
˜ Topic VIII ˜
The state of the art

Scala

< www.scala-lang.org >

References:

� Scala By Example by M. Odersky. Programming
Methods Laboratory, EPFL, 2008.

� An overview of the Scala programming language by
M. Odersky et al. Technical Report
LAMP-REPORT-2006-001, Second Edition, 2006.

219

� A Scala Tutorial for Java Programmers by M. Schinz
and P. Haller. Programming Methods Laboratory,
EPFL, 2008.

220

Scala (I)

� Scala has been developed from 2001 in the Programming
Methods Laboratory at EPFL by a group lead by Martin
Odersky. It was first released publicly in 2004, with a
second version released in 2006.

� Scala is aimed at the construction of components and
component systems.

One of the major design goals of Scala was that it should
be flexible enough to act as a convenient host language
for domain specific languages implemented by library
modules.

221-a

� Scala has been designed to work well with Java and
C#.

Every Java class is seen in Scala as two entities, a
class containing all dynamic members and a singleton
object, containing all static members.

Scala classes and objects can also inherit from Java
classes and implement Java interfaces. This makes it
possible to use Scala code in a Java framework.

� Scala’s influences: Beta, C#, FamilyJ, gbeta, Haskell,
Java, Jiazzi, ML≤, Moby, MultiJava, Nice, OCaml,
Pizza, Sather, Smalltalk, SML, XQuery, etc.

222

A procedural language !
def qsort(xs: Array[Int]) {

def swap(i: Int, j:Int) {
val t = xs(i); xs(i) = xs(j); xs(j) = t

}
def sort(l: Int, r: Int) {

val pivot = xs((l+r)/2); var i = l; var j = r

while (i <= j) {
while (lt(xs(i), pivot)) i += 1

while (lt(xs(j), pivot)) j -= 1

if (i<=j) { swap(i,j); i += 1; j -= 1 }
}
if (l<j) sort(l,j)

if (j<r) sort(i,r)

}
sort(0,xs.length-1)

}

223

NB:

� Definitions start with a reserved word.

� Type declarations use the colon notation.

� Array selections are written in functional notation.

(In fact, arrays in Scala inherit from functions.)

� Block structure.

224

A declarative language !

def qsort[T](xs: Array[T])(lt: (T,T)=>Boolean): Array[T]

= if (xs.length <= 1) xs

else {
val pivot = xs(xs.length/2)

Array.concat(qsort(xs filter (x => lt(x,pivot))) lt ,

xs filter (x => x == pivot) ,

qsort(xs filter (x => lt(pivot,x))) lt)

}

225

NB:

� Polymorphism.

� Type declarations can often be omitted because the
compiler can infer it from the context.

� Higher-order functions.

� The binary operation e ⋆ e ′ is always interpreted a the
method call e. ⋆ (e ′).

� The equality operation == between values is designed
to be transparent with respect to the type
representation.

226

Scala (II)

Scala fuses (1) object-oriented programming and (2) functional
programming in a statically typed programming language.

1. Scala uses a uniform and pure object-oriented model
similar to that of Smalltalk: Every value is an object and
every operation is a message send (that is, the invocation
of a method).

In fact, even primitive types are not treated specially; they
are defined as type aliases of Scala classes.

2. Scala is also a functional language in the sense that
functions are first-class values.

227

Mutable state

� Real-world objects with state are represented in Scala
by objects that have variables as members.

� In Scala, all mutable state is ultimately built from
variables.

� Every defined variable has to be initialised at the point of
its definition.

� Variables may be private.

228

Blocks

Scala is an expression-oriented language, every function
returns some result.

Blocks in Scala are themselves expressions. Every block
ends in a result expression which defines its value.

Scala uses the usual block-structured scoping rules.

229

Functions

A function in Scala is a first-class value.

The anonymous function

(x1: T1, ... , xn: Tn) => E

is equivalent to the block

{ def f (x1: T1 , ... , xn: Tn) = E ; f }

where f is a fresh name which is used nowhere else in
the program.

230

Parameter passing

Scala uses call-by-value by default, but it switches to
call-by-name evaluation if the parameter type is preceded
by =>.

Imperative control structures

A functional implementation of while loops:

def whileLoop(cond: => Boolean)(comm: => Unit)

{ if (cond) comm ; whileLoop(cond)(comm) }

231

Classes and objects

� classes provide fields and methods. These are
accessed using the dot notation. However, there may
be private fields and methods that are inaccessible
outside the class.

Scala, being an object-oriented language, uses
dynamic dispatch for method invocation. Dynamic
method dispatch is analogous to higher-order function
calls. In both cases, the identity of the code to be
executed is known only at run-time. This similarity is
not superficial. Indeed, Scala represents every
function value as an object.

232

� Every class in Scala has a superclass which it extends.

A class inherits all members from its superclass. It may
also override (i.e. redefine) some inherited members.

If class A extends class B, then objects of type A may be
used wherever objects of type B are expected. We say in
this case that type A conforms to type B.

233

� Every class in Scala has a superclass which it extends.

A class inherits all members from its superclass. It may
also override (i.e. redefine) some inherited members.

