
1

Compiler Construction
Lent Term 2013

Lectures 9 & 10 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  Assorted topics

–  Tuples/records
–  A peek at universal polymorphism
–  exceptions
–  linking and loading
–  bootstrapping

Tuples (in ML-like, L3-like languages)

g: int -> int * int * int!
!
fun g x = (x+1, x+2, x+3) !
!
 . . . (g 17) . . . !

17
18

20

19

Heap allocated

Not showing
“header” needed
for garbage
collector

stack before
call to g

stack after

Tuples (in ML-like, L3-like languages)

fun g x = (x+1, x+1, x+3) !

18
18

20

19

Heap allocated

fun g x = !
 let val y1 = x+1 !
 val y2 = x+2 !
 val y3 = x+3 !
 in return (ALLOCATE_TUPLE 3) end !

19

20

ALLOCATE_TUPLE 3

Some IR

Tuples (in ML-like, L3-like languages)

!
fun g x = (x+1, x+1, x+3) !
!
fun f (u, v, w) = u + v + w !
!
 . . . f (g 17) . . . !

•  Does function f take 3 arguments or 1?
•  How would you inline f?

Tuples (in ML-like, L3-like languages)

!
fun g x = (x+1, x+1, x+3) !
!
fun f (u, v, w) = u + v + w !
!
 . . . f (g 17) . . . !

!
fun f t = let u = EXTRACT_FIELD(t, 1) !
 v = EXTRACT_FIELD(t, 2) !
 w = EXTRACT_FIELD(t, 3) !
 in u + v + w end !

Some IR

f takes a single
argument of type
int * int * int!

Naïve evaluation of f(g 17) !

17

18

17

stack
frame
for g

18

19

20

57

stack
frame
for f

18

19

20

19
20

Stack snapshots
Note: it can be very hard
to completely avoid this
sort of thing in general …

Inline (g 17)

 let val y1 = 17+1 !
 val y2 = 17+2 !
 val y3 = 17+3 !
 in return (ALLOCATE_TUPLE 3) end !

“constant folding”

 let val y1 = 18 !
 val y2 = 19 !
 val y3 = 20 !
 in return (ALLOCATE_TUPLE 3) end !

Inline f and g ?

let t = let val y1 = 18 !
 val y2 = 19 !
 val y3 = 20 !
 in return (ALLOCATE_TUPLE 3) end !
in !
 let u = EXTRACT_FIELD(t, 1) !
 v = EXTRACT_FIELD(t, 2) !
 w = EXTRACT_FIELD(t, 3) !
 in u + v + w end !
end !

Hmm, with enough equations we should be able to rewrite this
at compile time to 57 !

A peek at universal polymorphism
(not examinable)

map : (‘a -> ‘b) -> ‘a list -> ‘b list !
!
fun map f [] = [] !
 | map f (a::rest) = (f a) :: (map f rest) !

The code generated for map must work
for any times ‘a and ‘b.

So it seems that all values of any type must
be represented by objects of the same size.

Boxing and Unboxing
(not examinable)

Similar terminology is used
Java for putting a value in
a container class (boxing)
and taking it out (unboxing)

For example, put an int into
the Integer container class.

1066 !An unboxed integer :

 !A boxed integer :
 1066 !
gc tag !

On the heap

It is better to work with unboxed
values than with boxed values.

Compilers for ML-like languages must
Expend a good deal of effort trying to
Find good optimizations for
boxed/unboxed choices.

See Appel Chapter 16.

Some ML compilers use a single bit in each machine
word to distinguish boxed from unboxed values.

Exceptions (informal description)

e handle f ! raise e !

If expression e evaluates
“normally” to value v,
then v is the result of the
entire expression.

Otherwise, an exceptional
value v’ is “raised” in the
evaluation of e, then
result is (f v’)

Evaluate expression e to
value v, and then raise v
as an exceptional value,
which can only be
“handled”.

Implementation of exceptions
may require a lot of language-specific
consideration and care. Exceptions
can interact in powerful and unexpected
ways with other language features.
Think of C++ and class destructors,
for example.

Viewed from the call stack

Call stack just
before evaluating
code for

e handle f !

handle
frame

Push a special
frame for the
handle

. . .

. . .

handle
frame

current
frame

. . .

. . .

“raise v” is
encountered
while evaluating
a function body
associated with
top-most frame

frame
for f
 v

“Unwind” call stack.
Depending on language,
this may involve some
“clean up” to free resources.

This assumes that
the unwound stack
contains no other
handle frames

One possible implementation: use an auxiliary stack of
frame pointers that LIFO records

the handle frames

Call stack! Stack H of
frame pointers
for handle frames

. . .

. . .

handle
frame

handle
frame

. . .

. . .

. . .

. . .

•  The address (or
closure pointer)of
each handle function
could be saved in the
associated stack
frame or in H

•  An alternative to H is
to have a chain of
frame pointers linking
the handle frames
together.

Possible implementation

e handle f ! fun _h27 () = push address of f; !
 push current fp on H; !
 code for e; !
 return top-of-stack !

raise v ! h_fp := pop (H); !
fp := h_fp !
f := content of fp + offset, !
 the saved address of !
 handler code ; !
restore frame previous to fp; !
push v; !
call f; !

