
Computer Fundamentals

Dr Robert Harle

CST Part IA
NST Part IA (CS option)

PPS (CS option)

Michaelmas 2012



What is Computer Science?

 Surprisingly hard to answer definitively
 Gets confused with IT, which is merely the use of 

present day technology

 We're trying to teach theory and practice that 
will defined future technology
 CS has strong theoretical underpinnings that 

stem from maths

 This short course is introductory material that 
touches on the absolute basics
 Examined indirectly – no specific exam question 

but the topics surface in later courses throughout 
the year



Topics

 Computer Components
 Brief history. Main components: CPU, memory, peripherals (displays, 

graphics cards, hard drives, flash drives, simple input devices), 
motherboard, buses.

 Data Representation and Operations
 Simple model of memory. Bits and bytes. Binary, hex, octal, decimal 

numbers. Character and numeric arrays. Data as instructions: von-
Neumann architecture, fetch-execute cycle, program counter (PC)

 Low- and High- level Computing
 Pointers. The stack and heap? Box and Pointer Diagrams. Levels of 

abstraction: machine code, assembly, high-level languages. Compilers 

and interpreters. Read-eval-print loop.
 Platforms and Multitasking

 The need for operating systems. Multicore systems, time-slicing. Virtual 
machines. The Java bytecode/VM approach to portability. ML as a high-
level language emphasing mathematical expressivity over input-output.



A Brief History of Computers



Analogue Computers
 You've probably been taught various electrical 

phenomena by analogy with mechanical systems
 Voltage ↔ water flow

 Electrical resistance ↔ mechanical resistance

 Capacitance ↔ compressed spring

 Works the other way: simulate mechanical systems 
using electrical components
 This is then an analogue computer

 Cheaper, easier to build and easier to measure than mechanical 
system

 Can be run faster than 'real time'

 BUT each computer has a specialised function

 Very good for solving differential equations. Used 
extensively for physics, esp. artillery calculations!



Input: Jacquard's Loom
 Not a computer per-se, but very important in the history 

of them. Jacquard wanted to create a textile loom that 
could remember how to create specific textiles

 Used many needles and realised he could create a 
series of template cards with holes to let through only 
some needles. Running a series of templates through in a 
specific order produced the garment.

 Basic idea for punch cards



Turing Machines

 Inspired by the typewriter (!), Alan Turing 
(King's) created a theoretical model of a 
computing machine in the 1930s. He broke the 
machine into:
 A tape – infinitely long, broken up into cells, 

each with a symbol on them
 A head – that could somehow read and 

write the current cell
 An action table – a table of actions to 

perform for each machine state and 
symbol. E.g. move tape left

 A state register – a piece of memory that 
stored the current state



Universal Turing Machines

 Alan argued that a Turing machine could be made 
for any computable task (e.g. sqrt etc)

 But he also realised that the action table for a given 
turing machine could be written out as a string, 
which could then be written to a tape.

 So he came up with a Universal Turing Machine. This 
is a special Turing Machine that reads in the action 
table from the tape
 A UTM can hence simulate any TM if the tape 

provides the same action table
 This was all theoretical – he used the models to 

prove various theories. But he had inadvertently set 
the scene for what we now think of as a computer!



Turing and the War



Note...

 ...A Turing machine made a shift from the analogue 
to the discrete domain (we are reading explicit 
symbols and not analogue voltages)
 In part this is because Turing needed it to be able to 

represent things exactly, even infinite numbers 
(hence the infinite tape)

 This is useful practically too. Analogue devices:
 have temperature-dependent behaviour
 produce inexact answers due to component 

tolerances
 are unreliable, big and power hungry



The Digital World

 When we have discrete states, the simplest 
hardware representation is a switch → digital 
world

 Going digital gives us:
 Higher precision (same answer if you repeat)
 Calculable accuracy (the answer is of known quality)
 The possibility of using cheaper, lower-quality components 

since we just need to distinguish between two states 
(on/off)

 One problem: no switches?



1940-58 Vacuum Tubes
 Vacuum tubes are really just modified lightbulbs that can act 

as amplifiers or, crucially, switches.

