,0’{.74/‘&@ %NKHN /\/\77l’;u>7f-3m316‘—»n<-

9 0 —'7‘451_—21[43‘\.

Partial recursive functions in PCF

e Primitive recursion. I’L'- not— wst - "5‘/“"
[h(:lj,()) — f(:l?)

/, <\ h(z,y+1) = g(z,y, h(z,y))
e 4 z (el p) (h (12l)

11 Ahduly . o Guoy) T fz
42(’ elnt %%(j/ﬂfdﬁ)(h x (predsy)))

Partial recursive functions in PCF

e Primitive recursion.

h(z,0) = f(z)

| ke, y + 1) = gz, g, hiz,)

\

e Minimisation.

m(x) = theleasty > 0 suchthat k(x,y) = 0

m'(21) = 4 (B k@y)) T 9

Jom(x
ot (2,440 "= g

65

z2= bwt [nof[T2

!

(PCF evaluation relation
< , —
takes the form &[{AZ)
M. V
where
e 7 is a PCF type

o VM.,V € PCF', are closed PCF terms of type 7

—

e VVisavalue, L,.. P(‘Oﬂfaw\/

V :=0|succ(V) | true | false | fnx: 7. M.

Mq(Mg)z"Z%Z/ — el Vol

66

PCF evaluation (sample rules)

(U’V&l) |4 \U/’T 4

(V" avalue of type 7)

67

PCF evaluation (sample rules)

(U’V&l) |4 \U/T 4

(V" avalue of type 7)

M1U7._>7./ fnilj‘IT.M{ M{[MQ/CE] UT/V

(llcbn)

—

(

CAUE X nf RS

My Mo § V

67

PCF evaluation (sample rules)

(Jva) VIV (V avalue of type 7)

(l}) MlUT—m-’ fnilj‘ZT.M{ M{[MQ/QZ‘] UT/V
cbn

My Mo § V

M(ﬁx(M)uT %
fi(0M) U, V

I MTT

(uﬁx)

67

G

zat/

M, Ci“»)%xz'fz’ . (Z-a@—f) 2t/ XC

z>zl

My "'ka‘- £

Contextual equivalence

Two phrases of a programming language are contextually
equivalent iIf any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program. /J[1 (__/p? M.Z/

S——

37

68

Contextual equivalence of

PCF terms

Given PCF terms M, M5, PCF type 7, and a type

environment I', the relation | I' = My S Mo 7

IS defined to hold iff

e Both the typingsI' — M7 : 7 and |

e For all PCF contexts C for which C
closed terms of type v, where v =
and for all values V' : ~,

= Ms ;7 hold.

M| and C|Ms] are
nat or v = bool,

C[Ml] U,,y V & C[MQ] U,y V.

69

PCF denotational semantics — aims

70

PCF denotational semantics — aims

e PCFtypes 7 > domains [T].

70

PCF denotational semantics — aims

e PCFtypes 7 > domains [T].

e Closed PCFterms M : 7 +— elements [M] € [7].
Denotations of open te}ns will be continuous fyrictions.

Ll odogp =

70

PCF denotational semantics — aims

e PCFtypes 7 > domains [T].

e Closed PCFterms M : 7 — elements [M] € [7].

Denotations of open terms will be continuous functions.

In particular: [M] = [M'] = [C[M]] = [C[M]].

70

PCF denotational semantics — aims

PCF types 7 +> domains [T].

Closed PCF terms M : 7 +— elements [M] € [7].

Denotations of open terms will be continuous functions.
In particular: [M] = [M'] = [C[M]] = [C[M]].
Foranytype 7, M ||,V = [M] = [V].

2 ?
o S el

70

PCF denotational semantics — aims

PCF types 7 +> domains [T].

Closed PCF terms M : 7 +— elements [M] € [7].

Denotations of open terms will be continuous functions.
In particular: [M] = [M'] = [C[M]] = [C[M]].
Foranytype 7, M ||,V = [M] = [V].

