each feature must satisfy some constraint K_i
- A natural choice for K_i is the average empirical count:

$$K_{i} = E_{\tilde{p}}f_{i} = \frac{1}{N}\sum_{j=1}^{N}f_{i}(C_{j}, t_{j})$$

derived from the training data $(C_1, t_1), \ldots, (C_N, t_N)$

Choosing the Maximum Entropy Model

- The constraints do not *uniquely* identify a model
- From those models satisfying the constraints: choose the Maximum Entropy model
- Conditional entropy of a model p:

$$H(p) = -\sum_{C,t} \tilde{p}(C)p(t|C)\log p(t|C)$$

The Maximum Entropy Model

- The maximum entropy model is the *most uniform model* \implies makes no assumptions in addition to what we know from the data
- MaxEnt model is also the *Maximum Likelihood Log-Linear* model
- Set the weights to give the MaxEnt model satisfying the constraints \implies use *Generalised Iterative Scaling* (GIS)

Generalised Iterative Scaling (GIS)

- Set $\lambda_i^{(0)}$ equal to some arbitrary value (e.g. zero)
- Repeat until convergence:

$$\lambda_i^{(t+1)} = \lambda_i^{(t)} + \frac{1}{C} \log \frac{E_{\tilde{p}} f_i}{E_{p^{(t)}} f_i}$$

where

$$C = \max_{x,y} \sum_{i=1}^{n} f_i(x,y)$$

• Many formulations of GIS specify the need for a "correction feature", but see Curran and Clark (2003)

Smoothing

- Models which satisfy the constraints exactly tend to *overfit* the data
- In particular, empirical counts for low frequency features can be unreliable
 - often leads to very large weight values
- Common smoothing technique is to ignore low frequency features
 - but low frequency features may be important
- Use a *prior* distribution on the parameters
 - encodes our knowledge that weight values should not be too large

Smoothing

- Standard technique is to use a *Gaussian prior* over the parameters (Chen and Rosenfeld 1999)
 - penalises models with extreme feature weights
- This is a form of *maximum a posteriori* (MAP) estimation
- Can be thought of as relaxing the model constraints requires a modification to the update rule
- Can also be thought of as a form of *regularisation*

Pos Tagger Features

• The tagger uses binary valued features, e.g.

$$f_i(x,y) = \begin{cases} 1 & \text{if } \texttt{word}(x) = \texttt{the } \& y = \mathsf{DT} \\ 0 & \text{otherwise} \end{cases}$$

- word(x) = the is a contextual predicate
- Contextual predicates:

$t_{i-1} = X$	previous tag history
$t_{i-2}t_{i-1} = XY$	previous two tags history
$w_i = X$	current word
$w_{i-1} = X$	previous word
$w_{i-2} = X$	previous previous word
$w_{i+1} = X$	next word
$w_{i+2} = X$	next next word

Pos Tagger Features for Rare Words

- These predicates apply to words seen less than 5 times in the data
 - $\begin{array}{l} X \text{ is prefix of } w_i, \ |X| \leq 4 \\ X \text{ is suffix of } w_i, \ |X| \leq 4 \\ w_i \text{ contains a digit} \\ w_i \text{ contains uppercase char} \\ w_i \text{ contains a hyphen} \end{array}$
- Otherwise the current word predicate applies

Evaluation Measures

Acc overall per-word accuracy

Uword accuracy on previously unseen words

Utag accuracy on previously unseen word-tag pairs

Amb accuracy on words seen with more than one tag in the Treebank

• Training data sections 2-21, development section 00, testing section 23 from the WSJ Penn Treebank

Results on the Development Set

Tagger	Acc	Uword	UTAG	Амв
MXPOST	96.59	85.81	30.04	94.82
BASE	96.58	85.70	29.28	94.82
SMOOTHED	96.75	86.74	33.08	95.06

- MXPOST is Ratnaparkhi's original tagger (feature cutoff 5, no smoothing)
- Gaussian smoothing improves results

Cut-off	Acc	Uword	UTAG	Амв
≥ 1	96.82	87.20	30.80	95.07
≥ 2	96.77	87.02	31.18	95.00
≥ 3	96.72	86.62	31.94	94.94
≥ 4	96.72	87.08	34.22	94.96

Results with varying feature cut-offs

- No cutoff gives best results
- Gaussian smoothing allows all features to be used without overfitting

Results on the lest Set					
Tagger	Acc	Uword	UTAG	Амв	
MXPOST	97.05	83.63	30.20	95.44	
C&C	97.27	85.21	28.98	95.69	

. . . .

