Chapter 5

Inductive definitions

This chapter shows where induction principles come from. It is an introduction to the theory of inductively-
defined sets. It provides general methods for defining sets recursively, and general induction rules to accom-
pany inductively-defined sets.

5.1 Sets defined by rules—examples

Often a set is described in the following way. Some clauses stipulate that certain basic elements are to be in
the set; then clauses are given stipulating further elements of the set in terms of elements already included.
Implicitly, only elements produced in these stipulated ways are to be included in the set. This gives a kind
of recipe for making a set: first put in the basic elements; then, conditional on certain elements being in,
add others. Sets described in this way are called inductively defined.

Inductively defined sets are ubiquitous, but not always presented in the same way. To stress the com-
monality in their form of definition we’ll present inductively-defined sets via rules. A rule instance comprises
its premises and a conclusion

T, T,
Yy

The intended interpretation is: if the premises x1, zo, - - - are in the set being defined, then so is the conclusion
y. The premises may form an empty set, in which case the rule simply expresses that the conclusion y
is in the set. The following examples only give a limited idea of the range of applications of inductive
definitions—you’ll meet them again and again, in applications as diverse as semantics, logic, verification,
logic programming, datatypes, compiler construction, security, probability, ...

Example: The set of nonnegative integers Ny can be thought of as being generated in the following way:
zero, 0, is a nonnegative integer; if n is a nonnegative integer, then so is n + 1. We can format these clauses

in the form of rules: n

0 n+1

, where n € Ny.

We can alternatively consider Ny as generated by the rules:

0,1,---,(n—1)
0 n

, where n € Ng.
O

Example: The set of strings ¥* over an alphabet of symbols 3 are defined by these clauses: ¢ is a string,
the empty string; if = is a string and a € 3, then the concatenation az is a string. Formatted as rules:

X

a€x
3 axr

where we insist in the side condition that only symbols from the alphabet are used in making strings. (The
set of lists over elements in ¥ would be constructed in the same way, though generally writing [| for the
empty list, and a :: = for the concatenation of a in ¥ to the front of a list z.)

46

5.2. INDUCTIVELY-DEFINED SETS 47

The rules for producing nonnegative integers exampled above assumed the prior existence of such integers.
At the dawn of thought, ‘caveman numbers’ could have been invented as strings of scratches ‘|” generated

by the rules
x

| z|

where x stands for a string of scratches. Repeated use of the rules would lead to
I | 11— 1]
This shows how the natural numbers can be built from scratch! O
Example: The syntax of Boolean propositions can be described by
AB,..:=a,b,c,--- |T|F|AAB|AVB|-A

where a,b, c--- € Var belong to a set of propositional variables, Var. We might instead describe the syntax
of propositions by rules of the form:

a € Var S —
a T F
A B A B A
AANB AVB —A

Each rule gives a step in the way of building up a Boolean proposition. Some rules say how to build
propositions like AAB out of propositions A and B built earlier. Others assert that there are basic propositions
like T, or a where a € Var. O

Exercise 5.1 Write down rules to define the set of binary trees with leaves in an alphabet 3. O

5.2 Inductively-defined sets

We are interested in the general problem of defining a set by rules of the kind we have seen in the examples.
In essence, an instance of a rule has the form of a pair (X/y) consisting of a set X, the premises, and a
conclusion y. In general X might be empty or even infinite. When there is rule of the form (f)/y) we will
call y an aziom. We say a rule (X/y) is finitary when the set X is finite; then the rule will be of the form
({z1,...,2n}/y), possibly with empty premises.
All examples of the previous section are associated with their own set of rule instances. For example,
for strings ¥* the rule instances form the set

{0/e)y u{({z}/az) |z e X" & ac X},

consisting of all instantiations of the rules used in building up strings. We gave two forms of rules for
generating the nonnegative integers Ny. For the first the set of rule instances is

{0/0)y u{{n}/n+1) | n € No} ,

while for the second the set is
{{0,--+,(n—1)}/n) | n € No} .

A set of rule instances R specifies a way to build a set. A particular rule instance (X/y) is intended to
say that if all the elements of X are in the set then so is y. We look for the least set with this property. If
it exists this should be the set inductively defined by the rules.

Suppose we are given a set of rule instances R. We say a set @ is closed under the rule instances R, or
simply R-closed, iff for all rule instances (X/y)

XCQRQ=yeQ.

