Concepts in Programming Languages
Marcelo Fiore

Computer Laboratory
University of Cambridge

2012-2013 (Easter Term)



Practicalities

¢ Course web page:

<www.cl.cam.ac.uk/teaching/1213/ConceptsPL/>

with lecture slides, exercise sheet and reading material.

¢ One exam guestion.



Main books

¢ J.C.Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

¢ T.W. Pratt and M. V. Zelkowitz. Programming Languages:

Design and implementation (3RD EDITION). Prentice Hall,
1999.

* M. L. Scott. Programming language pragmatics
(2ND EDITION). Elsevier, 2006.

¢ R.Sethi. Programming languages: Concepts & constructs
(2ND EDITION). Addison-Wesley, 1996.



1.
1.
V.

VI.

VII.
VIII.

Topics

. Introduction and motivation.

The first procedural language: FORTRAN (1954-58).
The first declarative language: LISP (1958-62).

Block-structured procedural languages: Algol (1958-68),
Pascal (1970).

Object-oriented languages — Concepts and origins:
Simula (1964—-67), Smalltalk (1971-80).

Types In programming languages: ML (1973-1978).

Data abstraction and modularity: SML Modules (1984-97).
The state of the art: Scala (2007)



Topic I —
Introduction and motivation

References:

¢ Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

¢ Chapter 1 of Programming languages: Design and
Implementation (3rRD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

¢ Chapter 1 of Programming language pragmatics
(2ND EDITION) by M. L. Scott. Elsevier, 2006.



Goals

¢ Critical thinking about programming languages.

? |What is a programming language!?

¢ Study programming languages.

+ Be familiar with basic language concepts.

¢+ Appreciate trade-offs in language design.
¢ Trace history, appreciate evolution and diversity of ideas.

¢ Be prepared for new programming methods, paradigms.



Why study programming languages?
¢ To improve the ability to develop effective algorithms.
¢ To improve the use of familiar languages.

¢ To increase the vocabulary of useful programming
constructs.

To allow a better choice of programming language.
To make it easier to learn a new language.
To make it easier to design a new language.

To simulate useful features in languages that lack them.

® & & o o

To make better use of language technology wherever it
appears.



® €& & & o oo o

What makes a good language?

Clarity, simplicity, and unity.
Orthogonality.

Naturalness for the application.
Support of abstraction.

Ease of program verification.
Programming environments.

Portability of programs.



¢ Cost of use.

¢+ Cost of execution.
¢+ Cost of program translation.

¢+ Cost of program creation, testing, and use.

¢+ Cost of program maintenance.



What makes a language successful?

¢ EXxpressive power.

¢ Ease of use for the novice.
¢ Ease of implementation.

¢ Open source.

¢ Excellent compilers.

¢ Economics, patronage, and inertia.

10



Influences

¢ Computer capabilities.

¢ Applications.

¢ Programming methods.
¢ Implementation methods.
¢ Theoretical studies.

¢ Standardisation.

11



Applications domains

Era Application Major languages Other languages
1960s | Business COBOL Assembler
Scientific FORTRAN ALGOL, BASIC, APL
System Assembler JOVIAL, Forth
Al LISP SNOBOL
Today | Business COBOL, SQL, spreadsheet C, PL/I, 4GLs
Scientific FORTRAN, C, C++ BASIC, Pascal
Maple, Mathematica
System BCPL, C, C++ Pascal, Ada, BASIC,
MODULA
Al LISP, Prolog
Publishing TeX, Postscript,
word processing
Process UNIX shell, TCL, Perl Marvel, Esterel

New paradigms

Smalltalk, SML, Haskell, Java
Python, Ruby

Eifell, C#, Scala

12



Why are there so many languages?

¢ Evolution.
¢ Special purposes.

¢ Personal preference.

13



(Motivating application in language design)

A specific purpose provides focus for language designers;
It helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one
of the hardest problems in programming language design:
deciding which features to leave out.

14



Examples: Good languages designed with a specific purpose
In mind.

® & & & & & o o oo o

LISP: symbolic computation, automated reasoning

FP: functiona
BCPL: compi

programming, algebraic laws

er writing

Simula: simu

ation

C: systems programming

ML: theorem proving

Smalltalk: Dynabook

Clu, SML Modules: modular programming

C++: object orientation

Java: Internet applications

15



Program execution model

Good language design presents abstract machine.

¢

® & & & oo o

FORTRAN: Flat register machine; memory arranged
as linear array

LISP: cons cells, read-eval-print loop

Algol family: stack of activation records; heap storage
BCPL, C: underlying machine + abstractions

Simula: Object references

FP, ML: functions are basic control structure

Smalltalk: objects and methods, communicating by
messages

Java: Java virtual machine

16



(Classification of programming Ianguages)

¢ Imperative
procedural C, Ada, Pascal, Algol , FORTRAN, ...

object oriented Scala, C#,Java, Smalltalk , SIMULA, ...

scripting Perl, Python, PHP, ...

¢ Declarative

functional Haskell, SML, Lisp, Scheme, ...
logic Prolog
dataflow ld, Val

constraint-based spreadsheets
template-based XSLT

17



