Complexity Theory Lecture 10

Anuj Dawar

University of Cambridge Computer Laboratory Easter Term 2013

http://www.cl.cam.ac.uk/teaching/1213/Complexity/

One Way Functions

A function f is called a *one way function* if it satisfies the following conditions:

- 1. f is one-to-one.
- 2. for each x, $|x|^{1/k} \le |f(x)| \le |x|^k$ for some k.
- 3. $f \in \mathsf{FP}$.
- 4. $f^{-1} \notin \mathsf{FP}$.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

 $f(x, e, p, q) = (x^e \mod pq, pq, e)$

is a one-way function.

UP

Though one cannot hope to prove that the RSA function is one-way without separating P and NP, we might hope to make it as secure as a proof of NP-completeness.

Definition

A nondeterministic machine is *unambiguous* if, for any input x, there is at most one accepting computation of the machine.

UP is the class of languages accepted by unambiguous machines in polynomial time.

Equivalently, UP is the class of languages of the form

 $\{x \mid \exists y R(x, y)\}$

Where R is polynomial time computable, polynomially balanced, and for each x, there is at most one y such that R(x, y).

UP One-way Functions

We have

 $\mathsf{P}\subseteq\mathsf{U}\mathsf{P}\subseteq\mathsf{N}\mathsf{P}$

It seems unlikely that there are any NP-complete problems in UP.

One-way functions exist *if*, and only *if*, $P \neq UP$.

Anuj Dawar

One-Way Functions Imply $P \neq UP$

Suppose f is a *one-way function*.

Define the language L_f by

 $L_f = \{(x, y) \mid \exists z (z \le x \text{ and } f(z) = y)\}.$

We can show that L_f is in UP but not in P.

$P \neq UP$ Implies One-Way Functions Exist

Suppose that L is a language that is in UP but not in P. Let U be an *unambiguous* machine that accepts L.

Define the function f_U by

if x is a string that encodes an accepting computation of U, then $f_U(x) = 1y$ where y is the input string accepted by this computation.

 $f_U(x) = 0x$ otherwise.

We can prove that f_U is a one-way function.

We've already seen the definition SPACE(f): the languages accepted by a machine which uses O(f(n)) tape cells on inputs of length *n*. Counting only work space.

NSPACE(f) is the class of languages accepted by a *nondeterministic* Turing machine using at most O(f(n)) work space.

As we are only counting work space, it makes sense to consider bounding functions f that are less than linear.

Classes

 $L = SPACE(\log n)$ $NL = NSPACE(\log n)$ $PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^{k})$ The class of languages decidable in polynomial space. $NPSPACE = \bigcup_{k=1}^{\infty} NSPACE(n^{k})$

Also, define

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in **NPSPACE**.

Inclusions

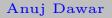
We have the following inclusions:

$\mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{NPSPACE} \subseteq \mathsf{EXP}$

where $\mathsf{EXP} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(2^{n^k})$

Moreover,

$$\label{eq:loss} \begin{split} \mathsf{L} \subseteq \mathsf{NL} \cap \mathsf{co}\text{-}\mathsf{NL} \\ \mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{co}\text{-}\mathsf{NP} \\ \\ \mathsf{PSPACE} \subseteq \mathsf{NPSPACE} \cap \mathsf{co}\text{-}\mathsf{NPSPACE} \end{split}$$



Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following.

- $\mathsf{SPACE}(f(n)) \subseteq \mathsf{NSPACE}(f(n));$
- $\mathsf{TIME}(f(n)) \subseteq \mathsf{NTIME}(f(n));$
- $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n));$
- NSPACE $(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)});$

The first two are straightforward from definitions. The third is an easy simulation.

The last requires some more work.

Recall the Reachability problem: given a *directed* graph G = (V, E)and two nodes $a, b \in V$, determine whether there is a path from ato b in G.

A simple search algorithm solves it:

- 1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if b is marked, accept else reject.

NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if i is the index currently written on the work space:
 - (a) if i = b then accept, else guess an index j (log n bits) and write it on the work space.
 - (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

We can use the $O(n^2)$ algorithm for Reachability to show that: NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)})$

for some constant k.

Let M be a nondeterministic machine working in space bounds f(n).

For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds f(n) is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

