
Summary of Synthesisable SystemVerilog

Numbers and constants

Example: 4-bit constant 11 in binary, hex and decimal:
4’b1011 == 4’hb == 4’d11

Bit concatenation using {} :
{2’b10,2’b11} == 4’b1011

Note that numbers are unsigned by default.

Constants are declared using parameter vis:
parameter foo = 42

Operators

Arithmetic: the usual + and - work for add and subtract.
Multiply (*) divide (/) andmodulus (%) are provided by
remember that they may generate substantial hardware
which could be quite slow.

Shift left (<<) and shift right (>>) operators are avail-
able. Some synthesis systems will only shift by a con-
stant amount (which is trivial since it involves no logic).

Relational operators: equal (==) not-equal (!=) and the
usual < <= > >=

Bitwise operators: and (&) or (|) xor (ˆ) not (˜)

Logical operators (where a multi-bit value is false if zero,
true otherwise): and (&&) or (||) not (!)

Bit reduction unary operators: and (&) or (|) xor (ˆ)
Example, for a 3 bit vector a:

&a == a[0] & a[1] & a[2]
and |a == a[0] | a[1] | a[2]

Conditional operator ? used to multiplex a result
Example: (a==3’d3) ? formula1 : formula0
For single bit formula, this is equivalent to:

((a==3’d3) && formula1)
|| ((a!=3’d3) && formula0)

Registers and wires

Declaring a 4 bit wire with index starting at 0:
wire [3:0] w;

Declaring an 8 bit register:
reg [7:0] r;

Declaring a 32 element memory 8 bits wide:
reg [7:0] mem [0:31]

Bit extract example:
r[5:2]

returns the 4 bits between bit positions 2 to 5 inclusive.

logic can be used instead of reg or wire and its use
(whether in always_comb or always_ff block) deter-
mines whether it is a register or wire.

Assignment

Assignment to wires uses the assign primitive outside
an always block, vis:

assign mywire = a & b

This is called continuous assignment because mywire is
continually updated as a and b change (i.e. it is all com-
binational logic).

Continuous assignments can also bemade inside an always_comb
block:
always_comb mywire = a & b

Registers are assigned to inside an always_ff blockwhich
specifies where the clock comes from, vis:
always_ff @(posedge clock)

r<=r+1;

The <= assignment operator is non-blocking and is per-
formed on every positive edge of clock . Note that if
you have whole load of non-blocking assignments then
they are all updated in parallel.

Adding an asynchronous reset:

always_ff @(posedge clock or posedge reset)
if(reset)

r <= 0;
else

r <= r+1;

Note that this will be synthesised to an asynchronous
(i.e. independent of the clock) reset where the reset is
connected directly to the clear input of the DFF.

The blocking assignment operator (=) is also used inside
an always block but causes assignments to be performed
as if in sequential order. This tends to result in slower
circuits, so we do not used it for synthesised circuits.

Case and if statements

case and if statements are used inside an always_comb
or always_ff blocks to conditionally perform opera-
tions.

Example:

always_ff @(posedge clock)
if(add1 && add2) r <= r+3;
else if(add2) r <= r+2;
else if(add1) r <= r+1;

Note that we don’t need to specify what happens when
add1 and add2 are both false since the default behaviour
is that r will not be updated.

Equivalent function using a case statement:

always_ff @(posedge clock)
case({add2,add1})

2’b11 : r <= r+3;
2’b10 : r <= r+2;
2’b01 : r <= r+1;
default: r <= r;

endcase

And using the conditional operator (?):

always_ff @(posedge clock)
r <= (add1 && add2) ? r+3 :

add2 ? r+2 :
add1 ? r+1 : r;

Which because it is a contrived example can be short-
ened to:

always_ff @(posedge clock)
r <= r + {add2,add1};

Note that the following would not work:

always_ff @(posedge clock) begin
if(add1) r <= r + 1;
if(add2) r <= r + 2;

end

The problem is that the non-blocking assignments must
happen in parallel, so if add1==add2==1 then we are
asking for r to be assigned r+1 and r+2 simultaneously
which is ambiguous.

Module declarations

Modules pass inputs and outputs as wires only. If an
output is also a register then only the output of that reg-
ister leaves the module as wires.

Example:

module simpleClockedALU(
input clock,
input [1:0] func,
input [3:0] a,b,
output reg [3:0] result);

always_ff @(posedge clock)
case(func)

2’d0 : result <= a + b;
2’d1 : result <= a - b;
2’d2 : result <= a & b;
default : result <= a ˆ b;

endcase
endmodule

Example in pre 2001 Verilog:

module simpleClockedALU(
clock, func, a, b, result);

input clock;
input [1:0] func;
input [3:0] a,b;
output [3:0] result;
reg [3:0] result;
always @(posedge clock)

case(func)
2’d0 : result <= a + b;

2’d1 : result <= a - b;
2’d2 : result <= a & b;
default : result <= a ˆ b;

endcase
endmodule

Instantiating the above module could be done as fol-
lows:

wire clk;
wire [3:0] data0,data1,sum;

simpleClockedALU myFourBitAdder(
.clock(clk),
.func(0), // constant function
.a(data0),
.b(data1),
.result(sum));

Notes:

• myFourBitAdder is the name of this instance of
the hardware

• the .clock(clk) notation refers to:
.port_name(your_name)

which ensures that values are wired to the right
place.

• in this instance the function input is zero, to the
synthesis system is likely to simplify the implemen-
tation of this instance so that it is only capable of
performing an addition (the zero case)

Simulation

Example simulation following on from the above instan-
tiation of simpleClockeALU :

reg clk;
reg [7:0] vals;
assign data0=vals[3:0];
assign data1=vals[7:4];

// oscillate clock every 10 simulation units
always #10 clk <= !clk;

// initialise values
initial #0 begin

clk = 0;
vals=0;

// finish after 200 simulation units
#200 $finish;

end

// monitor results
always @(negedge clk)

$display("%d + %d = %d",data0,data1,sum);

Simon Moore
September 2010

