
1

Compiler Construction

Lent Term 2013

Lectures 9 & 10 (of 16)

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

• 

– 

– 
– 

– 
– 

Tuples (in ML-like, L3-like languages)

!

fun g x = (x+1, x+1, x+3) !
!

fun f (u, v, w) = u + v + w !
!

 . . . f (g 17) . . . !

•  Does function f take 3 arguments or 1?
•  How would you inline f?

Inline f and g ?

let t = let val y1 = 18 !
 val y2 = 19 !
 val y3 = 20 !
 in return (ALLOCATE_TUPLE 3) end !
in !
 let u = EXTRACT_FIELD(t, 1) !
 v = EXTRACT_FIELD(t, 2) !
 w = EXTRACT_FIELD(t, 3) !
 in u + v + w end !
end !

Hmm, with enough equations we should be able to rewrite this
at compile time to 57 !

A peek at universal polymorphism
(not examinable)

map : (‘a -> ‘b) -> ‘a list -> ‘b list !
!

fun map f [] = [] !
 | map f (a::rest) = (f a) :: (map f rest) !

The code generated for map must work
for any times ‘a and ‘b.

So it seems that all values of any type must

be represented by objects of the same size.

Exceptions (informal description)

e handle f ! raise e !

If expression e evaluates
“normally” to value v,

then v is the result of the

entire expression.

Otherwise, an exceptional
value v’ is “raised” in the

evaluation of e, then

result is (f v’)

Evaluate expression e to
value v, and then raise v

as an exceptional value,

which can only be

“handled”.

Implementation of exceptions

may require a lot of language-specific

consideration and care. Exceptions

can interact in powerful and unexpected

ways with other language features.

Think of C++ and class destructors,

for example.

Possible implementation

e handle f ! fun _h27 () = push address of f; !
 push current fp on H; !
 code for e; !
 return top-of-stack !

raise v ! h_fp := pop (H); !
fp := h_fp !
f := content of fp + offset, !
 the saved address of !
 handler code ; !
restore frame previous to fp; !
push v; !
call f; !

16

Linking and Loading

assembly
code file

assembler

assembly
code file

assembler

assembly
code file

assembler

…

…

…

 linker

 object
code file

 object
code file

 object
code file

single executable object code file

The “machine”
 loader

Object code
libraries

From symbolic
names and

addresses to

numeric codes

and numeric

addresses

Name
resolution,

creation of

single address

space. Last

chance for whole
program

optimization?

Address
relocation,

memory

allocation,

dynamic

linking

(main tasks)

Link errors

This functionality may or may not be implemented in “the compiler”.

The Linker

What does a linker do?
• takes some object files as input, notes all undefined symbols.

• recursively searches libraries adding ELF files which

 define such symbols until all names defined (“library search”).

• whinges if any symbol is undefined or multiply defined.

Then what?

• concatenates all code segments (forming the output

 code segment).

• concatenates all data segments.

• performs relocations (updates code/data segments
 at specified offsets.

Recently there had been renewed interest in optimization at this stage.

