

 $A \leq_P L.$

absolute lower bounds.

Completeness

The usefulness of reductions is that they allow us to establish the

Cook (1971) (and independently Levin) first showed that there are

A language L is said to be NP-hard if for every language $A \in NP$,

A language *L* is NP-complete if it is in NP and it is NP-hard.

relative complexity of problems, even when we cannot prove

problems in NP that are maximally difficult.

5

SAT is NP-complete

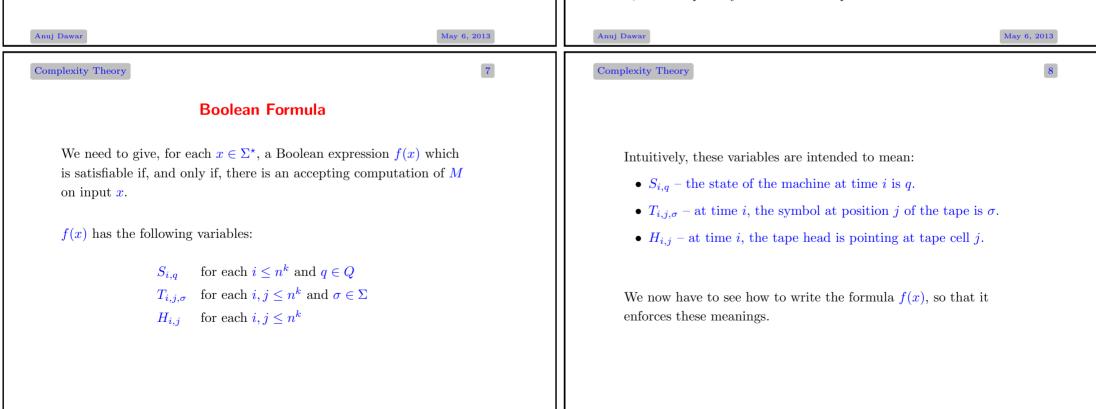
Cook showed that the language SAT of satisfiable Boolean expressions is $\mathsf{NP}\text{-}\mathrm{complete}.$

To establish this, we need to show that for every language L in NP, there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

 $M = (Q, \Sigma, s, \delta)$

and a bound k such that a string x of length n is in L if, and only if, it is accepted by M within n^k steps.



9

May 6, 2013

11

Initial state is s and the head is initially at the beginning of the tape.

 $S_{1,s} \wedge H_{1,1}$

The head is never in two places at once

$$\bigwedge_{i} \bigwedge_{j} (H_{i,j} \to \bigwedge_{j' \neq j} (\neg H_{i,j'})$$

The machine is never in two states at once

$$\bigwedge_{q} \bigwedge_{i} (S_{i,q} \to \bigwedge_{q' \neq q} (\neg S_{i,q'})$$

Each tape cell contains only one symbol

where Δ is the set of all triples (q', σ', D) such that

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma} (T_{i,j,\sigma} \to \bigwedge_{\sigma' \neq \sigma} (\neg T_{i,j,\sigma'}))$$

 $j' = \begin{cases} j & \text{if } D = S \\ j - 1 & \text{if } D = L \\ j + 1 & \text{if } D = R \end{cases}$

 $\bigvee S_{i,\mathrm{acc}}$

The initial tape contents are x

$$\bigwedge_{j \le n} T_{1,j,x_j} \land \bigwedge_{n < j} T_{1,j,\sqcup}$$

The tape does not change except under the head

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{j' \neq j} \bigwedge_{\sigma} (H_{i,j} \wedge T_{i,j',\sigma}) \to T_{i+1,j',\sigma}$$

Each step is according to δ .

$$\bigwedge_{j} \bigwedge_{\sigma} \bigwedge_{q} (H_{i,j} \wedge S_{i,q} \wedge T_{i,j,\sigma}) \\
\rightarrow \bigvee_{\Delta} (H_{i+1,j'} \wedge S_{i+1,q'} \wedge T_{i+1,j,\sigma'})$$

Complexity Theory

Anuj Dawar

CNF

A Boolean expression is in *conjunctive normal form* if it is the conjunction of a set of *clauses*, each of which is the disjunction of a set of *literals*, each of these being either a *variable* or the *negation* of a variable.

For any Boolean expression ϕ , there is an equivalent expression ψ in conjunctive normal form.

 ψ can be exponentially longer than ϕ .

However, CNF-SAT, the collection of satisfiable CNF expressions, is NP-complete.

10

Anuj Dawar

Complexity Theory

 $((q,\sigma),(q',\sigma',D)) \in \delta$ and

Finally, the accepting state is reached

May 6, 2013

12

3SAT

A Boolean expression is in **3CNF** if it is in conjunctive normal form

3SAT is defined as the language consisting of those expressions in

3SAT is NP-complete, as there is a polynomial time reduction from

and each clause contains at most 3 literals.

3CNF that are satisfiable.

CNF-SAT to 3SAT.

13

May 6, 2013

Composing Reductions

Polynomial time reductions are clearly closed under composition. So, if $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then we also have $L_1 \leq_P L_3$.

Note, this is also true of \leq_L , though less obvious.

If we show, for some problem A in NP that

 $\mathsf{SAT} \leq_P A$

or

Anuj Dawa

 $3SAT \leq_P A$

it follows that A is also NP-complete.

		it follows that A is also W -compl	e.e.
Anuj Dawar	May 6, 2013	Anuj Dawar	May 6, 2013
Complexity Theory	15	Complexity Theory	16
Independent Set		Reduction	
Given a graph $G = (V, E)$, a subset $X \subseteq V$ of the vertices is said to be an <i>independent set</i> , if there are no edges (u, v) for $u, v \in X$.		We can construct a reduction from 3SAT to IND. A Boolean expression ϕ in 3CNF with m clauses is mapped by the	
The natural algorithmic problem is, given a graph, find the largest independent set.		reduction to the pair (G, m) , where G is the graph obtained from ϕ as follows:	
To turn this <i>optimisation problem</i> into a <i>decision problem</i> , we define IND as:		G contains m triangles, one for each clause of ϕ , with each node representing one of the literals in the clause.	
The set of pairs (G, K) , where G is a graph, and K is an integer, such that G contains an independent set with K or more vertices.		Additionally, there is an edge between two nodes in different triangles if they represent literals where one is the negation of the other.	
IND is clearly in NP. We now show it is NP-comple	te.		

May 6, 2013

17

Clique

Example Given a graph G = (V, E), a subset $X \subseteq V$ of the vertices is called a *clique*, if for every $u, v \in X$, (u, v) is an edge. $(x_1 \lor x_2 \lor \neg x_3) \land (x_3 \lor \neg x_2 \lor \neg x_1)$ As with IND, we can define a decision problem version: x_1 **CLIQUE** is defined as: The set of pairs (G, K), where G is a graph, and K is an $\neg x_3$ x_2 integer, such that G contains a clique with K or more vertices. $\neg x_2$ x_3 Anuj Dawar May 6, 2013 Anuj Dawar May 6, 2013 19 Complexity Theory Clique 2 CLIQUE is in NP by the algorithm which *guesses* a clique and then verifies it. **CLIQUE** is NP-complete, since $IND \leq_P CLIQUE$ by the reduction that maps the pair (G, K) to (\overline{G}, K) , where \overline{G} is the complement graph of G.

May 6, 2013

18