Topic 3: The Data Link Layer

Our goals:

- understand principles behind data link layer services: (these are methods & mechanisms in your networking toolbox)
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - reliable data transfer, flow control: \
 - instantiation and implementation of various link layer technologies
 - Wired Ethernet (aka 802.3)
 - Wireless Ethernet (aka 802.11 WiFi)

2

Link Layer: Introduction

Some terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

3

Link Layer (Channel) Services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, dest
 - · different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

1

Link Layer (Channel) Services - 2

- flow control:
 - pacing between adjacent sending and receiving nodes
- · error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

5

Code Division Multiple Access (CDMA)

- used in several wireless broadcast channels (cellular, satellite, etc) standards
- unique "code" assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

22

Coding Examples summary

- · Common Wired coding
 - Block codecs: table-lookups
 - fixed overhead, inline control signals
 - Scramblers: shift registers
 - · overhead free

Like earlier coding schemes and error correction/detection; you can combine these

- e.g, 10Gb/s Ethernet may use a hybrid

CDMA (Code Division Multiple Access)

- coping intelligently with competing sources
- Mobile phones

25

Internet checksum

<u>Goal:</u> detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

Sender:

- treat segment contents as sequence of 1bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver

- compute checksum of received segment
- check if computed checksum equals checksum field value:
- NO error detected
- YES no error detected. But maybe errors nonetheless?

32

Error Detection Code: CRC

- CRC means "Cyclic Redundancy Check".
- More powerful than parity.
 - It can detect various kinds of errors, including 2-bit errors.
- More complex: multiplication, binary division.
- Parameterized by n-bit divisor P.
 - Example: 3-bit divisor 101.
 - Choosing good P is crucial.

33

Checksumming: Cyclic Redundancy Check recap · view data bits, D, as a binary number · choose r+1 bit pattern (generator), G goal: choose r CRC bits, R, such that <D,R> exactly divisible by G (modulo 2) - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected! - can detect all burst errors less than r+1 bits • widely used in practice (Ethernet, 802.11 WiFi, ATM) - d bits ——→← r bits → bit D: data bits to be sent | R: CRC bits pattern mathematical D*2^r XOR R formula

The divisor (G) – Secret sauce of **CRC**

- If the divisor were 100, instead of 101, data 1111 and 1001 would give the same check bit 00.
- Mathematical analysis about the divisor:
 - Last bit should be 1.
 - Should contain at least two 1's.
 - Should be divisible by 11.
- ATM, HDLC, Ethernet each use a CRC with wellchosen fixed divisors

Divisor analysis keeps mathematicians in jobs (a branch of *pure* math: combinatorial mathematics)

Error Detection vs Correction

Error Correction:

- Cons: More check bits. False recovery.
- Pros: No need to re-send.

Frror Detection:

- · Cons: Need to re-send.
- · Pros: Less check bits.

Usage:

- Correction: A lot of noise. Expensive to re-send.
- Detection: Less noise. Easy to re-send.
- Can be used together.

cabled Ethernet

Broadcast channel of rate R bps

- 1. when one node wants to transmit, it can send at rate R
- 2. when M nodes want to transmit, each can send at average rate R/M

Ideal Multiple Access Protocol

- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Two types of "links": · point-to-point

point-to-point link between Ethernet switch and host

- broadcast (shared wire or medium)
 - old-fashioned wired Ethernet (here be dinosaurs extinct)
 - upstream HFC (Hybrid Fiber-Coax the Coax may be broadcast)

Multiple Access Links and Protocols

- 802.11 wireless LAN

(shared air, acoustical)

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random Access
 - channel not divided, allow collisions
 - "recover" from collisions
- "Taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

46

Channel Partitioning MAC protocols: TDMA (time travel warning – we mentioned this earlier)

TDMA: time division multiple access

- · access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- · unused slots go idle
- example: station LAN, 1,3,4 have pkt, slots 2,5,6 idle

47

Channel Partitioning MAC protocols: FDMA (time travel warning – we mentioned this earlier)

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- · each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

"Taking Turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/
 N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

