
Concepts in Programming Languages

Marcelo Fiore

Computer Laboratory
University of Cambridge

2012–2013 (Easter Term)

1



Practicalities

� Course web page:

<www.cl.cam.ac.uk/teaching/1213/ConceptsPL/>

with lecture slides, exercise sheet and reading material.

� One exam question.

2



Main books

� J. C. Mitchell. Concepts in programming languages.
Cambridge University Press, 2003.

� T. W. Pratt and M. V. Zelkowitz. Programming Languages:
Design and implementation (3RD EDITION). Prentice Hall,
1999.

⋆ M. L. Scott. Programming language pragmatics
(2ND EDITION). Elsevier, 2006.

� R. Sethi. Programming languages: Concepts & constructs
(2ND EDITION). Addison-Wesley, 1996.

3



Topics

I. Introduction and motivation.

II. The first procedural language: FORTRAN (1954–58).

III. The first declarative language: LISP (1958–62).

IV. Block-structured procedural languages: Algol (1958–68),

Pascal (1970).

V. Object-oriented languages — Concepts and origins:

Simula (1964–67), Smalltalk (1971–80).

VI. Types in programming languages: ML (1973–1978).

VII. Data abstraction and modularity: SML Modules (1984–97).

VIII. The state of the art: Scala (2007)

4



˜ Topic I ˜
Introduction and motivation

References:

� Chapter 1 of Concepts in programming languages by
J. C. Mitchell. CUP, 2003.

� Chapter 1 of Programming languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

� Chapter 1 of Programming language pragmatics
(2ND EDITION) by M. L. Scott. Elsevier, 2006.

5



Goals

� Critical thinking about programming languages.

? What is a programming language!?

� Study programming languages.

� Be familiar with basic language concepts.

� Appreciate trade-offs in language design.

� Trace history, appreciate evolution and diversity of ideas.

� Be prepared for new programming methods, paradigms.

6



Why study programming languages?

� To improve the ability to develop effective algorithms.

� To improve the use of familiar languages.

� To increase the vocabulary of useful programming
constructs.

� To allow a better choice of programming language.

� To make it easier to learn a new language.

� To make it easier to design a new language.

� To simulate useful features in languages that lack them.

� To make better use of language technology wherever it
appears.

7



What makes a good language?

� Clarity, simplicity, and unity.

� Orthogonality.

� Naturalness for the application.

� Support of abstraction.

� Ease of program verification.

� Programming environments.

� Portability of programs.

8



� Cost of use.

� Cost of execution.

� Cost of program translation.

� Cost of program creation, testing, and use.

� Cost of program maintenance.

9



What makes a language successful?

� Expressive power.

� Ease of use for the novice.

� Ease of implementation.

� Open source.

� Excellent compilers.

� Economics, patronage, and inertia.

10



Influences

� Computer capabilities.

� Applications.

� Programming methods.

� Implementation methods.

� Theoretical studies.

� Standardisation.

11



Applications domains

Era Application Major languages Other languages

1960s Business COBOL Assembler

Scientific FORTRAN ALGOL, BASIC, APL

System Assembler JOVIAL, Forth

AI LISP SNOBOL

Today Business COBOL, SQL, spreadsheet C, PL/I, 4GLs

Scientific FORTRAN, C, C++ BASIC, Pascal
Maple, Mathematica

System BCPL, C, C++ Pascal, Ada, BASIC,
MODULA

AI LISP, Prolog

Publishing TEX, Postscript,
word processing

Process UNIX shell, TCL, Perl Marvel, Esterel

New paradigms Smalltalk, SML, Haskell, Java Eifell, C#, Scala
Python, Ruby

12



? Why are there so many languages?

� Evolution.

� Special purposes.

� Personal preference.

13



?> =<89 :;Motivating application in language design

A specific purpose provides focus for language designers;
it helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one
of the hardest problems in programming language design:
deciding which features to leave out.

14



Examples: Good languages designed with a specific purpose
in mind.

� LISP: symbolic computation, automated reasoning

� FP: functional programming, algebraic laws

� BCPL: compiler writing

� Simula: simulation

� C: systems programming

� ML: theorem proving

� Smalltalk: Dynabook

� Clu, SML Modules: modular programming

� C++: object orientation

� Java: Internet applications

15



Program execution model

Good language design presents abstract machine.

� FORTRAN: Flat register machine; memory arranged
as linear array

� LISP: cons cells, read-eval-print loop

� Algol family: stack of activation records; heap storage

� BCPL, C: underlying machine + abstractions

� Simula: Object references

� FP, ML: functions are basic control structure

� Smalltalk: objects and methods, communicating by
messages

� Java: Java virtual machine

16



?> =<89 :;Classification of programming languages

� Imperative

procedural C, Ada, Pascal , Algol , FORTRAN, . . .

object oriented Scala , C#,Java, Smalltalk , SIMULA , . . .

scripting Perl, Python, PHP, . . .

� Declarative

functional Haskell, SML, Lisp, Scheme, . . .

logic Prolog

dataflow Id, Val

constraint-based spreadsheets

template-based XSLT

17