48 CHAPTER 5. INDUCTIVE DEFINITIONS

In other words, a set is closed under the rule instances if whenever the premises of any rule instance lie in
the set so does its conclusion. In particular, an R-closed set must contain all the axioms.
Assume a set of rule instances R. Consider the collection of all R-closed sets:

{Q | Q is R-closed} .

This collection is nonempty as, for example, the set
{y | 3X. (X/y) € R}

is clearly R-closed. Thus we can form its intersection
Ir =(){Q | Q is R-closed} .

The important fact is that I is itself R-closed. To see this argue as follows: Let (X/y) € R. Suppose
X C Ir. Let Q be any R-closed subset. Then X C () and consequently y € @, as () is R-closed. Hence
y € Ip.

Summarising what we have just shown:

Proposition 5.2 With respect to a set of rule instances R,
(i) Ir is R-closed, and
(ii) of Q is an R-closed set then Ip C Q.

The set Ip is often described as the set inductively defined by R. Proposition 5.2 will supply us with a
very useful proof principle for showing a property holds of all the elements of Ir. The earlier examples give
an idea of how widespread inductively-defined sets are.

5.3 Rule induction

Suppose we wish to show a property P(z) is true of all elements x € Iy, the set inductively-defined by a set
of rule instances R. The conditions (i) and (ii) in Proposition 5.2 above furnish a method. Define the set

Q={zxelr| P(x)}.

The property P(x) is true of all x € I iff Ir C Q. By condition (ii), to show Ir C @ it suffices to show
that @) is R-closed. This requires that for all rule instances (X/y) that

VeeX. zelp& P(x))= (yeIr & P(y)) .
But Ip is R-closed by (i), so this will follow precisely when
Vze X.zelrp & P(x)) = P(y) .

We have obtained an important, general proof principle.

The principle of rule induction
Let Ir be inductively-defined by R. Then Vz € Ir. P(z) if for all rule instances (X/y) in R,

Vxe X.zelrp & P(x))= P(y) .

(The property P(z) is called the induction hypothesis.)

[In other words to prove Vz € Ir. P(x) it suffices to show that Vo € X. P(z) implies P(y) only for all rule
instances (X/y) with X C Ip.]

Notice for rule instances of the form (X/y), with X = (), the condition in the statement of rule induction
is equivalent to P(y). Certainly then Vo € X. z € Ig & P(z) is vacuously true because any x in () satisfies
P(z)—there are none.

Supposing the rule instances R are finitary, the statement of rule induction amounts to the following.
For rule instances R, we have Yy € Ig. P(y) iff for all axioms

5.3. RULE INDUCTION 49

P(y) is true, and for all rule instances

if v, € Ig & P(xy) is true for all the premises, when k ranges from 1 to n, then P(y) is true of the conclusion.
The principle of rule induction is very useful to show a property is true of all the elements in an
inductively-defined set. It has many well-known instances.

Examples: Refer to the examples of rules beginning this chapter.

Nonnegative integers Ny: The rules (0/0) and ({n}/(n+1)), for a number n, yield mathematical induction
as a special case of rule induction.

The alternative rules (§/0) and ({0,1,---,(n —1)}/n), for a number n, yield course-of-values induction,
the principle that says: A property P(n) holds for all nonnegative numbers n iff for all n € Ny

(Vm < n. P(m)) = P(n) .

Notice what happens when n = 0. Then there are no m € Ny with m < 0, so the condition of the implication
is vacuously true and the implication amounts to P(0). Course-of-values induction is useful when truth of
a property at n can depend on its truth at earlier values other than just its immediate predecessor.

Strings X*: With the rules for strings over an alphabet > rule induction specialises to this principle: a
property P(x) holds of all strings = € ¥* iff

P(e) and
Vae X, z € X" P(z)= P(ax) .

(Essentially the same induction principle works for lists.)

Boolean propositions: With the rules for the syntax of Boolean propositions, rule induction specialises
to structural induction.

Exercise 5.3 Justify the following “special principle of rule induction.” Let Ir be defined by a set of rule
instances R. Let A C Ir. Then Va € A. Q(a) if for all rule instances (X/y) in R, with X C I and y € A,

Vz e XNA Q) = Qy).