Cross-validation results

Tagger	Acc	σ	Uword	UTAG	Амв
MXPOST	96.72	0.12	85.50	32.16	95.00
TNT	96.48	0.13	85.31	0.00	94.26
C&C	96.86	0.12	86.43	30.42	95.08

Performance

- Training takes around 10 minutes for 100 GIS iterations
- Tagging is very fast (around 100,000 words per second)

Named Entity Tagging

- Language independent NER for CoNLL-02, CoNLL-03 competitions
- English, German, Dutch
- LOC, PER, ORG, MISC, O

Contextual Predicates used by the NE tagger

Condition	Contextual predicate
$f(w_i) < 5$	X is prefix/suffix of w_i , $ X \leq 4$
	w_i contains a digit
	w_i contains uppercase character
	w_i contains a hyphen
$\forall w_i$	$w_i = X$
	$w_{i-1} = X$, $w_{i-2} = X$
	$w_{i+1} = X$, $w_{i+2} = X$
$\forall w_i$	$POS_i = X$
	$POS_{i-1} = X$, $POS_{i-2} = X$
	$POS_{i+1} = X$, $POS_{i+2} = X$
$\forall w_i$	$NE_{i-1} = X$
	$NE_{i-2}NE_{i-1} = XY$

Additional Contextual Predicates

Condition	Contextual predicate	
$f(w_i) < 5$	w_i contains period	
	w_i contains punctuation	
	w_i is only digits	
	w_i is a number	
	w_i is {upper,lower,title,mixed} case	
	w_i is alphanumeric	
	length of w_i	
	w_i has only Roman numerals	
	w_i is an initial (X.)	
	w_i is an acronym (ABC, A.B.C.)	

Additional Contextual Predicates

Condition	Contextual predicate
$\forall w_i$	memory NE tag for w_i
	unigram tag of w_{i+1}
	unigram tag of w_{i+2}
$\forall w_i$	w_i in a gazetteer
	w_{i-1} in a gazetteer
	w_{i+1} in a gazetteer
$\forall w_i$	w_i not lowercase and $f_{\sf lc} > f_{\sf uc}$
$\forall w_i$	unigrams of word type
	bigrams of word types
	trigrams of word types

The Word Type Features

- Moody \Longrightarrow Aa
- $A.B.C. \implies A.A.A.$
- 1,345.00 \implies 0,0.0
- Mr. Smith \Longrightarrow Aa. Aa

Baseline Results on English Data

English	PRECISION	Recall	$F_{\beta=1}$
LOCATION	90.78%	90.58%	90.68%
MISC	85.80%	81.24%	83.45%
ORGANISATION	82.24%	80.09%	81.15%
PERSON	92.02%	92.67%	92.35%
OVERALL	88.53%	87.41%	87.97%

- Reuters newswire data
- 200,000 words training, 50,000 words test

Full System Results on English Data

English	PRECISION	Recall	$F_{\beta=1}$
LOCATION	91.75%	93.20%	92.47%
MISC	88.34%	82.97%	85.57%
ORGANISATION	83.54%	85.53%	84.52%
PERSON	94.26%	95.39%	94.82%
OVERALL	90.15%	90.56%	90.35%

- Good NER performance requires a wide range of features
- One of the best performing systems in CoNLL-03

German Results

German	PRECISION	Recall	$F_{\beta=1}$
LOCATION	70.91%	71.11%	71.01%
MISC	68.51%	46.12%	55.13%
ORGANISATION	68.43%	50.19%	57.91%
PERSON	88.04%	72.05%	79.25%
OVERALL	75.61%	62.46 %	68.41 %

- German newspaper text (200k training, 50k test)
- German is harder than English (capitalisation)

Conclusion

- Tagging (and other NLP tasks) require a wide range of features for good performance
- Maximum entropy models (with Gaussian smoothing) can handle a large number of diverse features
- GIS is relatively simple and performs well for maximum entropy taggers

Other Work

- MaxEnt (CRF) models for wide-coverage CCG parsing (Clark & Curran, 2007)
- Statistical parsing requires a wide range of features for good performance
- Generative parsing models lack the flexibility of maximum entropy models
- Training is computationally expensive and requires dynamic programming methods
- GIS is too slow for parsing models use more general numerical optimisation methods

References

- Investigating GIS and Smoothing for Maximum Entropy Taggers. James R. Curran and Stephen Clark. Proceedings of the 11th Meeting of the European Chapter of the Association for Computational Linguistics (EACL-03), pp.91-98, Budapest, Hungary, 2003
- Adwait Ratnaparkhi. (1996). A Maximum Entropy Model for Part-Of-Speech Tagging. In Proceedings of the Empirical Methods in Natural Language Processing Conference (EMNLP), University of Pennsylvania.
- Stanley F. Chen and Ronald Rosenfeld. A Gaussian Prior for Smoothing Maximum Entropy Models. Technical Report CMU-CS-99-108, Computer Science Department, Carnegie Mellon University, 1999.
- Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL 2003, pp. 252-259.