Denotational Semantics

10 lectures for Part II CST 2012/13

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1213/DenotSem/

Lecture 1

Introduction

What is this course about?

General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Operational.

Axiomatic.

Denotational.

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Denotational.

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Hoore Logic

This cow se

IB Operational Semantis

Axiomatic

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Syntax $\stackrel{\mathbb{I}-\mathbb{I}}{\longrightarrow}$ Semantics $P \mapsto \mathbb{I}P\mathbb{I}$

 $\begin{array}{ccc} \text{Syntax} & \stackrel{\mathbb{I}-\mathbb{I}}{\longrightarrow} & \text{Semantics} \\ \text{Recursive program} & \mapsto & \text{Partial recursive function} \end{array}$

 $P \mapsto \llbracket P \rrbracket$

Concerns:

Abstract models (i.e. implementation/machine independent).

Concerns:

- Abstract models (i.e. implementation/machine independent).
- Compositionality.

Concerns:

- Abstract models (i.e. implementation/machine independent).
 - \sim Lectures 2, 3 and 4.
- Compositionality.
- Relationship to computation (e.g. operational semantics).

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* L

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
 $\mid \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C$

Basic example of denotational semantics (II) For a states & State = (L-)Z)
Semantic functions $S(L) \in \mathbb{Z}$ is The value of $A: \mathbf{Aexp} \to (State \to \mathbb{Z})$ ATAN: State -> Z where $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$ If x and Y are sets then

(X) Y) is the set of functions from X To Y

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} o (State o \mathbb{Z})$$
 $\mathcal{B}: \mathbf{Bexp} o (State o \mathbb{B})$ $\mathcal{BISJ}(A) \in \mathcal{B}$

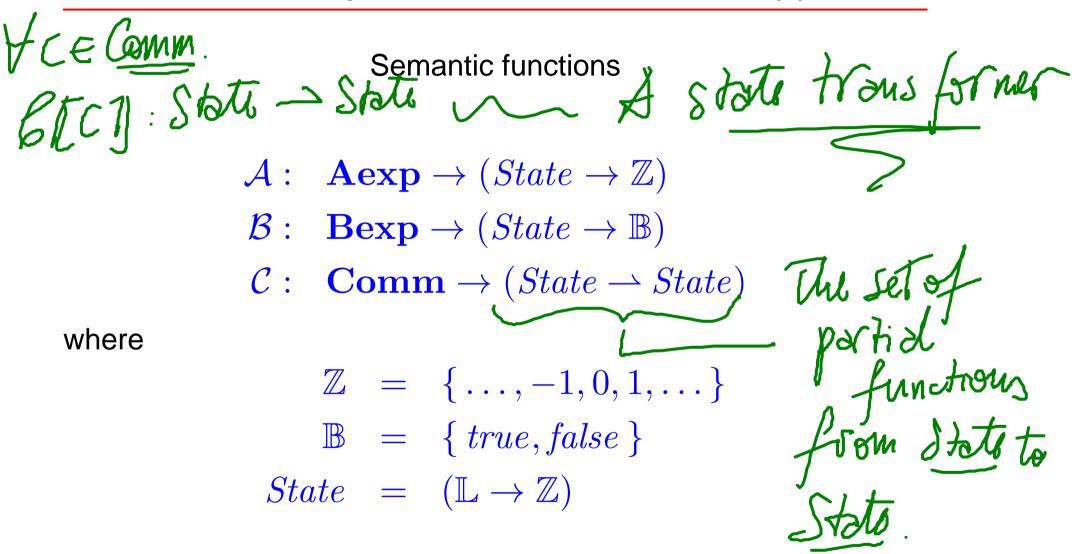
where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ true, false \}$$

$$State = (\mathbb{L} \to \mathbb{Z})$$

Basic example of denotational semantics (II)



Basic example of denotational semantics (III)

Semantic function A

$$\mathcal{A}[\![\underline{n}]\!] = \lambda s \in State. n$$

$$\mathcal{A}[\![L]\!] = \lambda s \in State. s(L)$$

$$\mathcal{A}[\![A_1 + A_2]\!] = \lambda s \in State. \mathcal{A}[\![A_1]\!](s) + \mathcal{A}[\![A_2]\!](s)$$

where n EZ s & Stato $\mathcal{AIn}J(n)=M$ Akny: State -> Z $\mathcal{A}[A_1 + A_2](1) = \mathcal{A}[A_1](1) + \mathcal{A}[A_2](1)$ Syntal for addition The addition of integers. $A[L](s) = s(L) \in \mathbb{Z}$ s & Sates=(IL->Z)

Basic example of denotational semantics (IV)

Semantic function B

$$\mathcal{B}[\![\mathbf{true}]\!] = \lambda s \in State.\ true$$

$$\mathcal{B}[\![\mathbf{false}]\!] = \lambda s \in State.\ false$$

$$\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State.\ eq(\overline{\mathcal{A}[\![A_1]\!]}(s), \overline{\mathcal{A}[\![A_2]\!]}(s))$$

$$\text{where } eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$$

[C]: State - State

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

$$[skip] = \lambda s \in State.s$$

$$[skip] = \delta s \in State.s$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $[\![C]\!], [\![C']\!]: State \longrightarrow State$ and a function $[\![B]\!]: State \longrightarrow \{true, false\}$, we can define

$$\llbracket \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C' \rrbracket =$$

$$\lambda s \in State. if(\llbracket B \rrbracket(s), \llbracket C \rrbracket(s), \llbracket C' \rrbracket(s))$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

The AD = --- TAD --- froll bout ons

The Little fle is

The Little fle is

That in s Basic example of denotational semantics (VI) and for L Semantic function \mathcal{C} $\llbracket L := A
rbracket = \lambda s \in State. \ \lambda \ell \in \mathbb{L}. \ if \left(\ell = L, \llbracket A
rbracket (s), s(\ell)
ight)$ [L:=A](s): L -> 2

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C;C'\rrbracket = \llbracket C'\rrbracket \circ \llbracket C\rrbracket = \lambda s \in State.\, \llbracket C'\rrbracket \big(\llbracket C\rrbracket (s) \big)$$
 given by composition of the part al functions from states to states

 $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the

commands.

segue ang +> / companison

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \bigl(\llbracket C \rrbracket (s) \bigr)$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C,s \Downarrow s' \quad C',s' \Downarrow s''}{C;C',s \Downarrow s''}$$

$$C;C',s \Downarrow s''$$

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C rbracket$

// [B] _____