For 7 = bool or nat, [M]| =[V] € [r] = M|, V.

70

Theorem. For all types 7 and closed terms M7, My € PCF .,
if [M1] and | Ms] are equal elements of the domain 7], then

Ml =ctx M2 D T.

Jer 19 EMag Vi My

ermey — [emadY={v] el7}
= ([t Y=LV {7

-::75312.]&/ V.
AR - (MY=1M] = [EmIY = gC/‘lzJJ

Theorem. For all types 7 and closed terms M7, My € PCF .,
if [M1] and | Ms] are equal elements of the domain 7], then

M1 gctx MQ . T.

Proof.

CIMi]{,,,+V = [C[Mi]] = [V] (soundness)

= [C|M>]] = [V] (compositionality
on [[Ml]] — [[MQ]])

= C|Ms| |,V (adequacy)

and symmetrically. [

71

Proof principle

To prove
M1 %Jctx M2 . T

It suffices to establish

[M;] = [Mz] in [7]

[l =Th) ey
/Vl/[de}‘“lg, 1 C

Proof principle

To prove
M1 gctx M2 . T

It suffices to establish

[M;] = [Mz] in [7]

? | The proof principle is sound, but is it complete? That is,
IS equality in the denotational model also a necessary
condition for contextual equivalence?

72

Topic 6

Denotational Semantics of PCF

73

NERF. @ﬂ;—Miz) ~ M)l

2t CH2'T
Denotational semantics of PCF I"‘ z 2 CX
¢ L

]

To every typing judgement
I'=M:T

we associate a continuous function

II'= M| : [T — 7]

between domains. § 5 oéﬁ"/"?/;"b
mﬁ—?ﬁwohfm 0{“‘“ Sih

74

7= A /M{/Zt"‘?@,

Denotational semantics of PCF types

[nat] = N (flat domain)

[bool] B, (flat domain)

where N = {0,1,2,...} and B = {true, false}.

75

Denotational semantics of PCF types

[nat] = N (flat domain)
[bool] B, (flat domain)
[T — 7"]]d§f [7] — [7] (function domain).

where N = {0,1,2,...} and B = {true, false}.

N - By wdeckon a2y detry [i a doob

75

Denotational semantics of PCF type environments

] © [ecaomm [T'(z)] @-environments)

[l= (Zt."é/)zbz?:z/u-) M@)
5:(111-—)’(4)12_!—?@_/.“/%}'—?%).

76

Denotational semantics of PCF type environments

] © [ecaomm) [T'(x)] (T-environments)

— the domain of partial functions p from variables
to domains such that dom(p) = dom(I") and
p(x) € [I'(x)] forall z € dom(T")

]7ﬁ (M s @4*&/ eyt T)
N [f‘} v Dal x(@))x -~ =&

76

Denotational semantics of PCF type environments

] © [ecaomm) [T'(x)] (T-environments)

— the domain of partial functions p from variables
to domains such that dom(p) = dom(I") and
p(x) € [I'(x)] forall x € dom(T")

Example: J‘E@] - § 3 5

1. For the empty type environment (),

0] ={ L}

where L denotes the unique partial function with

dom(L) = 0.

76

2. (z—1)] = {=}— [7])

2. [{(x — 7)]

{z}—Ir])

12

7]

{z1} = In]) x...x {zn} = [m])

Trronst 1 [— 2l

Denotational semantics of PCF terms, |

o)) e [nat] — — ‘/f@’@

' F true](p) L true [bool]

[I" - false](p) © false € [bool]

% 11 .
) N

Denotational semantics of PCF terms, |

[T 0](p) ¥ 0 € [nat]

' F true](p) L true [bool]

[I" - false](p) © false € [bool]

[T 2](p)€ p(z) € [C(x)] (2 € dom(T))

. s
V\«W IE“/P{ \(\&(\lg{”éf
?E@ (& ﬁ u}'m f&&ﬂue ;]0.

Co ey M#J“a

78

