Complexity Theory
Lecture 11

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2013

http://www.cl.cam.ac.uk/teaching/1213/Complexity/

Inclusions

We have the following inclusions:

$$\mathsf{L}\subseteq\mathsf{NL}\subseteq\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXP}$$

where
$$\mathsf{EXP} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(2^{n^k})$$

Moreover,

 $\mathsf{L}\subseteq\mathsf{NL}\cap\mathsf{co}\text{-}\mathsf{NL}$

 $P \subseteq NP \cap co-NP$

 $\mathsf{PSPACE} \subseteq \mathsf{NPSPACE} \cap \mathsf{co-NPSPACE}$

Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following.

- SPACE $(f(n)) \subseteq NSPACE(f(n));$
- TIME $(f(n)) \subseteq NTIME(f(n));$
- $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n));$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)});$

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.

Reachability

Recall the Reachability problem: given a directed graph G = (V, E) and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

- 1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
- 2. while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if b is marked, accept else reject.

NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if i is the index currently written on the work space:
 - (a) if i = b then accept, else guess an index j (log n bits) and write it on the work space.
 - (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

We can use the $O(n^2)$ algorithm for Reachability to show that:

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)})$$

for some constant k.

Let M be a nondeterministic machine working in space bounds f(n).

For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds f(n) is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

Configuration Graph

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x.

Using the $O(n^2)$ algorithm for Reachability, we get that L(M)—the language accepted by M—can be decided by a deterministic machine operating in time

$$c'(nc^{f(n)})^2 \sim c'c^{2(\log n + f(n))} \sim k^{(\log n + f(n))}$$

In particular, this establishes that $NL \subseteq P$ and $NPSPACE \subseteq EXP$.

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i (for i a power of 2):

 $O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)

if i = 1 and $a \neq b$ and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

- 1. is there a path a-x of length i/2; and
- 2. is there a path x b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Savitch's Theorem - 2

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)$$

for $f(n) \ge \log n$.

This yields

PSPACE = NPSPACE = co-NPSPACE.

Complementation

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If
$$f(n) \geq \log n$$
, then

$$\mathsf{NSPACE}(f(n)) = \mathsf{co-NSPACE}(f(n))$$

In particular

NL = co-NL.

Logarithmic Space Reductions

We write

$$A \leq_L B$$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a read-only input tape and write-only output tape).

Note: We can compose \leq_L reductions. So,

if $A \leq_L B$ and $B \leq_L C$ then $A \leq_L C$

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $SAT \leq_L A$ for some problem A in L then not only P = NP but also L = NP.

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .

There are problems that are complete for P with respect to $logarithmic\ space\ reductions\ \leq_L.$

One example is CVP—the circuit value problem.

- If $CVP \in L$ then L = P.
- If $CVP \in NL$ then NL = P.

Provable Intractability

Our aim now is to show that there are languages (or, equivalently, decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f, there is a language that is not in $\mathsf{TIME}(f(n))$.

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

Constructible Functions

A complexity class such as $\mathsf{TIME}(f(n))$ can be very unnatural, if f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is *constructible* if:

- f is non-decreasing, i.e. $f(n+1) \ge f(n)$ for all n; and
- there is a deterministic machine M which, on any input of length n, replaces the input with the string $0^{f(n)}$, and M runs in time O(n + f(n)) and uses O(f(n)) work space.

Examples

All of the following functions are constructible:

- $\lceil \log n \rceil$;
- n^2 ;
- \bullet n;
- \bullet 2^n .

If f and g are constructible functions, then so are f+g, $f\cdot g$, 2^f and f(g) (this last, provided that f(n)>n).

Using Constructible Functions

NTIME(f(n)) can be defined as the class of those languages L accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most O(f(n)).

If f is a constructible function then any language in $\mathsf{NTIME}(f(n))$ is accepted by a machine for which all computations are of length at most O(f(n)).

Also, given a Turing machine M and a constructible function f, we can define a machine that simulates M for f(n) steps.

Inclusions

The inclusions we proved between complexity classes:

- $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n));$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)});$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)$

really only work for constructible functions f.

The inclusions are established by showing that a deterministic machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required bounds.