49

Worse ATM had an utterly irrational size

• 48-byt	ATM Layer: ATM cell (size = best known stupid feature) e payload	
 Why?: small payload -> short cell-creation delay for digitized voice 		
– halfway between 32 and 64 (compromise!)5-byte ATM cell header (10% of payload)		
Cell header	VCI FI C HEC	
Cell format	Cell Header ATM Cell Payload - 48 bytes	
		53

ATM – redux, the irony (a 60 second sidetrack)

Size issues once plagued ATM

- too little time to do useful work

now plague the common Internet MTU

Even jumbo grams (9kB) are argued as not big enough

Consider issues

- · default Ethernet CRC not robust for 9k
 - IPv6 checksum implications
- · MTU discovery ugliness
 - · (discovering MTU is hard anyway)

· Is time-per-packet a sensible justification?

53B @4 -3 = 2.7 μs 1500B @ 10 GigE = 1.2 μs TINYGRAMS 9000B @ 10 Gig

Make it big! 625kB @ 10 GigE = 500 μs

http://www.psc.edu/~mathis/MTU

None of these are the "Internet way"...

(Bezerkely, 60's, free stuff, no G-man)

· Seriously; why not?

What's wrong with

Management. Suites. Rules. Schedules. Polling Management. Suites. North June 1997....

- Token passing Signs, signs, everywhere a sign....

- ATM

- · Turn to random access
 - Optimize for the common case (no collision)
 - Don't avoid collisions, just recover from them....
 - · Sound familiar?

What could possibly go wrong....

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - ALOHA and slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Random Access MAC Protocols

- When node has packet to send
 - Transmit at full channel data rate
 - No a priori coordination among nodes
- Two or more transmitting nodes ⇒ collision
 - Data lost
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions
- Examples
 - ALOHA and Slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA (wireless)

Key Ideas of Random Access

- Carrier sense
 - Listen before speaking, and don't interrupt
 - Checking if someone else is already sending data
 - ... and waiting till the other node is done
- Collision detection
 - If someone else starts talking at the same time, stop
 - Realizing when two nodes are transmitting at once
 - ...by detecting that the data on the wire is garbled
- Randomness
 - Don't start talking again right away
 - Waiting for a random time before trying again

58

Aloha Signaling

- · Two channels: random access, broadcast
- Sites send packets to hub (random)
 - If received, hub sends ACK (random)
 - If not received (collision), site resends
- Hub sends packets to all sites (broadcast)
 - Sites can receive even if they are also sending
- · Questions:
 - When do you resend? Resend with probability p
 - How does this perform? Need a clean model....

60

Where it all Started: AlohaNet

- Norm Abramson left Stanford to surf
- Set up first data communication system for Hawaiian islands
- Hub at U. Hawaii, Oahu
- Had two radio channels:
 - Random access:
 - Sites sending data
 - Broadcast:
 - Hub rebroadcasting data

59

Pure (unslotted) ALOHA

- unslotted Aloha: simple, no synchronization
- · when frame first arrives
 - transmit immediately
- · collision probability increases:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

61

Pure Aloha efficiency

P(success by given node) = P(node transmits) ·

P(no other node transmits in $[p_0-1,p_0]$ · P(no other node transmits in $[p_0-1,p_0]$ $= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ $= p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting n -> ∞ ...

= 1/(2e) = .18

Best described as unspectacular; but better than what went before.

6

Slotted ALOHA

Assumptions

- · All frames same size
- Time divided into equal slots (time to transmit a frame)
- Nodes are synchronized
- Nodes begin to transmit frames only at start of slots
- If multiple nodes transmit, nodes detect collision

Operation

- When node gets fresh data, transmits in next slot
- · No collision: success!
- Collision: node retransmits with probability p until success

6

Slot-by-Slot Example

node 2

node 3

→ alota

64

Efficiency of Slotted Aloha

- Suppose N stations have packets to send
 - Each transmits in slot with probability p
- Probability of successful transmission: by a particular node i: $S_i = p (1-p)^{(N-1)}$ by any of N nodes: $S = N p (1-p)^{(N-1)}$
- What value of p maximizes prob. of success:
 - For fixed p, S → 0 as N increases
 - But if p = 1/N, then S → 1/e = 0.37 as N increases
- Max efficiency is only slightly greater than 1/3!

