
Databases : Lectures 11 and 12:
Beyond ACID/Relational databases

Timothy G. Griffin
Lent Term 2013

•  Rise of Web and cluster-based computing
•  “NoSQL” Movement
•  Relationships vs. Aggregates
•  Key-value store
•  XML or JSON as a data exchange language
•  Not all applications require ACID
•  CAP = Consistency, Availability, and Partition tolerance
•  The CAP theorem (pick any two?)
•  Eventual consistency
•  Can a database really be “schemaless”?

Eric Brewer’s PODC Keynote
(July 2000)

ACID vs. BASE (Basically Available, Soft-state, Eventually consistent)

•  Strong consistency
•  Isolation
•  Focus on “commit”
•  Nested transactions
•  Availability?
•  Conservative (pessimistic)
•  Difficult evolution (e.g. schema)

 Weak consistency
 Availability first
Best effort
Approximate answers OK
Aggressive (optimistic)
Simpler!
Faster
Easier evolution

A wide spectrum with many design points

“Real internet systems are a careful mixture of ACID and BASE subsystems”

ACID BASE

Relation DB design encourages thinking about
data independent of particular applications

 RDBMS

Many applications

Data integrity and ACID abstractions
handled here

Free to evolve without changing schema

Applications-oriented data stores

 data store
 interface

Application 1

 data store
 interface

Application 2

 data store
 interface

Application k

. . .

Disadvantage: Data integrity and consistency managed “in the application code”

Applications-oriented data stores

 data store
 interface

Application 1

 data store
 interface

Application 2

 data store
 interface

Application k

. . .

Advantage: works well on computing clusters

Fallacies of Distributed
Computing (Peter Deutsch)

https://blogs.oracle.com/jag/resource/Fallacies.html

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the
long run and all cause big trouble and painful learning experiences.
1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6956

http://research.google.com/archive/bigtable.html

http://research.google.com/archive/mapreduce.html

http://nosql-database.org/

Application-specific databases
have always been with us . . .

Daytona (AT&T): “Daytona is a data management
system, not a database”. Built on top of the unix file
system, this toolkit is for building application-specific
and highly scalable data stores. Is used at AT&T
for analysis of 100s of terabytes of call records.
http://www2.research.att.com/~daytona/

DataBlitz (Bell Labs, 1995) : Main-memory
database system designed for embedded systems
such as telecommunication switches. Optimized for
simple key-driven queries.

But these systems
are proprietary.

Open source is a
hallmark of NoSQL

Two that I am familiar with:

What’s new? Internet scale, cluster computing, open source . . .

Something big is happening in
the land of databases

The Internet
+ cluster computing
+ open source systems

many more points in the
database design space
are being explored and
deployed

Broader context helps clarify the strengths and weaknesses
of the standard relational/ACID approach.

The emerging world of databases

•  Relational
•  Postgres
•  MySQL

•  Key-Value stores
•  Riak
•  Redis
•  BerkeleyDB

•  Column-oriented databases
•  BigTable,
•  Cassandra
•  Hbase (build on Hadoop)

•  Document-oriented
•  MongoDB
•  CouchDB

•  Graph databases
•  Neo4j
•  VertexDB

Often overlooked in the
business-oriented hoopla:
This is making BigAnalytics
affordable for many scientific
efforts (bioinformatics, astronomy,
physics, economics,…)

This classification is not
Complete and is a bit
fuzzy-wuzzy. For example,
drawing a clear distinction between
Key-value stores and
Document-oriented databases
is not always easy. And this is
Rapidly evolving with a lot of
cross-fertilization.

Key-Value Stores

•  Mapping Key to blob-of-byte that application must “parse”
•  Example : Riak (modeled on Dynamo, eventual consistency), Cassandra
•  Typically no “query-language” for values

•  Mapping Key to “semi-structured” value
•  Example: Redis

Huge advantage: can design data representation so that all
data needed for a given update is present on a single machine.
Data can easily be partitioned (say by key ranges) over
many machines. Map-reduce initiated from set of keys . . .

Disadvantage: Data retrieved by key only. And it is hard to enforce relationships
between different values. If this is important for your applications, then perhaps
Look elsewhere …

JSON
{	
 "firstName": "John",	
 "lastName": "Smith",	
 "age": 25,	
 "address": {	
 "streetAddress": "21 2nd Street",	
 "city": "New York",	
 "state": "NY",	
 "postalCode": 10021	
 },	
 "phoneNumber": [
 {	
 "type": "home",	
 "number": "212 555-1234"	
 },	
 {	
 "type": "fax",	
 "number": "646 555-4567"	
 }	
]	
}	

Tables require joins

S(A, B, C) R(C, D, E) T(E, F) (FK = Foreign Key)
FK FK

A B C D E F
A1 B1 C1 D1 E1 F1
A1 B1 C1 D2 E2 F2
A1 B1 C1 D3 E3 F3
A2 B2 C2 D4 E4 F4
A2 B2 C2 D5 E5 F5
.
. . .

