Databases : Lectures 11 and 12:
Beyond ACID/Relational databases
Timothy G. Griffin
Lent Term 2013

Rise of Web and cluster-based computing

“NoSQL” Movement

Relationships vs. Aggregates

Key-value store

XML or JSON as a data exchange language

Not all applications require ACID

CAP = Consistency, Availability, and Partition tolerance
The CAP theorem (pick any two?)

Eventual consistency

Can a database really be “schemaless”?

Eric Brewer’s PODC Keynote
(July 2000)

ACID vs. BASE (Basically Available, Soft-state, Eventually consistent)

ACID BASE
« Strong consistency Weak consistency
 |solation Avallablllty first
+ Focus on “commit” Best effort
« Nested transactions Approximate answers OK
. Availability? Aggressive (optimistic)
« Conservative (pessimistic) Simpler!
- Difficult evolution (e.g. schema) Faster

Easier evolution

<Awide spectrum with many design poin}

“Real internet systems are a careful mixture of ACID and BASE subsystems”

Relation DB design encourages thinking about
data independent of particular applications

Many applications
Free to evolve without changing schema
RDBMS
>_

Data integrity and ACID abstractions
handled here

Applications-oriented data stores

Disadvantage: Data integrity and consistency managed “in the application code”

Application 1 Application 2 Application k

data store data store d_ata store
interface interface interface

Applications-oriented data stores

Advantage: works well on computing clusters

\ Application 1 / \ Application 2 / \ Application k /
data store data store o d_ata store
interface interface interface

Y

Fallacies of Distributed
Computing (Peter Deutsch)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the
long run and all cause big trouble and painful learning experiences.
The network is reliable

Latency is zero

Bandwidth is infinite

The network is secure

Topology doesn't change

There is one administrator

Transport cost is zero

The network is homogeneous

PN RN =

https://blogs.oracle.com/jag/resource/Fallacies.html

Dynamo: amazon’s highly available key-value store (2007)

by Deniz Hastorun , Madan Jampani , Gunavardhan Kakulapati , Alex Save to List

Pilchin , Swaminathan Sivasubramanian , Peter Vosshall , Werner Add to Collection
Vogels Correct Errors
Venue: In Proc. SOSP Monitor Changes

Citations: 192 -0 self

Summary Active Bibliography Co-citation Clustered Documents

Abstract

Reliability at massive scale is one of the biggest challenges we face at Amazon.com, one of the largest e-commerce
operations in the world; even the slightest outage has significant financial consequences and impacts customer trust.
The Amazon.com platform, which provides services for many web sites worldwide, is implemented on top of an
infrastructure of tens of thousands of servers and network components located in many datacenters around the world
Atthis scale, small and large components fail continuously and the way persistent state is managed in the face of
these failures drives the reliability and scalability of the software systems. This paper presents the design and
implementation of Dynamo, a highly available key-value storage system that some of Amazon's core services use to
provide an "always-on " experience. To achieve this level of availability, Dynamo sacrifices consistency under certain
failure scenarios. It makes extensive use of object versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.6956

Bigtable: A Distributed Storage System for Structured Data
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber

Abstract

Bigtable is a distributed storage system for managing structured data that is designed to scale to a very
large size: petabytes of data across thousands of commodity servers. Many projects at Google store data
in Bigtable, including web indexing, Google Earth, and Google Finance. These applications place very
different demands on Bigtable, both in terms of data size (from URLs to web pages to satellite imagery)
and latency requirements (from backend bulk processing to real-time data serving). Despite these varied
demands, Bigtable has successfully provided a flexible, high-performance solution for all of these Google
products. In this paper we describe the simple data model provided by Bigtable, which gives clients
dvnamic control over data layout and format, and we describe the design and implementation of Bigtable.

To appear in:
OSDI'06: Seventh Symposium on Operating System Design and Implementation,
Seattle, WA, November, 2006.

http://research.google.com/archive/bigtable.html

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat

Abstract

MapReduce is a programming model and an associated implementation for processing and generating large data
sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with the same intermediate key.
Many real world tasks are expressible in this model, as shown in the paper.