 By the 1940s we had all we needed to develop a useful 
computer: vacuum tubes for switches; punch cards for input; 
theories of computation; and (sadly) war for innovation

e-



Colussus
 1944, Bletchley park

 Designed to break the 
German Lorenz SZ40/42 
encryption machine

 Fed in encrypted messages 
via paper tape. Colussus 
then simulated the positions 
of the Lorenz wheels until it 
found a match with a high 
probability

 No internal program – 
programmed by setting 
switches and patching leads

 Highly specific use, not a 
general purpose computer

 Turing machine, but not 
universal



ENIAC
 Electronic Numerical Integrator and Computer

 1946, “Giant brain” to compute artillery tables for US military
 First machine designed to be turing complete in the sense 

that it could be adapted to simulate other turing machines
 But still programmed by setting switches manually...

 Next step was to read in 
the “action table” (aka 
program) from tape as 
well as the data

 For this we needed more 
general purpose memory 
to store the program, 
input data and output



Manchester Baby
 1948 a.k.a. mark I computer
 Cunning memory based on cathode ray tube. 

Used the electron gun to charge the phosphor on 
a screen, writing dots and dashes to the tiny screen

 A light-sensitive collector plate read the screen
 But the charge would leak away within 1s so they 

had to develop a cycle of read-refresh
 Gave a huge 2048 bits of memory!

phosphor

collector

Electron
gun

First 
Stored-Program 

Computer?





EDSAC
 Electronic Delay Storage Automatic Calculator
 First practical stored-program computer,       

built here by Maurice Wilkes et al.

 Memory came in the form of a 
mercury delay line

 Used immediately for research 
here.

 Although they did have to invent 
programming....

First 
Stored-Program 

Computer?





Storage: Stored-Program Machines

 So where do you store your programs and data?

Von-Neumann Harvard
Same memory for programs 

and data
Separate memories for 

programs and data
+ Don't have to specify a 
partition so more efficient 
memory use

- Have to decide in advance how 
much to allocate to each

+ Programs can modify 
themselves, giving great 
flexibility

+ Instruction memory can be 
declared read only to prevent 
viruses etc writing new 
instructions

- Programs can modify 
themselves, leaving us open to 
malicious modification
- Can't get instructions and data 
simultaneously (therefore 
slower)

+ Can fetch instructions and data 
simultaneously



1959-64 Transistors

 Vacuum tubes bulky, hot and prone to failure
 Solution came from Bell labs (telecoms research)
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1965-70 Integrated Circuits
 Semiconductors could replace 

traditional electronics components → 
use a slice of semiconductor and 'etch' 
on a circuit

 End up with an Integrated Circuit (IC) 
a.k.a a microchip

 Much easier to pack components on an 
IC, and didn't suffer from the reliability 
issues of the soldering iron

Moore's Law: the number of transistors 
on an IC will double every two years





The Rise of Intel

 Intel started in 1968 manufacturing ICs, producing ICs 
with a particular target of memory (RAM, see later)

 1969 – commissioned to make 12 custom chips for a 
calculator (one for keyboard scanning, one for display 
control, etc)

 Not enough resource so instead proposed a single 
general-purpose logic chip that could do all the tasks

 1971 - Managed to buy the rights and sold the chip 
commercially as the first microprocessor, the Intel 4004



1971- Microprocessor Age

 The 4004 kick-started an industry and lots of 
competitors emerged

 Intel very savvy and began an “intel inside” 
branding assault with products like the 386

 Marketing to consumers, not system builders 
any more



The Rise of ARM

 After the BBC micro, Acorn wanted a new processor and set 
about designing a cheap, simple-to-implement CPU (using a 
RISC approach – see later)

 Apple was interested and started to work with them. 
Eventually the project unit was spun out to form Advanced 
RISC Machines (ARM) Ltd.

 Chips were very low power and cheap, but struggled against 
the might of intel's more complex chips

 BUT then the PDA/smartphone/mobile revolution came along 
and suddenly ARM had the perfect product – cheap, low 
power, simple and reasonable performance

 Now accounts for the majority of all 32-bit processor 
produced – and Cambridge-based too...



System-on-Chip (SoC)

 For smaller systems, often see hardware elements 
bundled together to form an SoC e.g. R-Pi

Memory
CPU+GPU

Ethernet+USB



The CPU in more Detail



Programs, Instructions and Data

 Recall: Turing's universal machine reads in an 
action table (=program) of instructions, which it 
then applies to a tape (=data)  We will assume 
a Von-Neumann architecture since this is most 
common in CPUs today.