[Hint: Take property P(z) to be
P(z) iff (x € A= Q(x))

in the statement of rule induction.] O

Exercise 5.4 Based on your rules for binary trees with leaves in ¥ (c¢f. Exercise 5.1), write down the
corresponding principle of rule induction. O

Exercise 5.5 The set of well-bracketed strings is the subset of strings over symbols [and | defined induc-
tively as follows:

[] is well-bracketed;
if = is well-bracketed, then [z] is well-bracketed;
if x and y are well-bracketed, then xy is well-bracketed.

State the principle of rule induction for well-bracketed strings. Show the number of left brackets [equals
the number of right brackets | in any well-bracketed string. O

Exercise 5.6 A simple language is defined with symbols a and b. The grammar of this language has the
rules:

50 CHAPTER 5. INDUCTIVE DEFINITIONS

e ab is a word;
e if ax is a word, then azx is a word (where z is any string of symbols);

e if abbbz is a word, then ax is a word.

(i) Is abbbbb a word? Either exhibit a derivation, or prove there isn’t one.
(i) Is abbb a word? Either exhibit a derivation, or prove there isn’t one.

(iii) Characterise the strings which are words. Prove your characterisation is correct. O

Exercise 5.7 The set S is defined to be the least subset of natural numbers N such that:
1e5;
if n € S, then 3n € S;
if ne Sandn > 2 then (n —2) € S.
Show that S ={m € N | Ir,s e NU{0}. m = 3" —2s}. Deduce that S is the set of odd numbers. O

Exercise 5.8 Let I be a nonempty subset of the natural numbers N = {1,2,3,---}.
The set S is defined to be least subset of N such that

I1CS, and
if m,n € S and m < n, then (n —m) € S.

Define h to be the least member of S. This question guides you through to a proof that h coincides with
the highest common factor of I, written hef(I), and defined to be the natural number with the properties
that

hef (I) divides n for every element n € I, and
if k£ is a natural number which divides n for every n € I, then k divides hcf (I).

(a) The set S may also be described as the least subset of N closed under certain rules. Describe the rules.
Write down a principle of rule induction appropriate for the set S.

(b) Show by rule induction that hcf(I) divides n for every n € S.

(c) Let n € S. Establish that
if p-h<n then (n—p-h)es

for all nonnegative integers p.

(d) Show that h divides n for every n € S. [Hint: suppose otherwise and derive a contradiction.]

(e) Why do the results of (b) and (d) imply that h = hef(1)?

5.3.1 Transitive closure of a relation
Suppose that R is a relation on a set U. Its transitive closure, written RT, is defined to be the least relation
T such that T includes R and T is transitive, i.e.

R CT and

(a,b) e T & (b,c) €T = (a,c) €T .

An element of RT, i.e. a pair (a,b) € R*, is either in the original relation R or put in through enforcing
transitivity. This is captured by the following rules for pairs in U x U:

(a,b) € R M'

(@b (@0) o)

5.3. RULE INDUCTION 51

In other words the transitive closure R™ is inductively defined by these rules.

You may have seen another way to characterise the transitive closure of R. Define an R-chain from a to
b to consist of pairs (a1, az), (az,as), -, (an_1,a,) in R with a = a; and b = a,,. Then, (a,b) € RT iff there
is an R-chain from a to b.
To see this, let

S ={(a,b) | thereis an R-chain from a to b} .

First observe that
R C S and (a,b) € S & (b,c) € S=(a,c) €S,

the former because pairs in R form 1-link R-chains, the latter because we can concatenate two R-chains to
get an R-chain. It follows that

RTCS.

To show equality, we need the converse too. This follows by mathematical induction on n € N with induction
hypothesis:

for all R-chains (a1,a2), (ag,as3), -+, (an_1,a,) we have (a1, a,) € RT .

The basis of the induction, when n = 1, follows directly as R € RT. The induction step uses, in addition,
the transitivity of R™.

Exercise 5.9 Show the transitive closure of a relation R is the least relation T" such that:

RC T and (a,b) € R& (b,c) €T = (a,c) €T .

One way to define the reflexive, transitive closure R* of a relation R on a set U is as
R =idy U R* .

Exercise 5.10 Let R be a relation on a set U. Show that R* is the least relation that includes R and is
reflexive and transitive. O

Exercise 5.11 Let R be a relation on a set U. Define R? = idy/, the identity relation on the set U, and
R' = R and inductively, assuming R" is defined, define

R" ' = RoR".

