
Computer Fundamentals

Dr Robert Harle

CST Part IA
NST Part IA (CS option)

PPS (CS option)

Michaelmas 2012

What is Computer Science?

 Surprisingly hard to answer definitively
 Gets confused with IT, which is merely the use of

present day technology

 We're trying to teach theory and practice that
will defined future technology
 CS has strong theoretical underpinnings that

stem from maths

 This short course is introductory material that
touches on the absolute basics
 Examined indirectly – no specific exam question

but the topics surface in later courses throughout
the year

Topics

 Computer Components
 Brief history. Main components: CPU, memory, peripherals (displays,

graphics cards, hard drives, flash drives, simple input devices),
motherboard, buses.

 Data Representation and Operations
 Simple model of memory. Bits and bytes. Binary, hex, octal, decimal

numbers. Character and numeric arrays. Data as instructions: von-
Neumann architecture, fetch-execute cycle, program counter (PC)

 Low- and High- level Computing
 Pointers. The stack and heap? Box and Pointer Diagrams. Levels of

abstraction: machine code, assembly, high-level languages. Compilers

and interpreters. Read-eval-print loop.
 Platforms and Multitasking

 The need for operating systems. Multicore systems, time-slicing. Virtual
machines. The Java bytecode/VM approach to portability. ML as a high-
level language emphasing mathematical expressivity over input-output.

A Brief History of Computers

Analogue Computers
 You've probably been taught various electrical

phenomena by analogy with mechanical systems
 Voltage ↔ water flow

 Electrical resistance ↔ mechanical resistance

 Capacitance ↔ compressed spring

 Works the other way: simulate mechanical systems
using electrical components
 This is then an analogue computer

 Cheaper, easier to build and easier to measure than mechanical
system

 Can be run faster than 'real time'

 BUT each computer has a specialised function

 Very good for solving differential equations. Used
extensively for physics, esp. artillery calculations!

Input: Jacquard's Loom
 Not a computer per-se, but very important in the history

of them. Jacquard wanted to create a textile loom that
could remember how to create specific textiles

 Used many needles and realised he could create a
series of template cards with holes to let through only
some needles. Running a series of templates through in a
specific order produced the garment.

 Basic idea for punch cards

Turing Machines

 Inspired by the typewriter (!), Alan Turing
(King's) created a theoretical model of a
computing machine in the 1930s. He broke the
machine into:
 A tape – infinitely long, broken up into cells,

each with a symbol on them
 A head – that could somehow read and

write the current cell
 An action table – a table of actions to

perform for each machine state and
symbol. E.g. move tape left

 A state register – a piece of memory that
stored the current state

Universal Turing Machines

 Alan argued that a Turing machine could be made
for any computable task (e.g. sqrt etc)

 But he also realised that the action table for a given
turing machine could be written out as a string,
which could then be written to a tape.

 So he came up with a Universal Turing Machine. This
is a special Turing Machine that reads in the action
table from the tape
 A UTM can hence simulate any TM if the tape

provides the same action table
 This was all theoretical – he used the models to

prove various theories. But he had inadvertently set
the scene for what we now think of as a computer!

Turing and the War

Note...

 ...A Turing machine made a shift from the analogue
to the discrete domain (we are reading explicit
symbols and not analogue voltages)
 In part this is because Turing needed it to be able to

represent things exactly, even infinite numbers
(hence the infinite tape)

 This is useful practically too. Analogue devices:
 have temperature-dependent behaviour
 produce inexact answers due to component

tolerances
 are unreliable, big and power hungry

The Digital World

 When we have discrete states, the simplest
hardware representation is a switch → digital
world

 Going digital gives us:
 Higher precision (same answer if you repeat)
 Calculable accuracy (the answer is of known quality)
 The possibility of using cheaper, lower-quality components

since we just need to distinguish between two states
(on/off)

 One problem: no switches?

1940-58 Vacuum Tubes
 Vacuum tubes are really just modified lightbulbs that can act

as amplifiers or, crucially, switches.