Memory

Program Data

CPU



Simple Model of Memory

 We think of memory abstractly, as 
being split into discrete chunks, each 
given a unique address

 We can read or write in whole chunks
 Modern memory is big

Memory

0 1 2 3 4 5 6 7 8



Simple Model of a CPU

Registers

PC

X

Y

Z

ALU

CPU

MAU

IB                 



Fetch-Execute Cycle I

L6X L7Y AXYZ SZ8

Memory
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Fetch-Execute Cycle II

L6X L7Y AXYZ SZ8

Memory

63 12
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Fetch-Execute Cycle III

L6X L7Y AXYZ SZ8

Memory
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Fetch-Execute Cycle IV

L6X L7Y AXYZ SZ8

Memory
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CPU Processing Units

 Other common units
 MAU – Memory Access Unit 
 ALU – Arithmetic Logic Unit
 FPU – Floating Point Unit
 BU – Branching Unit



Handling Numbers in the CPU



ALU Circuitry

 The ALU in the CPU is responsible for arithmetic 
operations. Exactly what is supported directly is CPU 
manufacturer-dependent

 Integer arithmetic is always supported, but there are 
issues:
 Overflow
 Representing fractional numbers
 Underflow (see floating point course)
 Negative numbers



Unsigned Integer Addition

 You should be happy that binary addition can use the 
same algorithm as decimal addition as taught in junior 
school.

 CPUs (or rather ALUs in them) implement this algorithm, 
but there is a practical issues: there is a set number of 
bits in the register that we can unintentionally exceed 
(overflow)

 The ALU has a carry flag (a single bit in a special register) 
that is switched on if the addition has a carry left after 
processing the most significant bit 

111
+ 001

001
+ 001

Carry flag: Carry flag:



Modulo Arithmetic

 Overflow takes us across the dotted 
boundary
 So 7+1=0 (overflow)
 We say this is (7+1) mod 8

0

6

7 1

2

34
5

... 2 3 4 5 6 7 8 9...

+

-



Unsigned Integer Subtraction

 Integer subtraction can proceed as decimal 
subtraction, 'borrowing' from the left if necessary

 If we still need to borrow after the left-most bit, this 
signifies an error and the carry flag is set.

011
- 001

001
- 010

Carry flag: Carry flag:



Negative Numbers

 All of this skipped over the need to represent 
negatives.

 The naïve choice is to use the MSB to indicate +/-
 1 in the MSB → negative
 0 in the MSB → positive

 This is the sign-magnitude technique

-7 = 1111

Negative
Normal positive 
representation of 7



Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so 

wastes one of our 2n labels
 Addition/subtraction circuitry is not pretty

   1101
+ 0001
   1110

-5
+1
-6

+13
+1

+14

  1101
- 0001
  1100

-5
-1
-4

+13
-1

+12

Sign-mag
interpretation

Unsigned
interpretation

Our unsigned addition alg. Our unsigned subtraction alg.

Sign-mag
interpretation

Unsigned
interpretation



Alternatively...

 Gives us two discontinuities and a 
reversal of direction using normal 
addition circuitry!!

0

-2

-3 1

2

3-0
-1



Two's complement

0

-2

-1 1

2

3-4
-3

 How about this?
 One discontinuity again
 Efficient (no minus zero!)
 Crucially we can use normal 

addition/subtraction circuits!!
 “Two's complement”

 Positive to negative: Invert all the bits and add 1

 Negative to positive: Same procedure!!

1011 (-5) → 0100 → 0101 (+5)

0101 (+5) → 1010 → 1011 (-5)



Signed Addition

   1101
+0001
  1110

-3
+1
-2

+13
+1

+14

  1101
- 0001
  1100

-3
- +1

-4

+13
- +1
+12

2's-comp Unsigned

Our unsigned addition alg. Our unsigned subtraction alg.

2's-comp Unsigned



 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry 
should really be testing the bit to its right :-(

 So we introduce an overflow flag that indicates this problem

Signed Addition

   0100
+0100
   1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0



Flags Summary

 When adding/subtracting
 The carry flag indicates an overflow for 

unsigned numbers
 The overflow flag indicates an overflow for 

signed integers



Fractional Numbers

 Scientific apps rarely survive on integers alone, but 
representing fractional parts efficiently is 
complicated.

