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Reductions

Given two languages L1 ⊆ Σ⋆
1, and L2 ⊆ Σ⋆

2,

A reduction of L1 to L2 is a computable function

f : Σ⋆
1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1,

f(x) ∈ L2 if, and only if, x ∈ L1
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Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(logn), we write

L1 ≤L L2
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Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve

than L2, at least as far as polynomial time computation is

concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and

then using the polynomial time algorithm for L2.
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Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1971) (and independently Levin) first showed that there are

problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP,

A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.
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SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean

expressions is NP-complete.

To establish this, we need to show that for every language L in NP,

there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (Q,Σ, s, δ)

and a bound k such that a string x of length n is in L if, and only

if, it is accepted by M within nk steps.
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Boolean Formula

We need to give, for each x ∈ Σ⋆, a Boolean expression f(x) which

is satisfiable if, and only if, there is an accepting computation of M

on input x.

f(x) has the following variables:

Si,q for each i ≤ nk and q ∈ Q

Ti,j,σ for each i, j ≤ nk and σ ∈ Σ

Hi,j for each i, j ≤ nk
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Intuitively, these variables are intended to mean:

• Si,q – the state of the machine at time i is q.

• Ti,j,σ – at time i, the symbol at position j of the tape is σ.

• Hi,j – at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula f(x), so that it

enforces these meanings.
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Initial state is s and the head is initially at the beginning of the

tape.

S1,s ∧H1,1

The head is never in two places at once
∧

i

∧

j

(Hi,j →
∧

j′ 6=j

(¬Hi,j′))

The machine is never in two states at once
∧

q

∧

i

(Si,q →
∧

q′ 6=q

(¬Si,q′))

Each tape cell contains only one symbol
∧

i

∧

j

∧

σ

(Ti,j,σ →
∧

σ′ 6=σ

(¬Ti,j,σ′))
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The initial tape contents are x
∧

j≤n

T1,j,xj
∧

∧

n<j

T1,j,⊔

The tape does not change except under the head
∧

i

∧

j

∧

j′ 6=j

∧

σ

(Hi,j ∧ Ti,j′,σ) → Ti+1,j′,σ

Each step is according to δ.

∧

i

∧

j

∧

σ

∧

q

(Hi,j ∧ Si,q ∧ Ti,j,σ)

→
∨

∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′)
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where ∆ is the set of all triples (q′, σ′, D) such that

((q, σ), (q′, σ′, D)) ∈ δ and

j′ =















j if D = S

j − 1 if D = L

j + 1 if D = R

Finally, the accepting state is reached
∨

i

Si,acc
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CNF

A Boolean expression is in conjunctive normal form if it is the

conjunction of a set of clauses, each of which is the disjunction of a

set of literals, each of these being either a variable or the negation

of a variable.

For any Boolean expression φ, there is an equivalent expression ψ

in conjunctive normal form.

ψ can be exponentially longer than φ.

However, CNF-SAT, the collection of satisfiable CNF expressions, is

NP-complete.
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3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form

and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in

3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from

CNF-SAT to 3SAT.
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Composing Reductions

Polynomial time reductions are clearly closed under composition.

So, if L1 ≤P L2 and L2 ≤P L3, then we also have L1 ≤P L3.

Note, this is also true of ≤L, though less obvious.

If we show, for some problem A in NP that

SAT ≤P A

or

3SAT ≤P A

it follows that A is also NP-complete.
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Independent Set

Given a graph G = (V,E), a subset X ⊆ V of the vertices is said to

be an independent set, if there are no edges (u, v) for u, v ∈ X .

The natural algorithmic problem is, given a graph, find the largest

independent set.

To turn this optimisation problem into a decision problem, we

define IND as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains an independent set with K or

more vertices.

IND is clearly in NP. We now show it is NP-complete.
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Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression φ in 3CNF with m clauses is mapped by the

reduction to the pair (G,m), where G is the graph obtained from φ

as follows:

G contains m triangles, one for each clause of φ, with each

node representing one of the literals in the clause.

Additionally, there is an edge between two nodes in

different triangles if they represent literals where one is the

negation of the other.
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Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

x1

x2
¬x3

¬x1

¬x2x3
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Clique

Given a graph G = (V,E), a subset X ⊆ V of the vertices is called

a clique, if for every u, v ∈ X , (u, v) is an edge.

As with IND, we can define a decision problem version:

CLIQUE is defined as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains a clique with K or more

vertices.
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Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then

verifies it.

CLIQUE is NP-complete, since

IND ≤P CLIQUE

by the reduction that maps the pair (G,K) to (Ḡ,K), where Ḡ is

the complement graph of G.
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