Programs written in this functional style are automatically parallelized and executed on a large cluster of
commodity machines. The run-time system takes care of the details of partitioning the input data, scheduling
the program's execution across a set of machines, handling machine failures, and managing the required inter-
machine communication. This allows programmers without any experience with parallel and distributed systems
to easily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large cluster of commodity machines and is highly scalable: a
typical MapReduce computation processes many terabytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce programs have been implemented and upwards of one
thousand MapReduce jobs are executed on Google's clusters every day.

Appeared in:

OSDI'04: Sixth Symposium on Operating System Design and Implementation,
San Francisco, CA, December, 2004.

http://research.google.com/archive/mapreduce.htmli

http://nosqgl-database.org/

Your Ultimate Guide to the [the best !

N*s Q L Non - Relational Universe!
«NEeve
News

NoSQL DEFINITION:Next Generation Databases mostly addressing some of the points: being non-
relational, distributed, open-source and horizontally scalable.

The original intention has been modern web-scale databases. The movement began early 2009 and
is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support,
simple API, eventually consistent / BASE (not ACID), a huge amount of data and more. So the
misleading term "nosgl" (the community now translates it mostly with "not only sql") should be seen as
an alias to something like the definition above. [based on 7 sources, 14 constructive feedback emails (thanks!) and 1

disliking comment. Agree / Disagree? Tell me so! By the way: this is a strong definition and itis out there here since 2009!]

LIST OF NOSQL DATABASES [currently 150]

Application-specific databases
have always been with us ...

But these systems
are proprietary.

Open source is a
hallmark of NoSQL

Two that | am familiar with:

Daytona (AT&T): “Daytona is a data management
system, not a database”. Built on top of the unix file
system, this toolkit is for building application-specific
and highly scalable data stores. |Is used at AT&T
for analysis of 100s of terabytes of call records.
http://www2.research.att.com/~daytona/

DataBlitz (Bell Labs, 1995) : Main-memory
database system designed for embedded systems
such as telecommunication switches. Optimized for
simple key-driven queries.

What's new? Internet scale, cluster computing, open source . . .

Something big is happening in
the land of databases

The Internet

+ cluster computing

+ open source systems
—)

many more points in the

database design space

are being explored and

deployed

Broader context helps clarify the strengths and weaknesses
of the standard relational/ACID approach.

The emerging world of databases

This classification is not

Complete and is a bit

fuzzy-wuzzy. For example,
drawing a clear distinction between
Key-value stores and
Document-oriented databases

is not always easy. And this is
Rapidly evolving with a lot of
cross-fertilization.

Often overlooked in the
business-oriented hoopla:

This is making BigAnalytics
affordable for many scientific
efforts (bioinformatics, astronomy,
physics, economics,...)

Relational

« Postgres

« MySQL

Key-Value stores

* Riak

* Redis

» BerkeleyDB
Column-oriented databases
« BigTable,

« Cassandra

« Hbase (build on Hadoop)
Document-oriented
 MongoDB

 CouchDB

Graph databases

* Neo4j

* VertexDB

Key-Value Stores

« Mapping Key to blob-of-byte that application must “parse”
« Example : Riak (modeled on Dynamo, eventual consistency), Cassandra
« Typically no “query-language” for values

* Mapping Key to “semi-structured” value
 Example: Redis

Huge advantage: can design data representation so that all
data needed for a given update is present on a single machine.
Data can easily be partitioned (say by key ranges) over

many machines. Map-reduce initiated from set of keys . . .

Disadvantage: Data retrieved by key only. And it is hard to enforce relationships
between different values. If this is important for your applications, then perhaps

Look elsewhere ...

JSON

"firstName": "John",
"lastName": "Smith",
"age": 25,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode”: 10021

¥,
"phoneNumber": [
{
"type": "home",
"number": "212 555-1234"
¥,
{
"type": "fax",
"number": "646 555-4567"
}

Tables require joins

FK FK |
S(A,B,C) X R(C,D,E) X T(E, F) (FK = Foreign Key)

« How could
tables be
partitioned over
multiple
servers”?

