
1

Compiler Construction

Lent Term 2013

Lectures 7 & 8 (of 16)

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

•  The heap and garbage collection
–  Reference counting

–  Mark and sweep

–  Copy collection

–  Generational collection

•  Implementation techniques for Object-

oriented constructs

3

What is Garbage?

An object in the heap is “garbage” if it will not be

used in any subsequent

computation by the program.

In general, determining what is and is not

garbage is not decidable.

Read Chapter 13 of Appel

4

Memory Management

•  Every modern programming language allows
programmers to allocate new storage
dynamically
–  New records, arrays, tuples, objects, closures, etc.

•  Every modern language needs facilities for
reclaiming and recycling the storage used by
programs

•  COST: It�s usually the most complex aspect of
the run-time system for any modern language
(Java, ML, Lisp, Scheme, Scala, !)

5

Solutions

•  Ignore the problem

•  Restrict programming language so the problem

goes away! That is, use FORTRAN.

•  Force programmer to worry about it (use malloc

and free in C!)

•  Automatic “garbage collection”

–  Reference Counting

–  Mark and Sweep

–  Copy Collection

–  Generational Collection

– ! there are other GC techniques!

6

Explicit MM

•  User library manages memory; programmer
decides when and where to allocate and de-
allocate
–  void* malloc(long n)

–  void free(void *addr)

–  Library calls OS for more pages when necessary

–  Advantage: Gives programmer a lot of control.
–  Disadvantage: people too clever and make mistakes.

Getting it right can be costly. And don�t we want to
automate-away tedium?

–  Advantage: With these procedures we can implement
garbage collection for other languages ;-)

7

Automation is based on an approximation : if data cannot

be reached from a root set then it is garbage

r1

stack

r2

registers

ROOT SET

-------------------- HEAP --

Type information required (pointer or not),
some kind of “tagging” needed.

8

… Identify Cells Reachable From Root Set…

r1

stack

r2

registers

9

… reclaim unreachable cells, and repeat …

r1

stack

r2

registers

10

Reference Counting, basic idea:

•  Keep track of the number of pointers to each object (the reference
count).

•  When Object is created, set count to 1.

•  Every time a new pointer to the object is created, increment the
count.

•  Every time an existing pointer to an object is destroyed, decrement
the count

•  When the reference count goes to 0, the object is unreachable
garbage

Clearly --- this can be VERY costly….

11

Reference counting can�t detect cycles!

r1

stack
r2

•  Cons

•  Space/time overhead to maintain count.

•  Memory leakage when cycles in data.

•  Pros

•  Incremental (no long pauses to collect!)

12

Mark and Sweep

•  A two-phase algorithm

– Mark phase: Depth first traversal of object

graph from the roots to mark live data

– Sweep phase: iterate over entire heap,

adding the unmarked data back onto the free

list

13

Cost of Mark Sweep

•  Cost of mark phase:
–  O(R) where R is the # of reachable words

–  Assume cost is c1 * R (c1 may be 10 instr�s)

•  Cost of sweep phase:
–  O(H) where H is the # of words in entire heap

–  Assume cost is c2 * H (c2 may be 3 instr�s)

•  Analysis
–  The �good� = each collection returns H - R words reclaimed

–  Amortized cost = time-collecting/amount-reclaimed

•  ((c1 * R) + (c2 * H)) / (H - R)

•  If R is close to H, then each collection reclaims little space..

–  R / H must be sufficiently small or GC cost is high.

 Could dynamically adjust. Say, if R / H is larger than .5, increase
heap size

14

Other Problems

•  Depth-first search is usually implemented as a
recursive algorithm
–  Uses stack space proportional to the longest path in

the graph of reachable objects
•  one activation record/node in the path

•  activation records are big

–  If the heap is one long linked list, the stack space
used in the algorithm will be greater than the heap
size!!

–  What do we do? Pointer reversal [See Appel]

•  Fragmentation

15

Copying Collection

•  Basic idea: use 2 heaps

–  One used by program

–  The other unused until GC time

•  GC:

–  Start at the roots & traverse the reachable data

–  Copy reachable data from the active heap (from-

space) to the other heap (to-space)

–  Dead objects are left behind in from space

–  Heaps switch roles

16

Copying Collection

to-space from-space

roots

17

Copying GC

•  Pros
–  Simple & collects cycles

–  Run-time proportional to # live objects

–  Automatic compaction eliminates fragmentation

•  Cons
–  Twice as much memory used as program requires

•  Usually, we anticipate live data will only be a small fragment
of store

•  Allocate until 70% full

•  From-space = 70% heap; to-space = 30%

–  Long GC pauses = bad for interactive, real-time apps

18

OBSERVATION: for a copying garbage
collector

•  80% to 98% new objects die very quickly.

•  An object that has survived several collections has a bigger

chance to become a long-lived one.

•  It�s a inefficient that long-lived objects be copied over and over.

19

IDEA: Generational garbage collection

Segregate objects into multiple areas

by age, and collect areas containing

older objects less often than the

younger ones.

20

Other issues…

–  When do we promote objects from young generation to

old generation
•   Usually after an object survives a collection, it will be

promoted

–  Need to keep track of older objects pointing to newer
ones!