65

Pros and Cons of Slotted Aloha

Pros

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only need slot synchronization
- Simple

Cons

- · Wasted slots:
 - Idle
 - Collisions
- Collisions consume entire slot
- Clock synchronization

66

. . .

CSMA (Carrier Sense Multiple Access)

- CSMA: listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy, defer transmission
- Human analogy: don't interrupt others!
- Does this eliminate all collisions?
 - No, because of nonzero propagation delay

68

Improving on Slotted Aloha

- Fewer wasted slots
 - Need to decrease collisions and empty slots
- Don't waste full slots on collisions
 - Need to decrease time to detect collisions
- Avoid need for synchronization
 - Synchronization is hard to achieve

67

CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 - Collisions detected within short time
 - Colliding transmissions aborted, reducing wastage
- · Collision detection easy in wired LANs:
 - Compare transmitted, received signals
- · Collision detection difficult in wireless LANs:
 - Reception shut off while transmitting (well, perhaps not)
 - Not perfect broadcast (limited range) so collisions local
 - Leads to use of collision avoidance instead (later)

70

Limits on CSMA/CD Network Length

latency d

- Latency depends on physical length of link
 - Time to propagate a packet from one end to the other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - ... so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
- But A can't see collision until t+2d

CSMA/CD Collision Detection

B and D can tell that collision occurred.

Note: for this to work, need restrictions on minimum frame size and maximum distance. Why?

Limits on CSMA/CD Network Length

latency d

- A needs to wait for time 2d to detect collision
 - So, A should keep transmitting during this period
 - ... and keep an eye out for a possible collision
- Imposes restrictions. E.g., for 10 Mbps Ethernet:
 - Maximum length of the wire: 2,500 meters
 - Minimum length of a frame: 512 bits (64 bytes)
 - 512 bits = 51.2 usec (at 10 Mbit/sec)
 - For light in vacuum, 51.2 µsec ≈ 15,000 meters vs. 5,000 meters "round trip" to wait for collision
 - What about 10Gbps Ethernet?

73

Performance of CSMA/CD

- Time wasted in collisions
 - Proportional to distance d
- Time spend transmitting a packet
 - Packet length p divided by bandwidth b
- Rough estimate for efficiency (K some constant)

 $E \sim \frac{\frac{p}{b}}{\frac{p}{b} + Kd}$

• Note:

- For large packets, small distances, E ~ 1
- As bandwidth increases, E decreases
- That is why high-speed LANs are all switched

74

Evolution of Ethernet

- Changed everything except the frame format
 - From single coaxial cable to hub-based star
 - From shared media to switches
 - From electrical signaling to optical
- Lesson #1
 - The right interface can accommodate many changes
 - Implementation is hidden behind interface
- Lesson #2
 - Really hard to displace the dominant technology
- Slight performance improvements are not enough

76

Benefits of Ethernet

- Easy to administer and maintain
- Inexpensive
- · Increasingly higher speed
- Evolvable!

75

Ethernet: CSMA/CD Protocol

- Carrier sense: wait for link to be idle
- Collision detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission & send jam signal
- · Random access: binary exponential back-off
 - After collision, wait a random time before trying again
 - After mth collision, choose K randomly from {0, ..., 2^m-1}
 - ... and wait for K*512 bit times before trying again
 - · Using min packet size as "slot"
 - If transmission occurring when ready to send, wait until end of transmission (CSMA)

77

Binary Exponential Backoff (BEB)

- Think of time as divided in slots
- After each collision, pick a slot randomly within next 2^m slots
 - Where m is the number of collisions since last successful transmission
- Questions:
 - Why backoff?
 - Why random?
 - Why 2^m?
 - Why not listen while waiting?

78

BEB: Theory vs Reality

In theory, there is no difference between theory and practice. But, in practice, there is.

