
Computer Fundamentals: Lecture 2 Reading

Before the second lecture, please make sure you understand the material summarised here.
Some of you will be very familiar with it and will not need to spend much time on it; others
may not have covered it before and will need to spend an hour or two in the library to get up
to speed. There are also many resources online that will help—Google is your friend here.

You should check your understanding by attempting the first section on the
examples sheet before the lecture.

Positive Integers and Bases

What is 7+3? In most contexts you would an-
swer “10”, but actually the questions is under-
specified since the base of the numbers was not
given. By base we mean the number of digits
in the number system. We’re all most comfort-
able with base-10 (decimal), which uses the ten
digits 0–9.1 In general, for any k-digit decimal
number N10 = ak−1ak−2...a1a0, we have:

N10 =

k−1∑
0

ai10i = ao+a1.101+a2.102+... (1)

So 123=3+2.101+1.102. For a general base, b,
this trivially extends:

Nb =

k−1∑
0

aib
i = a0 + a1.b + a2.b

2 + ... (2)

Base-2 (binary, b=2)—with the binary dig-
its (bits) 0 and 1 only—is also common. In
fact, there is something ‘special’ about bi-
nary since you cannot communicate informa-
tion with anything less than two symbols. So,
binary is the smallest number of useful sym-
bols for encoding information, and hence the
bit is used as the unit of information.

Binary is also the easiest to implement in
hardware (since it’s just one switch per bit)
and so the vast majority of computers are built
on it. Usually we like our numbers to be dis-
played in decimal, however, which is mildly ir-
ritating because ten can’t be represented ef-
ficiently with an integer number of bits (see
examples sheet).

One of the downsides to binary is that rela-
tively small numbers require lots of digits that
are harder for the human brain to recall and

1It’s an interesting question why we favour base-
10 in our society. The most oft-quoted answer is that
we have ten digits on two hands, but there isn’t any
particular evidence for this. All we know is that many
early cultures seem to have used decimal systems.

handle. e.g. 123410=100110100102. Instead,
we prefer to use higher bases.

In computing, we prefer power-of-two bases,
since these correspond to straightforward par-
titioning of a binary number. Base-8 (octal) is
easy to deal with because it’s the closest power-
of-two to 10. It uses the symbols 0–7 inclusive
and effectively groups a binary number into 3-
bit chunks:
123410=100110100102=010 011 010 0102=23228

Even more common is to group them into
chunks of four to get a base-16 representation
(hexadecimal or just “hex”). Here we have a
problem since we need 16 symbols, but only
have 10 in our vocabulary (0–9). We use the
alphabet to extend our symbols, which range
from 0–9 followed by A–F (i.e. 1010=A16,
1510=F16). So now:
123410=100110100102=0100 1101 00102=4D216

Because hex is so commonly used and sub-
scripts aren’t easy to add in code, we preface a
hex number with “0x”, so 4D216 is 0x4D2. For
some reason there isn’t a uniformly-adopted
prefix for octal—you may see 1238 written as
0o123, 0123, o123, q123, or something else en-
tirely! Thankfully, hex is the preferred choice
these days.

Bits, Bytes, Words, etc

When working with computers, you come
across a variety of units for data. The bit (BI-
nary digiT) is probably the only one that is
totally unambiguous—it is either 0 or 1, and
we know that it represents a fundamental unit
of data.

A byte was historically unstandardised, and
was the number of bits used to represent a sin-
gle character on the system in use. However,
there is now a de-facto standard of 8 bits in
a byte and it is common for a byte to be as-
sumed to be 8 bits. As such, it can take values
between 0 and 255 or 0x00 to 0xFF in hex.

A nibble or nybble is usually defined as half a
byte, which is de-facto 4-bits or one hex digit.

1



A word is platform-specific and is the num-
ber of bits used by the processor to represent
a single instruction. Most desktop machines
use either 32-bit or 64-bit words; some em-
bedded/mobile devices will use 8-bit or 16-bit
words.

We often deal with large values and need
prefix-multipliers. This should be straightfor-
ward except that SI multipliers are designed
for base-10, not base-2. This means that each
new prefix ends up being a multiple of 1,024
(210) and not 1,000. e.g. a kilobyte is usually
1,024 bytes and not 1,000 bytes. Usually the
context is obvious so the difference is irrele-
vant. However, you will encounter people who
insist on using the IEEE standard (introduced
10 years or so ago). This defines kibi, mebi-
and gibi- as follows:

Name Suffix Size (bytes)
kilobyte KB 1,000
kibibyte KiB 1,024
megabyte MB 1,000,000
mebibyte MiB 1,048,576
gigabyte GB 1,000,000,000
gibibyte GiB 1,073,741,824

Most people just stick with kilo-, mega-,
giga-, etc. Try not to get upset either way.

Binary Addition and Subtraction

The binary addition algorithm is an easier ver-
sion of the standard decimal addition algo-
rithm you all did at achool. Add the bits from
right-to-left, carrying the most significant bit
each time. E.g.

1 1 1 1
1 0 1 1

+ 1 1 0 1
1 1 0 0 0

To do subtraction, you were probably taught
to ‘borrow’ from the left where necessary. We
do exactly the same in binary subtraction.
When you came across (a − b) and a < b
(i.e. a negative result) you were most likely
taught to compute (b− a) and add a negative
sign. This works in binary too, although rep-
resenting negative numbers in a machine ends
up being more complicated—don’t worry too
much about that yet, since it will be covered
in lecture 2. For now, just make sure you can
perform addition and subtraction in binary on
paper.

2