 By the 1940s we had all we needed to develop a useful
computer: vacuum tubes for switches; punch cards for input;
theories of computation; and (sadly) war for innovation

e-

Colussus
 1944, Bletchley park

 Designed to break the
German Lorenz SZ40/42
encryption machine

 Fed in encrypted messages
via paper tape. Colussus
then simulated the positions
of the Lorenz wheels until it
found a match with a high
probability

 No internal program –
programmed by setting
switches and patching leads

 Highly specific use, not a
general purpose computer

 Turing machine, but not
universal

ENIAC
 Electronic Numerical Integrator and Computer

 1946, “Giant brain” to compute artillery tables for US military
 First machine designed to be turing complete in the sense

that it could be adapted to simulate other turing machines
 But still programmed by setting switches manually...

 Next step was to read in
the “action table” (aka
program) from tape as
well as the data

 For this we needed more
general purpose memory
to store the program,
input data and output

Manchester Baby
 1948 a.k.a. mark I computer
 Cunning memory based on cathode ray tube.

Used the electron gun to charge the phosphor on
a screen, writing dots and dashes to the tiny screen

 A light-sensitive collector plate read the screen
 But the charge would leak away within 1s so they

had to develop a cycle of read-refresh
 Gave a huge 2048 bits of memory!

phosphor

collector

Electron
gun

First
Stored-Program

Computer?

EDSAC
 Electronic Delay Storage Automatic Calculator
 First practical stored-program computer,

built here by Maurice Wilkes et al.

 Memory came in the form of a
mercury delay line

 Used immediately for research
here.

 Although they did have to invent
programming....

First
Stored-Program

Computer?

Storage: Stored-Program Machines

 So where do you store your programs and data?

Von-Neumann Harvard
Same memory for programs

and data
Separate memories for

programs and data
+ Don't have to specify a
partition so more efficient
memory use

- Have to decide in advance how
much to allocate to each

+ Programs can modify
themselves, giving great
flexibility

+ Instruction memory can be
declared read only to prevent
viruses etc writing new
instructions

- Programs can modify
themselves, leaving us open to
malicious modification
- Can't get instructions and data
simultaneously (therefore
slower)

+ Can fetch instructions and data
simultaneously

1959-64 Transistors

 Vacuum tubes bulky, hot and prone to failure
 Solution came from Bell labs (telecoms research)

C

E

B

N

N

P

1965-70 Integrated Circuits
 Semiconductors could replace

traditional electronics components →
use a slice of semiconductor and 'etch'
on a circuit

 End up with an Integrated Circuit (IC)
a.k.a a microchip

 Much easier to pack components on an
IC, and didn't suffer from the reliability
issues of the soldering iron

Moore's Law: the number of transistors
on an IC will double every two years

The Rise of Intel

 Intel started in 1968 manufacturing ICs, producing ICs
with a particular target of memory (RAM, see later)

 1969 – commissioned to make 12 custom chips for a
calculator (one for keyboard scanning, one for display
control, etc)

 Not enough resource so instead proposed a single
general-purpose logic chip that could do all the tasks

 1971 - Managed to buy the rights and sold the chip
commercially as the first microprocessor, the Intel 4004

1971- Microprocessor Age

 The 4004 kick-started an industry and lots of
competitors emerged

 Intel very savvy and began an “intel inside”
branding assault with products like the 386

 Marketing to consumers, not system builders
any more

The Rise of ARM

 After the BBC micro, Acorn wanted a new processor and set
about designing a cheap, simple-to-implement CPU (using a
RISC approach – see later)

 Apple was interested and started to work with them.
Eventually the project unit was spun out to form Advanced
RISC Machines (ARM) Ltd.

 Chips were very low power and cheap, but struggled against
the might of intel's more complex chips

 BUT then the PDA/smartphone/mobile revolution came along
and suddenly ARM had the perfect product – cheap, low
power, simple and reasonable performance

 Now accounts for the majority of all 32-bit processor
produced – and Cambridge-based too...

System-on-Chip (SoC)

 For smaller systems, often see hardware elements
bundled together to form an SoC e.g. R-Pi

Memory
CPU+GPU

Ethernet+USB

The CPU in more Detail

Programs, Instructions and Data

 Recall: Turing's universal machine reads in an
action table (=program) of instructions, which it
then applies to a tape (=data) We will assume
a Von-Neumann architecture since this is most
common in CPUs today.

