
Complexity Theory 1

Complexity Theory

Lecture 5

Anuj Dawar

University of Cambridge Computer Laboratory

Easter Term 2013

http://www.cl.cam.ac.uk/teaching/1213/Complexity/

Anuj Dawar May 6, 2013

Complexity Theory 2

Reductions

Given two languages L1 ⊆ Σ⋆
1, and L2 ⊆ Σ⋆

2,

A reduction of L1 to L2 is a computable function

f : Σ⋆
1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1,

f(x) ∈ L2 if, and only if, x ∈ L1

Anuj Dawar May 6, 2013

Complexity Theory 3

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(logn), we write

L1 ≤L L2

Anuj Dawar May 6, 2013

Complexity Theory 4

Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve

than L2, at least as far as polynomial time computation is

concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and

then using the polynomial time algorithm for L2.

Anuj Dawar May 6, 2013



Complexity Theory 5

Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1971) (and independently Levin) first showed that there are

problems in NP that are maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP,

A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar May 6, 2013

Complexity Theory 6

SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean

expressions is NP-complete.

To establish this, we need to show that for every language L in NP,

there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (Q,Σ, s, δ)

and a bound k such that a string x of length n is in L if, and only

if, it is accepted by M within nk steps.

Anuj Dawar May 6, 2013

Complexity Theory 7

Boolean Formula

We need to give, for each x ∈ Σ⋆, a Boolean expression f(x) which

is satisfiable if, and only if, there is an accepting computation of M

on input x.

f(x) has the following variables:

Si,q for each i ≤ nk and q ∈ Q

Ti,j,σ for each i, j ≤ nk and σ ∈ Σ

Hi,j for each i, j ≤ nk

Anuj Dawar May 6, 2013

Complexity Theory 8

Intuitively, these variables are intended to mean:

• Si,q – the state of the machine at time i is q.

• Ti,j,σ – at time i, the symbol at position j of the tape is σ.

• Hi,j – at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula f(x), so that it

enforces these meanings.

Anuj Dawar May 6, 2013



Complexity Theory 9

Initial state is s and the head is initially at the beginning of the

tape.

S1,s ∧H1,1

The head is never in two places at once
∧

i

∧

j

(Hi,j →
∧

j′ 6=j

(¬Hi,j′))

The machine is never in two states at once
∧

q

∧

i

(Si,q →
∧

q′ 6=q

(¬Si,q′))

Each tape cell contains only one symbol
∧

i

∧

j

∧

σ

(Ti,j,σ →
∧

σ′ 6=σ

(¬Ti,j,σ′))

Anuj Dawar May 6, 2013

Complexity Theory 10

The initial tape contents are x
∧

j≤n

T1,j,xj
∧

∧

n<j

T1,j,⊔

The tape does not change except under the head
∧

i

∧

j

∧

j′ 6=j

∧

σ

(Hi,j ∧ Ti,j′,σ) → Ti+1,j′,σ

Each step is according to δ.

∧

i

∧

j

∧

σ

∧

q

(Hi,j ∧ Si,q ∧ Ti,j,σ)

→
∨

∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′)

Anuj Dawar May 6, 2013

Complexity Theory 11

where ∆ is the set of all triples (q′, σ′, D) such that

((q, σ), (q′, σ′, D)) ∈ δ and

j′ =















j if D = S

j − 1 if D = L

j + 1 if D = R

Finally, the accepting state is reached
∨

i

Si,acc

Anuj Dawar May 6, 2013

Complexity Theory 12

CNF

A Boolean expression is in conjunctive normal form if it is the

conjunction of a set of clauses, each of which is the disjunction of a

set of literals, each of these being either a variable or the negation

of a variable.

For any Boolean expression φ, there is an equivalent expression ψ

in conjunctive normal form.

ψ can be exponentially longer than φ.

However, CNF-SAT, the collection of satisfiable CNF expressions, is

NP-complete.

Anuj Dawar May 6, 2013



Complexity Theory 13

3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form

and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in

3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from

CNF-SAT to 3SAT.

Anuj Dawar May 6, 2013

Complexity Theory 14

Composing Reductions

Polynomial time reductions are clearly closed under composition.

So, if L1 ≤P L2 and L2 ≤P L3, then we also have L1 ≤P L3.

Note, this is also true of ≤L, though less obvious.

If we show, for some problem A in NP that

SAT ≤P A

or

3SAT ≤P A

it follows that A is also NP-complete.

Anuj Dawar May 6, 2013

Complexity Theory 15

Independent Set

Given a graph G = (V,E), a subset X ⊆ V of the vertices is said to

be an independent set, if there are no edges (u, v) for u, v ∈ X .

The natural algorithmic problem is, given a graph, find the largest

independent set.

To turn this optimisation problem into a decision problem, we

define IND as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains an independent set with K or

more vertices.

IND is clearly in NP. We now show it is NP-complete.

Anuj Dawar May 6, 2013

Complexity Theory 16

Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression φ in 3CNF with m clauses is mapped by the

reduction to the pair (G,m), where G is the graph obtained from φ

as follows:

G contains m triangles, one for each clause of φ, with each

node representing one of the literals in the clause.

Additionally, there is an edge between two nodes in

different triangles if they represent literals where one is the

negation of the other.

Anuj Dawar May 6, 2013



Complexity Theory 17

Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

x1

x2
¬x3

¬x1

¬x2x3

Anuj Dawar May 6, 2013

Complexity Theory 18

Clique

Given a graph G = (V,E), a subset X ⊆ V of the vertices is called

a clique, if for every u, v ∈ X , (u, v) is an edge.

As with IND, we can define a decision problem version:

CLIQUE is defined as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains a clique with K or more

vertices.

Anuj Dawar May 6, 2013

Complexity Theory 19

Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then

verifies it.

CLIQUE is NP-complete, since

IND ≤P CLIQUE

by the reduction that maps the pair (G,K) to (Ḡ,K), where Ḡ is

the complement graph of G.

Anuj Dawar May 6, 2013