80

Behavior of BEB Under Light Load

Look at collisions between two nodes

- First collision: pick one of the next two slots
 - Chance of success after first collision: 50%
 - Average delay 1.5 slots
- Second collision: pick one of the next four slots
 - Chance of success after second collision: 75%
 - Average delay 2.5 slots
- In general: after mth collision
 - Chance of success: 1-2^{-m}
 - Average delay (in slots): ½ + 2^(m-1)

79

BEB Reality

- Performs well (far from optimal, but no one cares)
 - Large packets are ~23 times as large as minimal slot
- Is now mostly irrelevant
 - Almost all current ethernets are switched

81

BEB Theory

- · A very interesting algorithm
- Stability for finite N only proved in 1985
 - Ethernet can handle nonzero traffic load without collapse
- All backoff algorithms unstable for infinite N (1985)
 - Poisson model: infinite user pool, total demand is finite
- Not of practical interest, but gives important insight
 - Multiple access should be in your "bag of tricks"

82

MAC "Channel Capture" in BEB

- Finite chance that first one to have a successful transmission will never relinquish the channel
 - The other host will *never* send a packet
- Therefore, asymptotically channel is fully utilized and completely allocated to one host

84

Question

- Two hosts, each with infinite packets to send
- What happens under BEB?
- Throughput high or low?
- Bandwidth shared equally or not?

83

Example

- Two hosts, each with infinite packets to send
 - Slot 1: collision
 - Slot 2: each resends with prob ½
 - · Assume host A sends, host B does not
 - Slot 3: A and B both send (collision)
 - Slot 4: A sends with probability ½, B with prob. ¼
 - Assume A sends, B does not
 - Slot 5: A definitely sends, B sends with prob. 1/4
 - Assume collision
 - Slot 6: A sends with probability ½, B with prob. 1/8
- Conclusion: if A gets through first, the prob. of B sending successfully halves with each collision

85

Another Question

- Hosts now have large but finite # packets to send
- What happens under BEB?
- Throughput high or low?

86

Different Backoff Functions

- Exponential: backoff ~ ai
 - Channel capture?
 - Efficiency?
- Superlinear polynomial: backoff ~ ip p>1
 - Channel capture?
 - Efficiency?
- Sublinear polynomial: backoff ~ i^p p≤1
 - Channel capture?
 - Efficiency?

88

Answer

- Efficiency less than one, no matter how many packets
- Time you wait for loser to start is proportion to time winner was sending....

87

Different Backoff Functions

- Exponential: backoff ~ aⁱ
 - Channel capture (loser might not send until winner idle)
 - Efficiency less than 1 (time wasted waiting for loser to start)
- Superlinear polynomial: backoff ~ i^p p>1
 - Channel capture
 - Efficiency is 1 (for any finite # of hosts N)
- Sublinear polynomial: backoff ~ i^p p≤1
 - No channel capture (loser not shut out)
 - Efficiency is less than 1 (and goes to zero for large N)
 - Time wasted resolving collisions

89

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, FDDI, IBM Token Ring

90

MAC Addresses (and ARP)

or How do I glue my network to my data-link?

- 32-bit IP address:
 - network-layer address
 - used to get datagram to destination IP subnet
- MAC (or LAN or physical or Ethernet) address:
 - function: get frame from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs)
 - burned in NIC ROM, also sometimes software settable

91

LAN Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address → portability
 - can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - address depends on IP subnet to which node is attached

LAN Addresses and ARP

Each adapter on LAN has unique LAN address

Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

Vireless)

OC-C4-11-6F-E3-98

92

Address Resolution Protocol

- Every node maintains an ARP table
 - <IP address, MAC address> pair
- Consult the table when sending a packet
 - Map destination IP address to destination MAC address
 - Encapsulate and transmit the data packet
- But: what if IP address not in the table?
 - Sender broadcasts: "Who has IP address 1.2.3.156?"
 - Receiver responds: "MAC address 58-23-D7-FA-20-B0"
 - Sender caches result in its ARP table

94

Example: A Sending a Packet to B How does host A send an IP packet to host B? 88-B2-2F-54-14-0F 74-29-9C-E8-FF-55 E6-E9-00-17-BB-4B 1A-23-F9-CD-06-9 222.222.222.221 111.111.111. LAN 1 LAN 2 222.222.222.222 222.222.222.2 111.111.111. 111.111.111.110 49-BD-D2-C7-56-2A CC-49-DE-D0-AB-7D 1. A sends packet to R. 2. R sends packet to B.