If class A extends class B, then objects of type A may be
used wherever objects of type B are expected. We say in
this case that type A conforms to type B.

� Scala maintains the invariant that interpreting a value of a
subclass as an instance of its superclass does not change
the representation of the value.

Amongst other things, it guarantees that for each pair of
types S <: T and each instance s of S the following
semantic equality holds:

s.asInstanceOf[T].asInstanceOf[S] = s

233-a

� Methods in Scala do not necessarily take a parameter
list. These parameterless methods are accessed just
as value fields.

The uniform access of fields and parameterless
methods gives increased flexibility for the implementor
of a class. Often, a field in one version of a class
becomes a computed value in the next version.
Uniform access ensures that clients do not have to
be rewritten because of that change.

234

� abstract classes may have deferred members which are
declared but which do not have an implementation.
Therefore, no objects of an abstract class may be created
using new.

abstract class IntSet {
def incl(x:Int): IntSet

def contains(x:Int): Boolean

}

Abstract classes may be used to provide interfaces.

235

� Scala has object definitions. An object definition
defines a class with a single instance. It is not
possible to create other objects with the same
structure using new.

object EmptySet extends IntSet {
def incl(x: Int): IntSet

= new NonEmptySet(x,EmptySet,EmptySet)

def contains(x: Int): Boolean = false

}

An object is created the first time one of its members
is accessed. (This strategy is called lazy evaluation.)

236

� A trait is a special form of an abstract class that does
not have any value (as opposed to type) parameters for its
constructor and is meant to be combined with other
classes.

trait IntSet {
def incl(x:Int): IntSet

def contains(x:Int): Boolean

}

Traits may be used to collect signatures of some
functionality provided by different classes.

237

Case study (I)
abstract class Expr {

def isNumber: Boolean

def isSum: Boolean

def numValue: Int

def leftOp: Expr

def rightOp: Expr

}
class Number(n: Int) extends Expr {

def isNumber: Boolean = true

def isSum: Boolean = false

def numValue: Int = n

def leftOp: Expr = error("Number.leftOp")

def rightOp: Expr = error("Number.rightOp")

}

238

class Sum(e1: Expr; e2: Expr) extends Expr {
def isNumber: Boolean = false

def isSum: Boolean = true

def numValue: Int = error("Sum.numValue")

def leftOp: Expr = e1

def rightOp: Expr = e2

}
def eval(e: Expr): Int = {

if (e.isNumber) e.NumValue

else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)

else error("bad expression")

}

? What is good and what is bad about this implementation?

239

Case study (II)
abstract class Expr {

def eval: Int

}
class Number(n: Int) extends Expr {

def eval: Int = n

}
class Sum(e1: Expr; e2: Expr) extends Expr {

def eval: Int = e1.eval + e2.eval

}

240

This implementation is easily extensible with new types
of data:

class Prod(e1: Expr; e2: Expr) extends Expr {
def eval: Int = e1.eval * e2.eval

}

But, is this still the case for extensions involving new
operations on existing data?

241

Case study (III)
Case classes

abstract class Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr; e2: Expr) extends Expr

case class Prod(e1: Expr; e2: Expr) extends Expr

� Case classes implicitly come with a constructor
function, with the same name as the class.

Hence one can construct expression trees as:

Sum(Sum(Number(1) , Number(2)) , Number(3))

242

� Case classes and case objects implicitly come with
implementations of methods toString, equals, and
hashCode.

� Case classes implicitly come with nullary accessor
methods which retrieve the constructor arguments.

� Case classes allow the constructions of patterns which
refer to the case class constructor.

243

Case study (III)
Pattern matching

The match method takes as argument a number of cases:

def eval(e: Expr): Int

= e match

{ case Number(x) => x

case Sum(l,r) => eval(l) + eval(r)

case Prod(l,r) => eval(l) * eval(r)

}

If none of the patterns matches, the pattern matching
expression is aborted with a MatchError exception.

244

Generic types and methods

� Classes in Scala can have type parameters.

abstract class Set[A] {
def incl(x: A): Set[A]

def contains(x: A): Boolean

}

� Scala has a fairly powerful type inferencer which allows
one to omit type parameters to polymorphic functions
and constructors.

245

Generic types
Variance annotations

The combination of type parameters and subtyping poses
some interesting questions.

? If T is a subtype of a type S, should Array[T] be a
subtype of the type Array[S]?

246

Generic types
Variance annotations

The combination of type parameters and subtyping poses
some interesting questions.

? If T is a subtype of a type S, should Array[T] be a
subtype of the type Array[S]?

! Yes, Java decrees so!

! No, if one wants to avoid run-time checks!

Example:
val x = new Array[String](1)

val y: Array[Any] = x // Scala forbids this because

// Array is not covariant

y.update(0 , new Rational(1,2))

246-a

In Scala, generic types like the following one:
class Array[A] {

def apply(index: Int): A

...

def update(index: Int, elem: A)

...

}

have by default non-variant subtyping.

However, one can enforce co-variant (or covariant) subtyping
by prefixing a formal type parameter with a +. There is also a
prefix - which indicates contra-variant subtyping.