 Option one: fixed point
 Set the point at a known location. Anything to 

the left represents the integer part; anything to 
the right the fractional part

 But where do we set it??
 Option two: floating point

 Let the point 'float' to give more capacity on its 
left or right as needed

 Much more efficient, but harder to work with
 Very important: dedicated course on it later this 

year.



Character Arrays

 To represent text, we simply have an encoding 
from an integer to a letter or character

 The classic choice is ASCII
 Takes one byte per character but actually only 

uses 7 bits of it so can represent 27=128 
characters



ASCII Codes



Other encodings

 128 letters is fine for English alphabet
 Turns out there are other alphabets (who 

knew?!)
 So we have unicode and other 

representations that typically take two bytes 
to represent each character

 Remember this when we come to look at 
Java next term, which uses 2-byte unicode as 
standard...



The Guts of Modern Systems



Desktop Systems Today

 Based on a core system plus peripherals:
 Input (mouse, keyboard, etc)
 Output (printer, display)
 Network adapter, etc

 Peripherals connect to buses in order to 
communicate with the core system 
 A bus is just a set of wires that can be used by 

multiple peripherals. Special control wires are 
used to ensure the data from two or more 
connected peripherals do not clash.

Mouse

Printer

Keyboard

Flash
drive



Typical Desktop Architecture

CPU

Northbridge

Southbridge

PCI Bus

Memory BusAGP BusGraphics
Card RAM

USB

Ethernet (LAN)

LPC Bus

Expansion 
cards

External
peripherals

Network

Serial I/O 
etc

Internal bus



The Motherboard

 An evolution of the circuitry between the CPU and 
memory to include general purpose buses (and later to 
integrate some peripherals directly!)

 Internal Buses
 ISA, PCI, PCIe, SATA, AGP

 External buses
 USB,Firewire, 

eSATA, PC card



  SRAM

  DRAM

  Flash

  Magnetic

Peripherals  

Motherboard  

CPU  

Memory Hierarchy (Typical)

Registers

CPU cache

Main memory

SD cards, SSDs...

Hard discs, tapes

System cache

Speed Size



Typical Memory Capacities
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Random Access Memory (RAM)
 The alternative to mercury delay lines is essentially a capacitor. A 

charged capacitor is a “1” and a discharged capacitor is a ”0”

 If we stick a capacitor together with a transistor we create a 
memory cell. Put lots of cells in a matrix and we can use the 
transistor to 'activate' a specific cell and ignore all others. In doing 
so, we can randomly jump around in the data (random access)

 This is Dynamic RAM (DRAM) and it is cheap because each cell is 
simple

 BUT: capacitors leak charge over time, so a “1” becomes a “0”. 
Therefore we must refresh the capacitor regularly and this slows 
everything down plus it drains power... 

Memory cell
(transistor
+capacitor)



Static RAM (SRAM)
 We can avoid the need to refresh by using Static RAM 

(SRAM) cells. These use more electronics (typically 6 
transistors per cell) to effectively self-refresh.

 This is 8-16x faster than DRAM

 But each cell costs more and takes more space so it's also 
about 8-16x more costly!

 And both DRAM and SRAM are volatile (lose power = lose 
data)

SRAM Memory Cell



Register Sizes

 Registers are fixed size, super-fast on-chip memory 
usually made from SRAM.

 When we build the CPU we have to decide how big to 
make them
 Bigger registers

 Allow the CPU to do more per cycle
 Mean we can have more main RAM (longer 

addresses can be supported)
 Too big and we might never use the whole length 

(waste of electronics)
 Smaller registers

 Less electronics (smaller, cooler CPUs)
 Too small and it takes more cycles to complete 

simple operations



Flash and SSDs
 Toshiba came up with Flash memory in the 1980s as a 

non-volatile storage without moving parts
 Works essentially by trapping charge in a non-conducting layer 

between two transistors (much more complex than this, but out of 
scope here)

 Slower than RAM and a limited number of writes, but still 
extremely useful

 No moving parts, small
 Used in USB flash drives, camera memory and now Solid State 

Discs.



Magnetic Media (Hard Discs)

 Lots of tiny magnetic patches on a 
series of spinning discs

 Can easily magnetise or 
demagnetise a patch, allowing us 
to represent bits

 Similar to an old cassette tape only 
more advanced

 Read and write heads move 
above each disc, reading or 
writing data as it goes by

 Remarkable pieces of engineering that can store terabytes (TB, 
1,000,000MB) or more.