Memory

Program Data

CPU

Simple Model of Memory

 We think of memory abstractly, as
being split into discrete chunks, each
given a unique address

 We can read or write in whole chunks
 Modern memory is big

Memory

0 1 2 3 4 5 6 7 8

Simple Model of a CPU

Registers

PC

X

Y

Z

ALU

CPU

MAU

IB

Fetch-Execute Cycle I

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

PC

X

Y

Z

ALU

CPU

MAU

1

IB

Fetch-Execute Cycle II

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

63

PC

X

Y

Z

ALU

CPU

MAU

2

IB

Fetch-Execute Cycle III

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

12

63

PC

X

Y

Z

ALU

CPU

MAU

3

IB

Fetch-Execute Cycle IV

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

75

12

63

PC

X

Y

Z

ALU

CPU

MAU

4

IB

CPU Processing Units

 Other common units
 MAU – Memory Access Unit
 ALU – Arithmetic Logic Unit
 FPU – Floating Point Unit
 BU – Branching Unit

Handling Numbers in the CPU

ALU Circuitry

 The ALU in the CPU is responsible for arithmetic
operations. Exactly what is supported directly is CPU
manufacturer-dependent

 Integer arithmetic is always supported, but there are
issues:
 Overflow
 Representing fractional numbers
 Underflow (see floating point course)
 Negative numbers

Unsigned Integer Addition

 You should be happy that binary addition can use the
same algorithm as decimal addition as taught in junior
school.

 CPUs (or rather ALUs in them) implement this algorithm,
but there is a practical issues: there is a set number of
bits in the register that we can unintentionally exceed
(overflow)

 The ALU has a carry flag (a single bit in a special register)
that is switched on if the addition has a carry left after
processing the most significant bit

111
+ 001

001
+ 001

Carry flag: Carry flag:

Modulo Arithmetic

 Overflow takes us across the dotted
boundary
 So 7+1=0 (overflow)
 We say this is (7+1) mod 8

0

6

7 1

2

34
5

... 2 3 4 5 6 7 8 9...

+

-

Unsigned Integer Subtraction

 Integer subtraction can proceed as decimal
subtraction, 'borrowing' from the left if necessary

 If we still need to borrow after the left-most bit, this
signifies an error and the carry flag is set.

011
- 001

001
- 010

Carry flag: Carry flag:

Negative Numbers

 All of this skipped over the need to represent
negatives.

 The naïve choice is to use the MSB to indicate +/-
 1 in the MSB → negative
 0 in the MSB → positive

 This is the sign-magnitude technique

-7 = 1111

Negative
Normal positive
representation of 7

Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so

wastes one of our 2n labels
 Addition/subtraction circuitry is not pretty

 1101
+ 0001
 1110

-5
+1
-6

+13
+1

+14

 1101
- 0001
 1100

-5
-1
-4

+13
-1

+12

Sign-mag
interpretation

Unsigned
interpretation

Our unsigned addition alg. Our unsigned subtraction alg.

Sign-mag
interpretation

Unsigned
interpretation

Alternatively...

 Gives us two discontinuities and a
reversal of direction using normal
addition circuitry!!

0

-2

-3 1

2

3-0
-1

Two's complement

0

-2

-1 1

2

3-4
-3

 How about this?
 One discontinuity again
 Efficient (no minus zero!)
 Crucially we can use normal

addition/subtraction circuits!!
 “Two's complement”

 Positive to negative: Invert all the bits and add 1

 Negative to positive: Same procedure!!

1011 (-5) → 0100 → 0101 (+5)

0101 (+5) → 1010 → 1011 (-5)

Signed Addition

 1101
+0001
 1110

-3
+1
-2

+13
+1

+14

 1101
- 0001
 1100

-3
- +1

-4

+13
- +1
+12

2's-comp Unsigned

Our unsigned addition alg. Our unsigned subtraction alg.

2's-comp Unsigned

 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry
should really be testing the bit to its right :-(

 So we introduce an overflow flag that indicates this problem

Signed Addition

 0100
+0100
 1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0

Flags Summary

 When adding/subtracting
 The carry flag indicates an overflow for

unsigned numbers
 The overflow flag indicates an overflow for

signed integers

Fractional Numbers

 Scientific apps rarely survive on integers alone, but
representing fractional parts efficiently is
complicated.

