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PCFGs 2

• Probabilistic Context Free Grammars provide a ready-made solution to
the statistical parsing problem

• However, it is important to realise that parameters do not have to be
associated with the rules of a context free grammar

– we can choose to break up the tree in any way we like

• But extracting a PCFG from the Penn Treebank and parsing with it pro-
vides a useful baseline

– a PCFG parser obtains roughly 70-75% Parseval scores



Parameterisation of a Parse Tree 3

• Collins describes the following two criteria for a good parameterisation:

– Discriminative power: the parameters should include the contex-
tual information required for the disambiguation process (PCFGs fail
in this regard)

– Compactness: the model should have as few parameters as possible
(while still retaining adequate discriminative power)



Generative Models for Parse Trees 4

• Representation

– the set of part-of-speech tags

– whether to pass lexical heads up the tree (lexicalisation)

– whether to replace words with their morphological stems

• Decomposition

– the order in which to generate the tree

– the order of decisions, di, made in generating the tree

– these decisions do not have to correspond to parsing decisions

• Independence assumptions

– group decision sequences into equivalence classes, Φ

P (T, S) =
n∏

i=1

P (di|Φ(d1 . . . di−1))



Successive Parameterisations 5

• Simple PCFG

• PCFG + dependencies

• Dependencies + direction

• Dependencies + direction + relations

• Dependencies + direction + relations + subcategorisation

• Dependencies + direction + relations + subcategorisation + distance

• Dependencies + direction + relations + subcategorisation + distance +
parts-of-speech



The Basic Generative Model 6

• Each rule in a PCFG has the following form:

P (h) → Ln(ln) . . . L1(l1)H(h)R1(r1) . . . Rm(rm)

P is the parent; H is the head-child; Li and Ri are left and right modifiers
(n or m may be zero)

• The probability of a rule can be written (exactly) using the chain rule:

p(Ln(ln) . . . L1(l1)H(h)R1(r1) . . . Rm(rm)|P (h)) =

p(H|P (h))×
n∏

i=1

p(Li(li)|L1(l1) . . . Li−1(li−1), P (h), H)×

m∏

j=1

p(Rj(rj)|L1(l1) . . . Ln(ln), R1(r1) . . . Rn(rn), P (h), H)



Independence Assumptions 7

• For Model 1, assume the modifiers are generated independently of
each other:

pl(Li(li)|L1(l1) . . . Li−1(li−1), P (h), H) = pl(Li(li)|P (h), H)

pr(Rj(rj)|L1(l1) . . . Ln(ln), R1(r1) . . . Rn(rn), P (h), H) = pr(Rj(rj)|P (h), H)

• Example rule: S(bought) → NP(week) NP(IBM) VP(bought)

ph(VP|S,bought) × pl(NP(IBM)|S,VP,bought) × pl(NP(week)|S,VP,bought)
× pl(STOP|S,VP,bought) × pr(STOP|S,VP,bought)



Subcategorisation Parameters 8

• A better model would distinguish optional arguments (adjuncts) from
required arguments (complements)

• In Last week IBM bought Lotus, Last week is an optional argument

• Here the verb subcategorises for an NP subject to the left and an NP
object to the right

– subjects are often omitted from subcat frames for English (because
every verb has a subject in English) but we’ll keep them in the model



Subcategorisation Parameters 9

• Probability of the rule S(bought) → NP(week) NP-C(IBM) VP(bought):

ph(VP|S,bought) × plc({NP-C}|S,VP,bought) × prc({}|S,VP,bought) ×
pl(NP-C(IBM)|S,VP,bought,{NP-C}) × pl(NP(week)|S,VP,bought,{}) ×

pl(STOP|S,VP,bought,{}) × pr(STOP|S,VP,bought,{})



Estimation for PCFGs 10

• Easy!

P̂ (RHS|LHS) =
f(LHS → RHS)

f(LHS)

where f(LHS → RHS) is the number of times LHS rewrites as the RHS
in a treebank, and f(LHS) is the total number of times LHS is rewritten as
anything

• These relative frequency estimates can be justified as maximum likeli-
hood estimates:

P̂ = argmax
P

n∏

i=1

m∏

j=1

P (RHSi
j|LHSi

j)

where LHSi
j → RHSi

j is the jth rule application in the ith training example
(Collins has a proof of this)



Smoothing for Lexicalised PCFGs 11

• The grammar Collins uses is (roughly speaking) a lexicalised PCFG
(only roughly speaking because of the Markov process generating the
subcat frames)

• Lexicalised PCFGs can be thought of as PCFGs with much larger sets
of non-terminal symbols (the standard non-terminals embellished with
lexical items)

• So relative frequency estimation isn’t going to work (many combinations
of LHS’s and RHS’s won’t appear in the data)



Backoff and Interpolation 12

• Backoff levels for ph(H|P,w, t) where H is the head category, P is the
parent, w is the head word associated with the head category, and t is
the pos tag of the head word

– ph(H|P,w, t)

– ph(H|P, t)

– ph(H|P )

• Use a linear combination of these (linear interpolation):

p̃h(H|P,w, t) = λ1p̂h(H|P,w, t) + λ2p̂h(H|P, t) + λ3p̂h(H|P )

λi ≥ 0, ∑
i λi = 1



Setting the Lambdas 13

• A neat way to set the values of the λs based on the diversity :

λi =
fi

fi + 5ui

where fi is the number of times we’ve seen the denominator from the rel-
ative frequency estimate and ui is the number of unique outcomes in the
distribution (see p.185 of Collins’ thesis); and 5 is set empirically



More Backoff and Interpolation 14

• pL(Li(lwi, lti)|P,H,w, t, LC)

where Li(lwi, lti) is a left complement consisting of non-terminal Li, word
lwi, and pos tag lti; P is the parent category; H is the category of the head;
w is the head word; t is the pos tag of the head word, and LC is the left
subcat frame

pL(Li(lwi, lti)|P,H,w, t, LC) = pL(Li(lti)|P,H,w, t, LC)

×pL(lwi|Li, lti, P,H,w, t, LC)



More Backoff and Interpolation 15

• pL(Li(li)|P,H,w, t, LC)

where Li(li) is a left complement, P is the parent category, H is the cat-
egory of the head, w is the head word, t is the pos tag of the head word,
and LC is the left subcat frame

• pL(Li(li)|P,H,w, t, LC)

• pL(Li(li)|P,H, t, LC)

• pL(Li(li)|P,H,LC)

pL(Li(li)|P,H, t, LC) = λ1pL(Li(li)|P,H,w, t, LC)+

λ2pL(Li(li)|P,H, t, LC) + λ3pL(Li(li)|P,H,LC)



Distance 16

• All Collins’ models have “distance” parameters in them which improve
the results

• I’ve ignored these parameters only because they clutter the equations
further and adding them as extra parameters is not complicated



Results 17

• Model 1 achieves 87.5/87.7 LP/LR on WSJ section 23 according to the
Parseval measures

• Model 2 achieves 88.1/88.3 LP/LR

• Current best scores on this task are around 92