 Cheap mass storage

 Non-volatile (the data's still there when you next turn it on)

 But much slower than RAM (because it takes time to seek to 
the bit of the disc we want – sequential access, not random 
access)



Graphics Cards

 Started life as simple Digital to Analogue Convertors 
(DACs) that took in a digital signal and spat out a 
voltage that could be used for a cathode ray screen

 Have become powerful computing devices of their own, 
transforming the input signal to provide fast, rich 
graphics.

 Todays GCs are based around GPUs with lots of tiny 
processors (cores) sharing some memory. The notion is 
one of SIMD – Single Instruction Multiple Data
 Every instruction is copied to each core, which 

applies it to a different (set of) pixel(s)
 Thus we get parallel computation → fast
 Very useful for scientific computing
 CPUs better for serial tasks 



Memory Manipulation



Memory and Pointers

 In reality the compiler stores a mapping from 
variable name to a specific memory address, along 
with the type so it knows how to interpret the 
memory (e.g. “x is an int so it spans 4 bytes starting 
at memory address 43526”).

 Lower level languages often let us work with 
memory addresses directly. Variables that store 
memory addresses are called pointers or sometimes 
references

 Manipulating memory directly allows us to write fast, 
efficient code, but also exposes us to bigger risks
 Get it wrong and the program 'crashes' .



Pointers: Box and Arrow Model

 A pointer is just the memory address of the first 
memory slot used by the variable

 The pointer type tells the compiler how many 
slots the whole object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;



Example: Representing Strings I

 A single character is fine, but a text string is of variable length – 
how can we cope with that? 

 We simply store the start of the string in memory and require it 
to finish with a special character (the NULL or terminating 
character, aka '\0')

 So now we need to be able to store memory addresses → use 
pointers

 We think of there being an array of characters (single letters) 
in memory, with the string pointer pointing to the first element 
of that array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18



Example: Representing Strings II

stringPointer

h e l l o  char letterArray[] = {'h','e','l','l','o','\0'};
  
  char *stringPointer = &(letterArray[0]);

  printf(“%s\n”,stringPointer);

  letterArray[3]='\0';

  printf(“%s\n”,stringPointer);

  

\0



Platforms and Operating Systems
(Software to control your hardware)



The Origins of the OS

 A lot of the initial computer programs covered the same 
ground – they all needed routines to handle, say, 
floating point numbers, differential equations, etc.
 Therefore systems soon shipped with libraries: built-in 

chunks of programs that could be used by other 
programs rather than re-invented.

 Then we started to add new peripherals (screens, 
keyboards, etc).
 To avoid having to write the control code (“drivers”) 

for each peripheral in each program the libraries 
expanded to include this functionality

 Then we needed multiple simultaneous apps and users
 Need something to control access to resources...



Operating System

 Now sits between the application 
and the hardware

 Today's examples include MS 
Windows, GNU Linux, Apple OSX and 
iOS, Google Android, etc.

 Today's applications depend on 
huge pieces of code that are in the 
OS and not the actual program code

 The OS provides a common interface 
to applications
 Provides common things such as 

memory access, USB access, 
networking, etc, etc.Hardware

Operating System

Application

User



Timeslicing

 Modern OSes allow us to run many programs at 
once.  Or so it seems. In reality a CPU time-
slices:
 Each running program (or “process”) gets a 

certain slot of time on the CPU
 We rotate between the running processes with 

each timeslot
 This is all handled by the OS, which schedules the 

processes. It is invisible to the running program.

A B C

time

A B C A B CD D

Process D 
started

Processes 
A,B,C running 



Context Switching

 Every time the OS decides to switch the running 
task, it has to perform a context switch

 It saves all the program's context (the program 
counter, register values, etc) to main memory

 It loads in the context for the next program
 Obviously there is a time cost associated with 

doing this...



What Time Slice is Best?

 Longer 
 The computer is more efficient: it spends more 

time doing useful stuff and less time context 
switching

 The illusion of running multiple programs 
simultaneously is broken

 Shorter
 Appears more responsive
 More time context switching means the overall 

efficiency drops
 Sensible to adapt to the machine's intended usage. 