 Option one: fixed point
 Set the point at a known location. Anything to

the left represents the integer part; anything to
the right the fractional part

 But where do we set it??
 Option two: floating point

 Let the point 'float' to give more capacity on its
left or right as needed

 Much more efficient, but harder to work with
 Very important: dedicated course on it later this

year.

Character Arrays

 To represent text, we simply have an encoding
from an integer to a letter or character

 The classic choice is ASCII
 Takes one byte per character but actually only

uses 7 bits of it so can represent 27=128
characters

ASCII Codes

Other encodings

 128 letters is fine for English alphabet
 Turns out there are other alphabets (who

knew?!)
 So we have unicode and other

representations that typically take two bytes
to represent each character

 Remember this when we come to look at
Java next term, which uses 2-byte unicode as
standard...

The Guts of Modern Systems

Desktop Systems Today

 Based on a core system plus peripherals:
 Input (mouse, keyboard, etc)
 Output (printer, display)
 Network adapter, etc

 Peripherals connect to buses in order to
communicate with the core system
 A bus is just a set of wires that can be used by

multiple peripherals. Special control wires are
used to ensure the data from two or more
connected peripherals do not clash.

Mouse

Printer

Keyboard

Flash
drive

Typical Desktop Architecture

CPU

Northbridge

Southbridge

PCI Bus

Memory BusAGP BusGraphics
Card RAM

USB

Ethernet (LAN)

LPC Bus

Expansion
cards

External
peripherals

Network

Serial I/O
etc

Internal bus

The Motherboard

 An evolution of the circuitry between the CPU and
memory to include general purpose buses (and later to
integrate some peripherals directly!)

 Internal Buses
 ISA, PCI, PCIe, SATA, AGP

 External buses
 USB,Firewire,

eSATA, PC card

 SRAM

 DRAM

 Flash

 Magnetic

Peripherals

Motherboard

CPU

Memory Hierarchy (Typical)

Registers

CPU cache

Main memory

SD cards, SSDs...

Hard discs, tapes

System cache

Speed Size

Typical Memory Capacities

Registers Cache RAM SSD HDD

1

10

100

1000

10000

100000

1000000

10000000

T
y
p

ic
a
l
S

iz
e
s

(M
B

 –
 L

O
G

 S
C

A
L
E
!)

Random Access Memory (RAM)
 The alternative to mercury delay lines is essentially a capacitor. A

charged capacitor is a “1” and a discharged capacitor is a ”0”

 If we stick a capacitor together with a transistor we create a
memory cell. Put lots of cells in a matrix and we can use the
transistor to 'activate' a specific cell and ignore all others. In doing
so, we can randomly jump around in the data (random access)

 This is Dynamic RAM (DRAM) and it is cheap because each cell is
simple

 BUT: capacitors leak charge over time, so a “1” becomes a “0”.
Therefore we must refresh the capacitor regularly and this slows
everything down plus it drains power...

Memory cell
(transistor
+capacitor)

Static RAM (SRAM)
 We can avoid the need to refresh by using Static RAM

(SRAM) cells. These use more electronics (typically 6
transistors per cell) to effectively self-refresh.

 This is 8-16x faster than DRAM

 But each cell costs more and takes more space so it's also
about 8-16x more costly!

 And both DRAM and SRAM are volatile (lose power = lose
data)

SRAM Memory Cell

Register Sizes

 Registers are fixed size, super-fast on-chip memory
usually made from SRAM.

 When we build the CPU we have to decide how big to
make them
 Bigger registers

 Allow the CPU to do more per cycle
 Mean we can have more main RAM (longer

addresses can be supported)
 Too big and we might never use the whole length

(waste of electronics)
 Smaller registers

 Less electronics (smaller, cooler CPUs)
 Too small and it takes more cycles to complete

simple operations

Flash and SSDs
 Toshiba came up with Flash memory in the 1980s as a

non-volatile storage without moving parts
 Works essentially by trapping charge in a non-conducting layer

between two transistors (much more complex than this, but out of
scope here)

 Slower than RAM and a limited number of writes, but still
extremely useful

 No moving parts, small
 Used in USB flash drives, camera memory and now Solid State

Discs.