Host A Sends Packet Through R

- Host A learns the MAC address of R's interface
 - ARP request: broadcast request for 111.111.111.110
 - ARP response: R responds with EE9-00-17-BB-4B
- Host A encapsulates the packet and sends to R

R Decides how to Forward Packet

- Router R's adaptor receives the packet
 - R extracts the IP packet from the Ethernet frame
 - R sees the IP packet is destined to 222.222.222.222
- Router R consults its forwarding table
 - Packet matches 222.222.222.0/24 via other adaptor

R Sends Packet to B

- Router R's learns the MAC address of host B
 - ARP request: broadcast request for 222.222.222.222
 - ARP response: B responds with 49-BD-D2-C7-52A
- Router R encapsulates the packet and sends to B

Security Analysis of ARP

- Impersonation
 - Any node that hears request can answer ...
 - ... and can say whatever they want
- Actual legit receiver never sees a problem
 - Because even though later packets carry its IP address, its NIC doesn't capture them since not its MAC address

10

Key Ideas in Both ARP and DHCP

- Broadcasting: Can use broadcast to make contact
 - Scalable because of limited size
- Caching: remember the past for a while
 - Store the information you learn to reduce overhead
 - Remember your own address & other host's addresses
- Soft state: eventually forget the past
 - Associate a time-to-live field with the information
 - ... and either refresh or discard the information
 - Key for robustness in the face of unpredictable change

102

Hubs ... physical-layer ("dumb") repeaters: - bits coming in one link go out all other links at same rate - all nodes connected to hub can collide with one another - no frame buffering - no CSMA/CD at hub: host NICs detect collisions Co-ax or twisted pair

Why Not Use DNS-Like Tables?

- · When host arrives:
 - Assign it an IP address that will last as long it is present
 - Add an entry into a table in DNS-server that maps MAC to IP addresses
- Answer:
 - Names: explicit creation, and are plentiful
 - Hosts: come and go without informing network
 - Must do mapping on demand
 - Addresses: not plentiful, need to reuse and remap
 - Soft-state enables dynamic reuse

103

Switch

(like a Hub but smarter)

- link-layer device: smarter than hubs, take active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

106

Switch: allows *multiple* simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' simultaneously, without collisions
 - not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

10

Switch Table

- Q: how does switch know that A' reachable via interface 4, B' reachable via interface 5?
- <u>A:</u> each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
- · looks like a routing table!
- <u>Q:</u> how are entries created, maintained in switch table?
 - something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

108

Interconnecting switches • switches can be connected together • Substituting Substitution Substituting Substituting Substituting Substituting Substitution Substituting Subs

Solution: Spanning Trees

- Ensure the forwarding topology has no loops
 - Avoid using some of the links when flooding
 - ... to prevent loop from forming
- Spanning tree
 - Sub-graph that covers all vertices but contains no
 - Links not in the spanning tree do not forward frames

What Do We Know?

- Shortest paths to (or from) a node form a tree
- So, algorithm has two aspects:
 - Pick a root
 - Compute shortest paths to it
- Only keep the links on shortest-path

Constructing a Spanning Tree

- · Switches need to elect a root
 - The switch w/ smallest identifier (MAC addr)
- · Each switch determines if each interface is on the shortest path from the root

Excludes it from the tree if not

- Messages (Y, d, X)
 - From node X
 - Proposing Y as the root
 - And the distance is d

Three hops

116

Steps in Spanning Tree Algorithm

- Initially, each switch proposes itself as the root
 - Switch sends a message out every interface
 - ... proposing itself as the root with distance 0
 - Example: switch X announces (X, 0, X)
- Switches update their view of the root
- Upon receiving message (Y, d, Z) from Z, check Y's id
- If new id smaller, start viewing that switch as root
- Switches compute their distance from the root
 - Add 1 to the distance received from a neighbor.