Desktops have shorter slices (responsiveness 
important); servers have longer slices (efficiency 
important)



The Kernel

 The kernel is the part of the OS that 
runs the system
 Just software
 Handles process scheduling (what gets 

what timeslice and when)
 Access to hardware
 Memory management

 Very complex software – when it 
breaks... game over.



The Importance of APIs

 API = Application Programming Interface

 Software vendors ship their libraries with APIs, which 
describes only what is need for a programmer to use the 
library in their own program.
 The library itself is a black box – shipped in binary 

form.
 Operating systems are packed with APIs for e.g. window 

drawing, memory access, USB, sound, video, etc.
 By ensuring new versions of the software support the 

same API (even if the result is different), legacy 
software can run on it.



Platforms

 A typical program today will be compiled for a 
specific architecture, a specific operating system 
and possibly some extra third party libraries.
 So PC software compiled for linux does not work 

under Windows for example.
 We call the {architecture, OS} combination a 

platform
 The platforms you are likely to encounter here:

 Intel/Linux
 Intel/Windows
 Intel/OSX
 Apple/iOS
 ARM/Android



Multicore Systems

 Ten years ago, each generation of CPUs packed 
more in and ran faster. But:
 The more you pack stuff in, the hotter it gets
 The faster you run it, the hotter it gets
 And we got down to physical limits anyway!!

 We have seen a shift to multi-core CPUs
 Multiple CPU cores on a single CPU package 

(each runs a separate fetch-execute cycle)
 All share the same memory and resources! 



The New Challenge

 Two cores run completely independently, so a 
single machine really can run two or more 
applications simultaneously

 BUT the real interest is how we write programs 
that use more than one core
 This is hard because they use the same 

resources, and they can then interfere with 
each other

 Those sticking around for IB CST will start to 
look at such 'concurrency' issues in far more 
detail



Virtual Machines

 Go back 20 years and emulators were all the rage: 
programs on architecture X that simulated architecture 
Y so that programs for Y could run on X

 Essentially interpreters, except they had to recreate the 
entire system. So, for example, they had to run the 
operating system on which to run the program.

PC operating system

Sega O/S

Game

 Now computers are so fast 
we can run multiple virtual 
machines on them

 Allows us to run multiple 
operating systems 
simultaneously!



Virtualisation

 Virtualisation is the new big thing in business. Essentially the 
same idea: emulate entire systems on some host server

 But because they are virtual, you can swap them between 
servers by copying state

 And can dynamically load your server room!

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Windows 7

Windows 7

Ubuntu

Android

Heavy load Light load



Levels of Abstraction
(How humans can program computers)



Levels of Abstraction for Programming

High Level Languages

Procedural Languages

Assembly

Machine Code

Human friendly

Geek friendly

Computer friendly

                    Compile



Machine Code

 What the CPU 'understands': a series of instructions that it 
processes using the the fetch-execute technique

 E.g. to add registers 1 and 2, putting the result in register 
3 using the MIPS architecture:

00000000001000100001100000100000

Register 1 Register 3 Addition

Register 2 Shift amount (N/A)OP type



RISC

 The simplest way to create a CPU is to have 
a small number of simple instructions that 
allow you to do very small unit tasks
 E.g. load a value to a register, add two 

registers
 If you want more complicated things to 

happen (e.g. multiplication) you use just use 
multiple instructions

 This is a RISC approach (Reduced Instruction 
Set arChitecture) and we see it in the ARM 
CPUs



CISC

 Actually, two problems emerged
 People were coding at a low level and got sick 

of having to repeatedly write multiple lines for 
common tasks

 Programs were large with all the tiny instructions. 
But memory was limited...

 Obvious soln: add “composite” instructions to 
the CPU that carry out multiple RISC instructions 
for us
 This is a CISC (Complex Instruction Set 

arChitecture) and we see it in the Intel chips
 Instructions can even be variable length



RISC vs CISC

 Every instruction 
takes one cycle

 Smaller, simpler 
CPUs

 Lower power 
consumption

 Fixed length 
instructions

 Multiple cycles 
per instruction

 Smaller 
programs

 Hotter, complex 
CPUs

 Variable length 
instructions

RISC CISC



RISC vs CISC

 CISC has traditionally dominated (for 
backwards compatibility and political 
reasons) e.g. Intel PCs

 RISC was the route taken by Acorn, 
and resulted in the ARM processors 
e.g. smartphones



Practicalities: Microcode

 An easy way to create a CISC processor is to use a 
RISC processor at the core, and then have an 
interface layer that converts each composite 
instruction to a set of RISC instructions

 It was quickly realised that this interface could be in 
software if the hardware could execute it very fast
 Very high speed ROM on the CPU to store this

 This has led to the notion of microcode, which 
specifies the translations.
 Microcode is set by the CPU manufacturer and 

not something the end-user or developer is 
expected to fiddle with!