–  How big should the generations be?
•   Appel says each should be exponentially larger than the last

–  When do we collect the old generation?
•   After several minor collections, we do a major collection

–  Sometimes different GC algorithms are used for the new
and older generations.

•   Why? Because the have different characteristics

•   Copying collection for the new
–  Less than 10% of the new data is usually live

–  Copying collection cost is proportional to the live data

•   Mark-sweep for the old

21

Objects (with single inheritance)

method override

subtyping allows a

Truck or Car to be viewed and

used as a Vehicle

22

Object Implementation?

–  how do we access object fields?

•   both inherited fields and fields for the current
object?

–  how do we access method code?
•   if the current class does not define a particular

method, where do we go to get the inherited
method code?

•   how do we handle method override?

–  How do we implement subtyping (�object
polymorphism�)?

•   If B is derived from A, then need to be able to
treat a pointer to a B-object as if it were an A-
object.

23

Static & Dynamic Methods

•  The result of compiling a method is some
machine code located at a particular
address
– at a method invocation point, we need to

figure out what code location to jump to

•  Java has static & dynamic methods

–  to resolve static method calls, we look at the
static type of the calling object

–  to resolve dynamic method calls, we need the
dynamic type of the calling object

24

Object representation

class A {

public:

 int a1, a2;

 void m1(int i) {

 a1 = i;

 }

 void m2(int i) {

 a2 = a1 + i;

 }

}

C++

object data
a1

a2

m1_A

m2_A

method table

An A object

25

Inheritance (“pointer polymorphism”)

object data

m1_A

m2_A

method table

(code entry

points =

memory locations)

a1

a2

b1

m3_B

class B : public A {

public:

 int b1;

 void m3(void) {

 b1 = a1 + a2;

 }

}

A B object

Note that a pointer to a B object can
be treated as if it were a pointer to an A object!

26

Method overriding

object data

m1_A_A

m2_A_C

method table

a1

a2

c1

m3_C_C

class C : public A {

public:

 int c1;

 void m3(void) {

 b1 = a1 + a2;

 }

 void m2(int i) {

 a2 = c1 + i;

 }

}

declared defined

A C object

27

Example

Method table for
Rectangle

IsShape_Shape_Shape

IsRectangle_Shape_Rectangle

IsSquare_Shape_Shape

SurfaceArea_Shape_Rectangle

Method table for Square

SurfaceArea_Shape_Rectangle

IsSquare_Shape_Square

IsRectangle_Shape_Rectangle

IsShape_Shape_Shape

The compiler needs to us

a SYMBOL TABLE to keep track

of object types and relationships

28

Static vs. Dynamic

•  which method to invoke on overloaded

polymorphic types?

class C *c = ...;

class A *a = c;

a->m2(3);

???

m2_A_A(a, 3); static

m2_A_C(a, 3); dynamic

29

Dynamic dispatch

•  implementation: dispatch tables

ptr to C

Is also a ptr to A

a1

a2

b1

m1_A_A

m2_A_C

m3_C_C

*(a->dispatch_table[1])(a, 3);
class C *c = ...;

class A *a = c;

a->m2(3);

30

Dynamic typing:implementation
requires pointer subtyping

void m2_A_C(class_A *this_A, int i) {

 class_C *this = convert_ptrA_to_ptrC(this_A);

 this->a2 = this->c1 + i;

}

void m2(int i) {

 a2 = c1 + i;

}

31

Multiple inheritance

class C {

public:

 int c1, c2;

 void m1() {...}

 void m2() {...}

}

class E : public C, D {

public:

 int e1;

 void m2() {...}

 void m4() {...}

 void m5() {...}

}

class D {

public:

 int d1;

 void m3() {...}

 void m4() {...}

}

32
convert_ptrC_to_ptrE(c) c

convert_ptrD_to_ptrE(d) d - sizeof(Class_C)

convert_ptrC_to_ptrE(c) c

convert_ptrD_to_ptrE(d) d - sizeof(Class_C)

convert_ptrE_to_ptrC(e) e

convert_ptrE_to_ptrD(e) e + sizeof(Class_C)

convert_ptrE_to_ptrC(e) e

convert_ptrE_to_ptrD(e) e + sizeof(Class_C)

Multiple inheritance

E-object E-class

ptr to E

ptr to C inside E
c1

c2

m1_C_C

m2_C_E

m3_D_D

d1

e1

ptr to D inside E
m4_D_E

m5_E_E

supertyping

subtyping

33

given an object e of class E

e.m1() (*(e->dispatch_table[0]))((Class_C *) e)

e.m3() (*(e->dispatch_table[2]))(

 (class_D *)((char *)e + sizeof(Class_C)))

e.m4() (*(e->dispatch_table[3]))(

 (class_D *)((char *)e + sizeof(Class_C)))

34

Another OO Feature

•  Protection mechanisms
–  to encapsulate local state within an object,

Java has �private� �protected� and �public�
qualifiers

•  private methods/fields can�t be called/used outside
of the class in which they are defined

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking
and so on), the compiler maintains this
information in the symbol table for each class
and enforces visibility rules.