 - Identify interfaces not on shortest path to the root
 ... and exclude them from the spanning tree
- If root or shortest distance to it changed, "flood" updated message (Y, d+1, X)

Example From Switch #4's Viewpoint

- Switch #4 thinks it is the root
 - Sends (4, 0, 4) message to 2 and
 7
- Then, switch #4 hears from #2
 - Receives (2, 0, 2) message from 2
 - ... and thinks that #2 is the root
 - And realizes it is just one hop away
- Then, switch #4 hears from #7
 - Receives (2, 1, 7) from 7
 - And realizes this is a longer path
 - So, prefers its own one-hop path
 - And removes 4-7 link from the tree

3 5

118

Switch 2 starts treating 1 as root And sends (1, 2, 2) to neighbors Switch #4 hears from switch #2

Switch 4 starts treating 1 as root

· Switch #2 hears about switch #1

- Switch 2 hears (1, 1, 3) from 3

Example From Switch #4's Viewpoint

- And sends (1, 3, 4) to neighbors
- Switch #4 hears from switch #7
 - Switch 4 receives (1, 3, 7) from 7And realizes this is a longer path
- Co profess its own three has not
- So, prefers its own three-hop path
- And removes 4-7 link from the tree

3 2 5

Robust Spanning Tree Algorithm

- Algorithm must react to failures
 - Failure of the root node
 - Need to elect a new root, with the next lowest identifier
 - Failure of other switches and links
 - Need to recompute the spanning tree
- · Root switch continues sending messages
 - Periodically reannouncing itself as the root (1, 0, 1)
 - Other switches continue forwarding messages
- Detecting failures through timeout (soft state)
 - If no word from root, times out and claims to be the root
 - Delay in reestablishing spanning tree is major problem
 - Work on rapid spanning tree algorithms...

120

Switches vs. Routers Summary

- · both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

121

Metrics for evaluation / comparison of wireless technologies

- Bitrate or Bandwidth
- Range PAN, LAN, MAN, WAN
- Two-way / One-way
- Multi-Access / Point-to-Point
- Digital / Analog
- Applications and industries
- Frequency Affects most physical properties:

Distance (free-space loss)

Penetration, Reflection, Absorption

Energy proportionality

Policy: Licensed / Deregulated

Line of Sight (Fresnel zone)

Size of antenna

Determined by wavelength $-\lambda = \frac{v}{f}$,

Wireless Communication Standards

- Cellular (800/900/1700/1800/1900Mhz):
 - 2G: GSM / CDMA / GPRS /EDGE
 - 3G: CDMA2000/UMTS/HSDPA/EVDO
 - 4G: LTE. WiMax
- IEEE 802.11 (aka WiFi):
 - b: 2.4Ghz band, 11Mbps (~4.5 Mbps operating rate)
 - g: 2.4Ghz, 54-108Mbps (~19 Mbps operating rate)
 - a: 5.0Ghz band, 54-108Mbps (~25 Mbps operating rate)
 - n: 2.4/5Ghz, 150-600Mbps (4x4 mimo).
- IEEE 802.15 lower power wireless:
 - 802.15.1: 2.4Ghz, 2.1 Mbps (Bluetooth)
 - 802.15.4: 2.4Ghz, 250 Kbps (Sensor Networks)

127 127

Antennas / Aerials

• An electrical device which converts electric currents into radio waves, and vice versa.

- ➤Q: What does "higher-gain antenna" mean?
- ➤A: Antennas are passive devices more gain means focused and more directional.
- >Directionality means more energy gets to where it needs to go and less interference everywhere.
- >What are omni-directional antennas?

How many radios/antennas?

- WiFi 802.11n (maybe MiMo?)
- 2G GSM
- 3G HSDPA+
- 4G LTE
- Bluetooth (4.0)
- NFC
- GPS Receiver
- FM-Radio receiver (antenna is the headphones cable)

What Makes Wireless Different?

- Broadcast and multi-access medium...

 Just like AlohaNet isn't this where we came in?
- Signals sent by sender don't always end up at receiver intact
 - Complicated physics involved, which we won't discuss
 - But what can go wrong?