Instruction Sets

 At first, every CPU that came out had its own, 
special instruction set. This meant that any program 
for machine X would be useless on machine Y

 We needed a standardised set of instructions
 Intel drew up the 8086 specification in 1978
 Manufacturers produced CPUs that understood 

8086 instructions and the so-called PC was born
 Modern PCs still support this instruction set, albeit 

manufacturers add their own special commands to 
take advantage of special features (MMX, etc).

 Each set of instructions is referred to as an 
architecture



Assembly
 Essentially machine code, except we replace binary 

sequences with text that is easier for humans
 E.g. add registers 1 and 2, storing in 3:

 Produces small, efficient machine code when 
assembled

 Almost as tedious to write as machine code
 Becoming a specialised skill...
 Ends up being architecture-specific if you want the most 

efficient results :-(

add $s3, $s1, $s2



Instruction Set Architectures (ISAs)

 When you create a CPU, you decide the instructions it will 
work with. A given the set is an (instruction set) architecture 
(ISA)

 Initially all architectures different → no software 
compatibility

 A few have emerged as de-facto standards
 x86 – the intel line of CPUs right back to the 1980s (a.k.a PC arch)

 PowerPC – Apple/IBM/Motorola's RISC competitor to x86

 ARM – RISC-based ISA based on Acorn's processors

 MIPS – RISC-based ISA used in embedded designs



Compilers

 A compiler is just a software program that converts 
the high-level code to machine code for a 
particular ISA (or some intermediary)

 Writing one is tricky and we require strict rules on the 
input (i.e. on the programming language). Unlike 
English, ambiguities cannot be tolerated!

Write
(text)

Compile

Machine
code

(binary)
Errors to fix

Compile succeeds
(eventually!)



Handling Architectures 

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86



Interpreters

 The final binary is a compiled program that can 
be run on one CPU architecture.

 As computers got faster, it became apparent 
that we could potentially compile 'on-the-fly'. 
i.e. translate high-level code to machine code 
as we go

 Call programs that do this interpreters
Architecture agnostic – 
distribute the code and 
have a dedicated 
interpreter on each 
machine

Have to distribute the code

Easier development loop Errors only appear at 
runtime
Performance hit – always 
compiling



Types of Languages

 Declarative - specify what to do, not 
how to do it. i.e. 
 E.g. HTML describes what should appear on a web 

page, and not how it should be drawn to the screen
 E.g. SQL statements such as “select * from table” tell a 

program to get information from a database, but not 
how to do so

 Imperative – specify both what and how
 E.g. “double x“ might be a declarative instruction 

that you want the variable x doubled somehow. 
Imperatively we could have “x=x*2” or “x=x+x”



Functional vs Imperative

 Functional languages are a subset of 
declarative languages
 You will be learning a functional language 

this term: ML
 This may look like the imperative languages 

you have seen before, but it is a little different
 Specifically, functions can't have side-effects. 

i.e. the output can only depend on the inputs
 Example of side-effect:

t=3
f(y) = y*t
f(2)  ←6
t=1
f(2) ←3



Functional vs Imperative

 We'll look more closely at this when 
you do the Object-Oriented 
Programming (OOP) course next term

 For now, just appreciate that the new 
language you're about to meet has 
some advantages
 Fewer opportunities for error
 Closer to maths
 All of you start at the same level



Where Do You Go From Here?

 Paper 1
 FoCS: look at the fundamentals of CS whilst learning ML

 Discrete Maths: build up your knowledge of the maths needed for 
good CS

 OOP/Java: look at imperative programming as it is used in the 
'real world'

 Floating Point: learn how to use computers for floating point 
computations (and when not to trust them..!)

 Algorithms: The core of CS: learn how to do things 
efficiently/optimally

 Paper 2
 Digital Electronics: hardware in detail

 Operating Systems: an in-depth look at their workings

 Probability: learn how to model systems

 Software Design: good practice for large projects

 RLFA: an intro to describing computer systems mathematically