From lecture
notes of 2012

16

Linking and Loading

assembly
code file

assembler

assembly
code file

assembler

assembly
code file

assembler

…

…
…

 linker

 object
code file

 object
code file

 object
code file

single executable object code file

The “machine”
 loader

Object code
libraries

From symbolic
names and
addresses to
numeric codes
and numeric
addresses

Name
resolution,
creation of
single address
space. Last
chance for whole
program
optimization?

Address
relocation,
memory
allocation,
dynamic
linking

(main tasks)

Link errors

This functionality may or may not be implemented in “the compiler”.

Object files

Must contain at least

•  Program instructions
•  Symbols being exported
•  Symbols being imported

Executable and Linkable Format (ELF) is a common
format for both linker input and output.

ELF details (1)

ELF details (2)

The Linker

What does a linker do?
• takes some object files as input, notes all undefined symbols.
• recursively searches libraries adding ELF files which
 define such symbols until all names defined (“library search”).
• whinges if any symbol is undefined or multiply defined.

Then what?
• concatenates all code segments (forming the output
 code segment).
• concatenates all data segments.
• performs relocations (updates code/data segments
 at specified offsets.

Recently there had been renewed interest in optimization at this stage.

Dynamic vs. Static Loading

There are two approaches to linking:
Static linking (described on previous slide).
 Problem: a simple “hello world” program may give a 10MB
 executable if it refers to a big graphics or other library.
Dynamic linking
 Don’t incorporate big libraries as part of the executable,
 but load them into memory on demand. Such libraries are
 held as “.DLL” (Windows) or ”.so” (Linux) files.

Pros and Cons of dynamic linking:
(+) Executables are smaller
(+) Bug fixes to a library don’t require re-linking as the new version
 is automatically demand-loaded every time the program is run.
(-) Non-compatible changes to a library wreck previously working
 programs “DLL hell”.

Bootstrapping. We need some notation . . .

 app

 A

 A

mch

 A
 inter
 B

An application
called app written
in language A

An interpreter or
VM for language A
Written in language B

A machine called
mch running
language
A natively.

hello

 x86
 x86

 M1

 JBC
 jvm
 x86

hello

 JBC

 x86

 M1

Simple Examples

Tombstones

 C

 trans
A B

This is an application called trans
that translates programs in language
A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

 JBC
 jvm
 x86

Java JBC

JBC

 javac
Hello

Java

 x86

 M1

Hello

 JBC JBC x86

JBC

 aot

 JBC
 jvm
 x86
 x86

 M1

Hello

x86
 x86

 M1

 jvm

 C++ C++ x86

 x86

 gcc

 x86

 M1

Thanks to David Greaves
for the example.

Of course translators can be translated

 C

 trans
A B B

 foo_2
D E

 A

 foo_1
D E

Translator foo_2 is produced
as output from trans when
given foo_1 as input.

Our seemingly impossible task

 L

yippeee
L B

We have just invented a really great
new language L (in fact we claim that
“L is far superior to C++”). To prove how
great L is we write a compiler
for L in L (of course!). This
compiler produces machine code B
for a widely used instruction set
(say B = x86).

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

 B

yippeeee
L B

Furthermore, we want to compile our
compiler so that it can run
on a machine running B.

How can we compiler our compiler?

?

Step 1
Write a small interpreter (VM) for
a small language of byte codes

 MBC
 zoom
 B
 B

 M1

C++ B

 B

 gcc

 B

 M1

 MBC
 zoom
 C++

MBC = My Byte Codes

The zoom machine!

Step 2
Pick a small subset S of L and

write a translator from S to MBC

 B

 gcc
C++ B C++

 yip
S MBC

Write yip by hand. (We are rather ashamed
that this is written is C++.)

Translator yipp is produced
as output from gcc when yip is given as input.

 B

 yipp
S MBC

Step 3
Write a compiler for L in S

 S

 yippe
L B

Write a compiler yippe for the
full language L, but written only
in the sub-language S.

Compile yippe using yipp to produce yippee

 B

 yipp
S MBC MBC

 yippee
L B

Step 4
Write a compiler for L in L

 L

 yippeee
L B

Rewrite compiler
yippe to yippeee,
using the full power
of language L.

 Now compile this using yippee to obtain our goal!

 MBC

 yippee
L B B

yippeeee
L B

 MBC
 zoom
 B
 B

 M1

 C++

S MBC yip

 B

C++ B gcc

 S

L B yippe

 B

S MBC yipp MBC

L B yippee B

L B yippeeee

 L

L B yippeee

Putting it all together

We wrote only these compilers
and the MBC VM.

 MBC
 zoom
 B

 B

 M1

 B

 M1

 B

 M1

Keeping machine M1 busy . . .

Step 5
Cover our tracks and leave the world

mystified and amazed

 L

 yippeee
L B

 MBC

 yippee
L B

1. Use gcc to compile the zoom interpreter
2. Use zoom to run voodoo with input yippeee to

produce output the compiler yippeeee

 MBC
 zoom
 C++

Our L compiler download site contains only three components:

Our instructions:

Shhhh! Don’t tell
anyone that
we wrote the first
compiler in C++

This is a just file of bytes.
We give it the mysterious and
intimidating name voodoo