132

Path Loss / Path Attenuation

• Free Space Path Loss:

$$FSPL = \left(\frac{4\pi d}{\lambda}\right)^2$$
$$\left(4\pi df\right)^2$$

d = distanceλ = wave lengthf = frequency

c = speed of light

- Reflection, Diffraction, Absorption
- Terrain contours (Urban, Rural, Vegetation).
- Humidity

133

- Signals bounce off surface and interfere with one another
- Self-interference

134

Interference from Other Sources

- External Interference
 - Microwave is turned on and blocks your signal
 - Would that affect the sender or the receiver?
- Internal Interference
 - Hosts within range of each other collide with one another's transmission
- We have to tolerate path loss, multipath, etc., but we can try to avoid internal interference

138

Wireless Bit Errors

- The lower the SNR (Signal/Noise) the higher the Bit Error Rate (BER)
- We could make the signal stronger...
- Why is this not always a good idea?
 - Increased signal strength requires more power
 - Increases the interference range of the sender, so you interfere with more nodes around you
 - And then they increase their power......
- How would TCP behave in face of losses?
 - TCP conflates loss (congestion) with loss local errors
- Local link-layer Error Correction schemes can correct some problems (should be TCP aware).

SNR – the key to communication:

Signal to Noise Ratio

Bitrate (aka data-rate)

The higher the SNR —
the higher the (theoretical) bitrate.

➤ Modern radios use adaptive /dynamic bitrates.

Q: In face of loss, should we decrease or increase the bitrate?

A: If caused by free-space loss or multi-path fading -lower the bitrate.
If external interference - often higher bitrates

(shorter bursts) are probabilistically better.

802.11

aka - WiFi ... What makes it special?

Deregulation > Innovation > Adoption > Lower cost = Ubiquitous technology

Topic 3

141

Wireless Multiple Access Technique?

- Carrier Sense?
 - Sender can listen before sending
 - What does that tell the sender?
- Collision Detection?
 - Where do collisions occur?
 - How can you detect them?

143

Hidden Terminals

- A and C can both send to B but can't hear each other
 A is a hidden terminal for C and vice versa
- · Carrier Sense will be ineffective

144

Exposed Terminals

- Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference)!
- Carrier sense would prevent a successful transmission.

145 145

Key Points

- No concept of a global collision
 - Different receivers hear different signals
 - Different senders reach different receivers
- · Collisions are at receiver, not sender
 - Only care if receiver can hear the sender clearly
 - It does not matter if sender can hear someone else
 - As long as that signal does not interfere with receiver
- Goal of protocol:
 - Detect if receiver can hear sender
 - Tell senders who might interfere with receiver to shut up

146

Basic Collision Avoidance

- Since can't detect collisions, we try to avoid them
- · Carrier sense:
 - When medium busy, choose random interval
 - Wait that many idle timeslots to pass before sending
- When a collision is inferred, retransmit with binary exponential backoff (like Ethernet)
 - Use ACK from receiver to infer "no collision"
 - Use exponential backoff to adapt contention window

147

CSMA/CA -MA with Collision Avoidance

- Before every data transmission
 - Sender sends a Request to Send (RTS) frame containing the length of the transmission
 - Receiver respond with a Clear to Send (CTS) frame
 - Sender sends data
 - Receiver sends an ACK; now another sender can send data
- When sender doesn't get a CTS back, it assumes collision

148148

CSMA/CA, con't

- If other nodes hear RTS, but not CTS: send
 - Presumably, destination for first sender is out of node's range ...

149

CSMA/CA, con't sender receiver other node in sender's range other node in sender's range other node in sender's range ack If other nodes hear RTS, but not CTS: send - Presumably, destination for first sender is out of node's range ... - ... Can cause problems when a CTS is lost When you hear a CTS, you keep quiet until scheduled transmission is over (hear ACK)

802.11: advanced capabilities

Power Management

- node-to-AP: "I am going to sleep until next beacon frame"
 - OAP knows not to transmit frames to this node
 - onode wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-tomobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

154