
iii

Exercises and Tripos Questions

A course on Computation Theory has been offered for many years. Since 2009 the course has
incorporated some material from a Part IB course on Foundations of Functional Programming

that is no longer offered. A guide to which Tripos questions from the last five years are
relevant to the current course can be found on the course web page (follow links from
www.cl.cam.ac.uk/teaching/). Here are suggestions for which of the older ones to try,
together with some other exercises.

1. Exercises in register machine programming:

(a) Produce register machine programs for the functions mentioned on slides 36 and
37.

(b) Try Tripos question 1999.3.9.

2. Undecidability of the halting problem:

(a) Try Tripos question 1995.3.9.

(b) Try Tripos question 2000.3.9.

(c) Learn by heart the poem about the undecidability of the halting problem to be
found at the course web page and recite it to your non-compsci friends.

3. Let f
e

denote the unary partial function from numbers to numbers (i.e. an element
of N*N—cf. slide 30) computed by the register machine with code e (cf. slide 63).
Show that for any given register machine computable unary partial function f , there
are infinitely many numbers e such that f

e

= f . (Equality of partial functions means
that they are equal as sets of ordered pairs; which is equivalent to saying that for all
numbers x, f

e

(x) is defined if and only if f (x) is, and in that case they are equal
numbers.)

4. Suppose S1 and S2 are subsets of the set N = {0, 1, 2, 3, . . .} of natural numbers.
Suppose f 2 N�N is register machine computable and satisfies: for all x in N, x

is an element of S1 if and only if f (x) is an element of S2. Show that S1 is register
machine decidable (cf. slide 66) if S2 is.

5. Show that the set of codes he, e

0i of pairs of numbers e and e

0 satisfying f
e

= f
e

0 is
undecidable.

6. For the example Turing machine given on slide 75, give the register machine program
implementing

(S, T, D) := d(S, T)

as described on slide 83. [Tedious!—maybe just do a bit.]

7. Try Tripos question 2001.3.9. [This is the Turing machine version of 2000.3.9.]

8. Try Tripos question 1996.3.9.

9. Show that the following functions are all primitive recursive.

(a) Exponentiation, exp(x, y) , x

y.

iv

(b) Truncated subtraction, minus(x, y) ,
(

x � y if x � y

0 if x < y

(c) Conditional branch on zero, ifzero(x, y, z) ,
(

y if x = 0
z if x > 0

(d) Bounded summation: if f 2 Nn+1�N is primitive recursive, then so is g 2
Nn+1�N where

g(~x, x) ,

8
><

>:

0 if x = 0
f (~x, 0) if x = 1
f (~x, 0) + · · ·+ f (~x, x � 1) if x > 1.

10. Recall the definition of Ackermann’s function ack from slide 122. Sketch how to
build a register machine M that computes ack(x1, x2) in R0 when started with x1
in R1 and x2 in R2 and all other registers zero. [Hint: here’s one way; the next
question steers you another way to the computability of ack. Call a finite list L =
[(x1, y1, z1), (x2, y2, z2), . . .] of triples of numbers suitable if it satisfies

(i) if (0, y, z) 2 L, then z = y + 1

(ii) if (x + 1, 0, z) 2 L, then (x, 1, z) 2 L

(iii) if (x + 1, y+ 1, z) 2 L, then there is some u with (x + 1, y, u) 2 L and (x, u, z) 2 L.

The idea is that if (x, y, z) 2 L and L is suitable then z = ack(x, y) and L contains all
the triples (x

0, y

0, ack(x, , y

0)) needed to calculate ack(x, y). Show how to code lists of
triples of numbers as numbers in such a way that we can (in principle, no need to do
it explicitly!) build a register machine that recognizes whether or not a number is the
code for a suitable list of triples. Show how to use that machine to build a machine
computing ack(x, y) by searching for the code of a suitable list containing a triple with
x and y in it’s first two components.]

11. If you are not already fed up with Ackermann’s function, try Tripos question 2001.4.8.

12. If you are still not fed up with Ackermann’s function ack 2 N2�N, show that the
l-term ack , lx. x (l f y. y f (f 1)) Succ represents ack (where Succ is as on slide 152).

13. Let I be the l-term lx. x. Show that nI =b I holds for every Church numeral n. Now
consider

B , l f g x. g x I (f (g x))

Assuming the fact about normal order reduction mentioned on slide 145, show that if
partial functions f , g 2 N*N are represented by closed l-terms F and G respectively,
then their composition (f � g)(x) ⌘ f (g(x)) is represented by B F G. Now try Tripos
question 2005.5.12.