Magnetic Media (Hard Discs)

 Lots of tiny magnetic patches on a
series of spinning discs

 Can easily magnetise or
demagnetise a patch, allowing us
to represent bits

 Similar to an old cassette tape only
more advanced

 Read and write heads move
above each disc, reading or
writing data as it goes by

 Remarkable pieces of engineering that can store terabytes (TB,
1,000,000MB) or more.

 Cheap mass storage

 Non-volatile (the data's still there when you next turn it on)

 But much slower than RAM (because it takes time to seek to
the bit of the disc we want – sequential access, not random
access)

Graphics Cards

 Started life as simple Digital to Analogue Convertors
(DACs) that took in a digital signal and spat out a
voltage that could be used for a cathode ray screen

 Have become powerful computing devices of their own,
transforming the input signal to provide fast, rich
graphics.

 Todays GCs are based around GPUs with lots of tiny
processors (cores) sharing some memory. The notion is
one of SIMD – Single Instruction Multiple Data
 Every instruction is copied to each core, which

applies it to a different (set of) pixel(s)
 Thus we get parallel computation → fast
 Very useful for scientific computing
 CPUs better for serial tasks

Memory Manipulation

Memory and Pointers

 In reality the compiler stores a mapping from
variable name to a specific memory address, along
with the type so it knows how to interpret the
memory (e.g. “x is an int so it spans 4 bytes starting
at memory address 43526”).

 Lower level languages often let us work with
memory addresses directly. Variables that store
memory addresses are called pointers or sometimes
references

 Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks
 Get it wrong and the program 'crashes' .

Pointers: Box and Arrow Model

 A pointer is just the memory address of the first
memory slot used by the variable

 The pointer type tells the compiler how many
slots the whole object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example: Representing Strings I

 A single character is fine, but a text string is of variable length –
how can we cope with that?

 We simply store the start of the string in memory and require it
to finish with a special character (the NULL or terminating
character, aka '\0')

 So now we need to be able to store memory addresses → use
pointers

 We think of there being an array of characters (single letters)
in memory, with the string pointer pointing to the first element
of that array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18

Example: Representing Strings II

stringPointer

h e l l o char letterArray[] = {'h','e','l','l','o','\0'};

 char *stringPointer = &(letterArray[0]);

 printf(“%s\n”,stringPointer);

 letterArray[3]='\0';

 printf(“%s\n”,stringPointer);

\0

Platforms and Operating Systems
(Software to control your hardware)

The Origins of the OS

 A lot of the initial computer programs covered the same
ground – they all needed routines to handle, say,
floating point numbers, differential equations, etc.
 Therefore systems soon shipped with libraries: built-in

chunks of programs that could be used by other
programs rather than re-invented.

 Then we started to add new peripherals (screens,
keyboards, etc).
 To avoid having to write the control code (“drivers”)

for each peripheral in each program the libraries
expanded to include this functionality

 Then we needed multiple simultaneous apps and users
 Need something to control access to resources...

Operating System

 Now sits between the application
and the hardware

 Today's examples include MS
Windows, GNU Linux, Apple OSX and
iOS, Google Android, etc.

 Today's applications depend on
huge pieces of code that are in the
OS and not the actual program code

 The OS provides a common interface
to applications
 Provides common things such as

memory access, USB access,
networking, etc, etc.Hardware

Operating System

Application

User

Timeslicing

 Modern OSes allow us to run many programs at
once. Or so it seems. In reality a CPU time-
slices:
 Each running program (or “process”) gets a

certain slot of time on the CPU
 We rotate between the running processes with

each timeslot
 This is all handled by the OS, which schedules the

processes. It is invisible to the running program.

A B C

time

A B C A B CD D

Process D
started

Processes
A,B,C running

Context Switching

 Every time the OS decides to switch the running
task, it has to perform a context switch

 It saves all the program's context (the program
counter, register values, etc) to main memory

 It loads in the context for the next program
 Obviously there is a time cost associated with

doing this...

What Time Slice is Best?

 Longer
 The computer is more efficient: it spends more

time doing useful stuff and less time context
switching

 The illusion of running multiple programs
simultaneously is broken

 Shorter
 Appears more responsive
 More time context switching means the overall

efficiency drops
 Sensible to adapt to the machine's intended usage.