•  How could
tables be
partitioned over
multiple
servers?

•  Enforcing
referential
integrity is
VERY difficult in
a distributed
database

The Key-value approach

S(A, B, C) R(C, D, E) T(E, F) (FK = Foreign Key)
FK FK

A B C D E F
A1 B1 C1 D1 E1 F1
A1 B1 C1 D2 E2 F2
A1 B1 C1 D3 E3 F3
A2 B2 C2 D4 E4 F4
A2 B2 C2 D5 E5 F5
.
. . .

{A : A1,
 B : B1,
 stuff : [
 {D : D1, F: F1},
 {D : D2, F: F2},
 {D : D3, F: F3}
]
}

The collection of JSON objects (keyed on A) is horizontally partitioned
(sharded) across many servers. When accessed, all of the application’s
data is in one object.

Use this instead

18

The “Data Publishing” Problem
(Context: RDBMS)

DB 2

DB 2

DB 1

DB 3

DB 5

DB 4

Exports Excel

Exports HTML

Exports printed
documents

Exports Word Documents

Exports .txt files
in ad hoc format

Exports .txt files
in ad hoc format

Need to share data without exposing internal details of your database.

Lack of standard
exchange formats
requires the
implementation of
many ad hoc
translators

19

XML (or JSON) as a data
exchange format

DB 2

DB 2

DB 1

DB 3

DB 5

DB 4
Exports XML

Exports XML

Exports XML

Exports XML

Exports XML

Exports XML XML conforming to
agreed upon
semantics

20

Domain specific DTDs

•  There are now lots of DTDs that have been
agreed by groups, including
–  WML: Wireless markup language (WAP)
–  OFX: Open financial exchange
–  CML: Chemical markup language
–  AML: Astronomical markup language
–  MathML: Mathematics markup language
–  SMIL: Synchronised Multimedia Integration Language
–  ThML: Theological markup language

21

Native XML (or JSON)
Databases

<?xml version="1.0" encoding="ISO-8859-1"?>
<nitf>
<head> <title>Colombia Earthquake</title> </head>
<body>
<body.head>
<headline>
<hl1>143 Dead in Colombia Earthquake</hl1>
</headline>
<byline>
<bytag>By Jared Kotler, Associated Press Writer</bytag>
</byline>
<dateline>
 <location>Bogota, Colombia</location>
 <story.date>Monday January 25 1999 7:28 ET</story.date>
</dateline>
</body.head>
 </body>
</nitf>

XML-enabled Native XML
 (or JSON)

publish

shred
<?xml version="1.0" encoding="ISO-8859-1"?>
<nitf>
<head> <title>Colombia Earthquake</title> </head>
<body>
<body.head>
<headline>
<hl1>143 Dead in Colombia Earthquake</hl1>
</headline>
<byline>
<bytag>By Jared Kotler, Associated Press Writer</bytag>
</byline>
<dateline>
 <location>Bogota, Colombia</location>
 <story.date>Monday January 25 1999 7:28 ET</story.date>
</dateline>
</body.head>
 </body>
</nitf>

Brewer’s CAP conjecture (2000)

•  Consistency
•  Availability
•  Partition tolerance

Conjecture :
 You can have at most two.

Nancy Lynch and Seth Gilbert,
“Brewer's conjecture and the feasibility
of consistent, available, partition-tolerant web services”,
ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59.

A formal proof:

But what do the CAP terms really mean?
There seems to be no consensus . . .

•  Consistency
•  The system can guarantee that once you store a state in the

system, it will report the same state in every subsequent operation
until the state is explicitly changed by something outside the
system.

•  Is equivalent to having a single up-to-date copy of the data
•  Availability

•  All clients can find some replica of the data, even in the presence of
failures

•  A guarantee that every request receives a response about whether
it was successful or failed

•  Partition tolerance
•  The system properties hold even when the system is partitioned
•  The system continues to operate despite arbitrary message loss or

failure of part of the system

Random samples of various definitions found in the literature …

Pick any two?

•  Consistency
•  Availability
•  Partition tolerance

Traditional relational DBMS using
2-phase commit : very good at C
and struggle with A (at scale)

•  Consistency
•  Availability
•  Partition tolerance

Quorum/majority algorithms

•  Consistency
•  Availability
•  Partition tolerance

Web caching, DNS.