247

Scala uses a conservative approximation to verify
soundness of variance annotations: a covariant type
parameter of a class may only appear in covariant
position inside the class. Hence, the following class
definition is rejected:

class Array[+A] {
def apply(index: Int): A

...

def update(index:Int , elem: A)

...

}

248

Functions are objects

Recall that Scala is an object-oriented language in that every
value is an object. It follows that functions are objects in Scala.

Indeed, the function type
(A1, ..., Ak) => B

is equivalent to the following parameterised class type:

abstract class Functionk[-A1,...,-Ak,+B]

{ def apply(x1:A1,...,xn:Ak): B }

Since function types are classes in Scala, they can be
further refined in subclasses. An example are arrays,
which are treated as special functions over the type of
integers.

249

The function x => x+1 would be expanded to an instance
of Function1 as follows:

new Function1[Int,Int] {
def apply(x:Int): Int = x+1

}

Conversely, when a value of a function type is applied to
some arguments, the apply method of the type is implicitly
inserted; e.g. for f and object of type Function1[A,B],
the application f(x) is expanded to f.apply(x).

NB: Function subtyping is contravariant in its arguments
whereas it is covariant in its result. ? Why?

250

Generic types
Type parameter bounds

trait Ord[A] {
def lt(that: A): Boolean

}
case class Num(value: Int) extends Ord[Num] {

def lt(that: Num) = this.value < that.value

}
trait Heap[A <: Ord[A]] {

def insert(x: A): Heap[A]

def min: A

def remove: Heap[A]

}

251

Generic types
View bounds

One problem with type parameter bounds is that they
require forethought: if we had not declared Num as a
subclass of Ord, we would not have been able to use
Num elements in heaps. By the same token, Int is not
a subclass of Ord, and so integers cannot be used as
heap elements.

252

A more flexible design, which admits elements of these types,
uses view bounds:

trait Heap[A <% Ord[A]] {
def insert(x: A): Heap[A]

def min: A

def remove: Heap[A]

}

A view bounded type parameter clause [A <% T] only
specifies that the bounded type A must be convertible to
the bound type T, using an implicit conversion.

Views allow one to augment a class with new members and
supported traits.

253

Generic types
Lower bounds

Covariant generic functional stacks:
abstract class Stack[+A] {
def push[B >: A](x: B): Stack[B]

= new NonEmptyStack(x,this)

def top: A

def pop: Stack[A]

}
class NonEmptyStack[+A](elem: A, rest: Stack[A])

extends Stack[A] {
def top = elem

def pop = rest

}

254

object EmptyStack extends Stack[Nothing] {
def top = error("EmptyStack.top")

def pop = error("EmptyStack.pop")

}

� Scala does not allow to parameterise objects with types.

� Nothing is a subtype of all other types.

255

Implicit parameters and conversions

� Implicit parameters

In Scala, there is an implicit keyword that can be used
at the beginning of a parameter list.

def qsort[T](xs: Array[T])(implicit o: Ord[T]): Array[T]

= if (xs.length <= 1) xs

else {
val pivot = xs(xs.length/2)

Array.concat(qsort(xs filter (x => o.lt(x,pivot))) ,

xs filter (x => x == pivot) ,

qsort(xs filter (x => o.lt(pivot,x))))

}

256

The principal idea behind implicit parameters is that
arguments for them can be left out from a method call.
If the arguments corresponding to implicit parameters
are missing, they are inferred by the Scala compiler.

NB: View bounds are convenient syntactic sugar for
implicit parameters.

� Implicit conversions

As last resort in case of type mismatch the Scala
compiler will try to apply an implicit conversion.

implicit def int2ord(x: Int): Ord[Int]

= new Ord[Int] { def lt(y: Int) = x < y }
Implicit conversions can also be applied in member
selections.

257

Mixin-class composition

Every class or object in Scala can inherit from several traits
in addition to a normal class.

trait AbsIterator[T] {
def hasNext: Boolean

def next: T

}
trait RichIterator[T] extends AbsIterator[T] {

def foreach(f: T => Unit): Unit =

while (hasNext) f(next)

}

258

class StringIterator(s: String)

extends AbsIterator[Char] {
private var i = 0

def hasNext = i < s.length

def next = { val x = s charAt i; i = i+1; x }
}

Traits can be used in all contexts where other abstract classes
appear; however only traits can be used as mixins.

259

object Test {
def main(args: Array[String]): Unit = {
class Iter extends StringIterator(args(0))

with RichIterator[Char]

val iter = new Iter

iter.foreach(System.out.println)

}
}

The class Iter is constructed from a mixin composition
of the parents StringIterator (called the superclass)
and RichIterator (called a mixin) so as to combine their
functionality.

260

The class Iter inherits members from both StringIterator

and RichIterator.

NB: Mixin-class composition is a form of multiple inheritance!

261

Language innovations

� Flexible syntax and type system.

� Pattern matching over class hierarchies unifies
functional and object-oriented data access.

� Abstract types and mixin composition unify
concepts from object and module systems.

262