Desktops have shorter slices (responsiveness
important); servers have longer slices (efficiency
important)

The Kernel

 The kernel is the part of the OS that
runs the system
 Just software
 Handles process scheduling (what gets

what timeslice and when)
 Access to hardware
 Memory management

 Very complex software – when it
breaks... game over.

The Importance of APIs

 API = Application Programming Interface

 Software vendors ship their libraries with APIs, which
describes only what is need for a programmer to use the
library in their own program.
 The library itself is a black box – shipped in binary

form.
 Operating systems are packed with APIs for e.g. window

drawing, memory access, USB, sound, video, etc.
 By ensuring new versions of the software support the

same API (even if the result is different), legacy
software can run on it.

Platforms

 A typical program today will be compiled for a
specific architecture, a specific operating system
and possibly some extra third party libraries.
 So PC software compiled for linux does not work

under Windows for example.
 We call the {architecture, OS} combination a

platform
 The platforms you are likely to encounter here:

 Intel/Linux
 Intel/Windows
 Intel/OSX
 Apple/iOS
 ARM/Android

Multicore Systems

 Ten years ago, each generation of CPUs packed
more in and ran faster. But:
 The more you pack stuff in, the hotter it gets
 The faster you run it, the hotter it gets
 And we got down to physical limits anyway!!

 We have seen a shift to multi-core CPUs
 Multiple CPU cores on a single CPU package

(each runs a separate fetch-execute cycle)
 All share the same memory and resources!

The New Challenge

 Two cores run completely independently, so a
single machine really can run two or more
applications simultaneously

 BUT the real interest is how we write programs
that use more than one core
 This is hard because they use the same

resources, and they can then interfere with
each other

 Those sticking around for IB CST will start to
look at such 'concurrency' issues in far more
detail

Virtual Machines

 Go back 20 years and emulators were all the rage:
programs on architecture X that simulated architecture
Y so that programs for Y could run on X

 Essentially interpreters, except they had to recreate the
entire system. So, for example, they had to run the
operating system on which to run the program.

PC operating system

Sega O/S

Game

 Now computers are so fast
we can run multiple virtual
machines on them

 Allows us to run multiple
operating systems
simultaneously!

Virtualisation

 Virtualisation is the new big thing in business. Essentially the
same idea: emulate entire systems on some host server

 But because they are virtual, you can swap them between
servers by copying state

 And can dynamically load your server room!

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Windows 7

Windows 7

Ubuntu

Android

Heavy load Light load

Levels of Abstraction
(How humans can program computers)

Levels of Abstraction for Programming

High Level Languages

Procedural Languages

Assembly

Machine Code

Human friendly

Geek friendly

Computer friendly

 Compile

Machine Code

 What the CPU 'understands': a series of instructions that it
processes using the the fetch-execute technique

 E.g. to add registers 1 and 2, putting the result in register
3 using the MIPS architecture:

00000000001000100001100000100000

Register 1 Register 3 Addition

Register 2 Shift amount (N/A)OP type

RISC

 The simplest way to create a CPU is to have
a small number of simple instructions that
allow you to do very small unit tasks
 E.g. load a value to a register, add two

registers
 If you want more complicated things to

happen (e.g. multiplication) you use just use
multiple instructions

 This is a RISC approach (Reduced Instruction
Set arChitecture) and we see it in the ARM
CPUs

CISC

 Actually, two problems emerged
 People were coding at a low level and got sick

of having to repeatedly write multiple lines for
common tasks

 Programs were large with all the tiny instructions.
But memory was limited...

 Obvious soln: add “composite” instructions to
the CPU that carry out multiple RISC instructions
for us
 This is a CISC (Complex Instruction Set

arChitecture) and we see it in the Intel chips
 Instructions can even be variable length

RISC vs CISC

 Every instruction
takes one cycle

 Smaller, simpler
CPUs

 Lower power
consumption

 Fixed length
instructions

 Multiple cycles
per instruction

 Smaller
programs

 Hotter, complex
CPUs

 Variable length
instructions

RISC CISC

RISC vs CISC

 CISC has traditionally dominated (for
backwards compatibility and political
reasons) e.g. Intel PCs

 RISC was the route taken by Acorn,
and resulted in the ARM processors
e.g. smartphones

Practicalities: Microcode

 An easy way to create a CISC processor is to use a
RISC processor at the core, and then have an
interface layer that converts each composite
instruction to a set of RISC instructions

 It was quickly realised that this interface could be in
software if the hardware could execute it very fast
 Very high speed ROM on the CPU to store this

 This has led to the notion of microcode, which
specifies the translations.
 Microcode is set by the CPU manufacturer and

not something the end-user or developer is
expected to fiddle with!