« Enforcing
referential
integrity is
VERY difficult in
a distributed
database

The Key-value approach

FK FK |
S(A,B,C) X R(C,D,E) X T(E, F) (FK = Foreign Key)

Use this instead

{A: A1,

B : B1,

stuff : [
{D: D1, F: F1},
{D:D2, F: F2},
{D:D3, F:F3}

]
}

The collection of JSON objects (keyed on A) is horizontally partitioned
(sharded) across many servers. When accessed, all of the application’s
data is in one object.

The “Data Publishing” Problem
(Context: RDBMS)

Need to share data without exposing internal details of your database.

—
Exports .txt files
in ad hoc format

Exports Excel Exports printed
documents
Lack of standard
exchange formats
requires the
implementation of

many ad hoc \
translators Exports .txt files Exports HTML
in ad hoc format

Exports Word Documents y

XML (or JSON) as a data
exchange format

— —
Exports XML
t DB 4
\ /

Exports XML XML conforming to Exports XML

agreed upon
semantics

ey
Exports XML Exports XML

Exports XML 19

Domain specific DTDs

* There are now lots of DTDs that have been
agreed by groups, including
— WML: Wireless markup language (WAP)
— OFX: Open financial exchange
— CML: Chemical markup language
— AML.: Astronomical markup language
— MathML: Mathematics markup language
— SMIL: Synchronised Multimedia Integration Language
— ThML: Theological markup language

20

Native XML (or JSON)

v shred

publish
ﬁ

.

XML-enabled

Databases

<?xml version="1.0" encoding="1S0-8859-1"?>
<nitf>
<head> <title>Colombia Earthquake</title> </head>
<body>
<body.head>
<headline>
<hl1>143 Dead in Colombia Earthquake</hl1>
</headline>
<byline>
<bytag>By Jared Kotler, Associated Press Writer</bytag>
</byline>
<dateline>
<location>Bogota, Colombia</location>
<story.date>Monday January 25 1999 7:28 ET</story.date>
</dateline>
</body.head>
</body>
</nitf>

R
M

<?xml version="1.0" encoding="1S0-8859-1"?>
itf>

<head> <title>Colombia Earthquake</titie> </head>
<body>

<body.head>

<headline>

<hl1>143 Dead in Colombia Earthquake</hi1>
<lheadline>

<byline>

<bytag>By Jared Kotler, Associated Press Writer</bytag>
<lbyline>

<dateline>

gota, Ct i i
<story.date>Monday January 25 1999 7:28 ET</story.date>
<Idateline>
<lbody.head>
<lbody>
<Initf>

~_

Native XML
(or JSON)

21

Brewer’s CAP conjecture (2000)

» Consistency
° " 1t Conjecture :

Aval_llablllty You can have at most two.
 Partition tolerance

A formal proof:

Nancy Lynch and Seth Gilbert,
“Brewer's conjecture and the feasibility

of consistent, available, partition-tolerant web services”,
ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59.

But what do the CAP terms really mean?
There seems to be no consensus ...

Random samples of various definitions found in the literature ...

Consistency

 The system can guarantee that once you store a state in the
system, it will report the same state in every subsequent operation
until the state is explicitly changed by something outside the
system.

« Is equivalent to having a single up-to-date copy of the data

Availability

« All clients can find some replica of the data, even in the presence of
failures

 Aguarantee that every request receives a response about whether
it was successful or failed

Partition tolerance

 The system properties hold even when the system is partitioned

« The system continues to operate despite arbitrary message loss or
failure of part of the system

Pick any two?

Consistency
Availability
Do rtition tol

Consistency

Avatabiity

Partition tolerance

Consistency
Availability
Partition tolerance

Traditional relational DBMS using
2-phase commit : very good at C
and struggle with A (at scale)

Quorum/majority algorithms

Web caching, DNS.