So, R™ is the relation Ro --- o R, obtained by taking n compositions of R. Show the transitive closure of R
is the relation

+ n—+1
Br= R
n€Np

and that the transitive, reflexive closure of a relation R on X is the relation
R =) R".
n€Ny
O

Exercise 5.12 Show (R U R™1)* is an equivalence relation. Show that it is the least equivalence relation
including R. Show R* U (R™1)* need not be an equivalence relation. O

Exercise 5.13 Show that the least equivalence relation containing two equivalence relations R and S on
the same set is (RUS)™. 0

52 CHAPTER 5. INDUCTIVE DEFINITIONS

5.4 Derivation trees

Another important way to understand inductively-defined sets as generated by rules is via the notion of a
derivation tree, or derivation. An inductively-defined set consists of precisely those elements for which there
is a derivation. In this section we’ll assume a set of rule instances R which are all finitary, though the ideas
generalise straightforwardly to infinitary rules.

We are familiar with informal examples of derivations from games, like chess, draughts or bridge, where
it’s usual to discuss a particular play of a game leading up to a winning position. In the idealised view of
mathematics, as a formal game of deriving theorems from rules, a proof is a derivation of a theorem from
the rules of mathematics. As the example of proofs in mathematics makes clear, derivations can have much
more informative structure than the, often simpler, things they are intended to derive; finding proofs in
mathematics is highly nontrivial because the form an assertion takes rarely determines the structure of its
possible proofs.

As a simple example here’s a derivation for the Boolean proposition —a A (bV T) using the rules of syntax
for forming Boolean propositions:

a b ?
-a bVvVT
—|a/\(b\/T)

It has the form of a tree with the conclusion at the root and with axioms at the leaves. It is built by stacking
rules together, matching conclusions with premises.

The idea is that rules lift to rules generating derivations; we build a new derivation by stacking derivations
on top of matching premises of a rule. A derivation of an element y takes the form of a tree which is either
an instance of an axiom

Y
or of the form
7’ . —_
€1 T,
Y
which includes derivations of x1,...,x,, the premises of a rule with conclusion y. In such a derivation we
think of —,---, = as subderivations of the larger derivation of y.

x1 Tn
In set notation, an R-derivation of y is either a rule

@/y)

or a pair
({dv, -+, dn}/y)

where ({x1,--+,2,}/y) is a rule and d; is an R-derivation of z1, ..., and d,, is an R-derivation of x,.
As the formulation makes clear, the set of all R-derivations is inductively-defined. In this case rule
induction specialises to another useful proof principle.

Induction on derivations
Let P(d) be a property of R-derivations d. Then, P(d) holds for all R-derivations d iff for all rule instances
({1, -+, zn}/y) in R and R-derivations d; of x1, ..., and d,, of =y,

P(dy) & -+ & P(d,) = P({d1,---,dn}/y) .
(As usual, the property P(d) is called the induction hypothesis.)

In practice it is easier to apply induction on derivations than its rather formal statement might suggest.
A proof by induction on derivations splits into cases according to the last rule in the derivation. In each

5.4. DERIVATION TREES 53

case, it is required to show that a derivation

inherits a desired property from its subderivations =, - --, —. Induction on derivations is illustrated in the
I In
proof of the following fundamental result.

Theorem 5.14 An element y € IR iff there is an R-derivation of y.

Proof.
‘only if : Consider the set
D = {y | there is an R-derivation of y} .

The set D is R-closed as given any rule (X/y) and derivations for all its premises X we can construct a
derivation of y. Thus Ir C D.

“if’: A simple induction on derivations shows that y € Ir for any derivation of y. The argument: Take as
induction hypothesis the property that holds of a derivation of y precisely when y € I'p. Consider any rule
({x1,--,zn}/y) and derivations d; of z1, ..., and d,, of x,, for which 21 € IR, ..., and x,, € Ig. Then, as
I is R-closed, y € Ig. O

It can sometimes be easier to attach a property to a derivation, which encodes the whole history of how
an element came to be in an inductively-defined set, than to an element standing alone. If the rules are such
that the conclusions determine the rules uniquely there is no advantage (or disadvantage) in using induction
on derivations over straight rule induction.