Instruction Sets

 At first, every CPU that came out had its own,
special instruction set. This meant that any program
for machine X would be useless on machine Y

 We needed a standardised set of instructions
 Intel drew up the 8086 specification in 1978
 Manufacturers produced CPUs that understood

8086 instructions and the so-called PC was born
 Modern PCs still support this instruction set, albeit

manufacturers add their own special commands to
take advantage of special features (MMX, etc).

 Each set of instructions is referred to as an
architecture

Assembly
 Essentially machine code, except we replace binary

sequences with text that is easier for humans
 E.g. add registers 1 and 2, storing in 3:

 Produces small, efficient machine code when
assembled

 Almost as tedious to write as machine code
 Becoming a specialised skill...
 Ends up being architecture-specific if you want the most

efficient results :-(

add $s3, $s1, $s2

Instruction Set Architectures (ISAs)

 When you create a CPU, you decide the instructions it will
work with. A given the set is an (instruction set) architecture
(ISA)

 Initially all architectures different → no software
compatibility

 A few have emerged as de-facto standards
 x86 – the intel line of CPUs right back to the 1980s (a.k.a PC arch)

 PowerPC – Apple/IBM/Motorola's RISC competitor to x86

 ARM – RISC-based ISA based on Acorn's processors

 MIPS – RISC-based ISA used in embedded designs

Compilers

 A compiler is just a software program that converts
the high-level code to machine code for a
particular ISA (or some intermediary)

 Writing one is tricky and we require strict rules on the
input (i.e. on the programming language). Unlike
English, ambiguities cannot be tolerated!

Write
(text)

Compile

Machine
code

(binary)
Errors to fix

Compile succeeds
(eventually!)

Handling Architectures

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Interpreters

 The final binary is a compiled program that can
be run on one CPU architecture.

 As computers got faster, it became apparent
that we could potentially compile 'on-the-fly'.
i.e. translate high-level code to machine code
as we go

 Call programs that do this interpreters
Architecture agnostic –
distribute the code and
have a dedicated
interpreter on each
machine

Have to distribute the code

Easier development loop Errors only appear at
runtime
Performance hit – always
compiling

Types of Languages

 Declarative - specify what to do, not
how to do it. i.e.
 E.g. HTML describes what should appear on a web

page, and not how it should be drawn to the screen
 E.g. SQL statements such as “select * from table” tell a

program to get information from a database, but not
how to do so

 Imperative – specify both what and how
 E.g. “double x“ might be a declarative instruction

that you want the variable x doubled somehow.
Imperatively we could have “x=x*2” or “x=x+x”

Functional vs Imperative

 Functional languages are a subset of
declarative languages
 You will be learning a functional language

this term: ML
 This may look like the imperative languages

you have seen before, but it is a little different
 Specifically, functions can't have side-effects.

i.e. the output can only depend on the inputs
 Example of side-effect:

t=3
f(y) = y*t
f(2) ←6
t=1
f(2) ←3

Functional vs Imperative

 We'll look more closely at this when
you do the Object-Oriented
Programming (OOP) course next term

 For now, just appreciate that the new
language you're about to meet has
some advantages
 Fewer opportunities for error
 Closer to maths
 All of you start at the same level

Where Do You Go From Here?

 Paper 1
 FoCS: look at the fundamentals of CS whilst learning ML

 Discrete Maths: build up your knowledge of the maths needed for
good CS

 OOP/Java: look at imperative programming as it is used in the
'real world'

 Floating Point: learn how to use computers for floating point
computations (and when not to trust them..!)

 Algorithms: The core of CS: learn how to do things
efficiently/optimally

 Paper 2
 Digital Electronics: hardware in detail

 Operating Systems: an in-depth look at their workings

 Probability: learn how to model systems

 Software Design: good practice for large projects

 RLFA: an intro to describing computer systems mathematically

