
1

Compiler Construction
Lent Term 2013

Lecture 6 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

•  Functions as “first class” values
•  Heap allocated closures
•  A few simple optimizations:

–  Inline expansion
–  Constant folding
–  Eliminating tail recursion

2

Idea --- a functional value is a pointer to a “closure”

fun f(a : int) : int -> int
{
 fun g(x :int) : int {return a + x;}
 return g;
}

let add21 : int -> int = f(21);
let add17 : int -> int = f(17);

add17(3) + add21(-1)

add21

a = 21

Where should these
closures be stored??

code
for
g

Code array

add17

a = 17

g address

g address

A closure is a record containing
the address of a function AND
the values of its free variables

Problem: in the simple call
stack the argument “a” (needed in
body of g) does not survive the
destruction of f’s activation record.

A “functional value”
is a pointers to a
closure.

David Wheeler: "All problems in computer science
can be solved by another level of indirection"

3

The Heap

Rough schematic of traditional
layout in (virtual) memory.

high
memory

low
memory

program instructions

Global vars and constants

Stack

Heap

The heap is used for
dynamically allocating
memory. Typically either
for very large objects or
for those objects that are
returned by functions/procedures
and must outlive
the associated activation record.

In languages like Java and ML,
the heap must be managed
automatically (“garbage collection”)

Return to example: How do functional
values find their free-var values?

fun f(a : int) : int -> int
{
 fun g(x :int) : int {return a + x;}
 return g;
}

let add21 : int -> int = f(21);
let add17 : int -> int = f(17);

add17(3) + add21(-1)

fun g(x, c) {return !(c+1) + x;}

fun f(a) {return ALLOCATE_CLOSURE (g, [a]);}

let add21 = f(21);
let add17 = f(17);

INVOKE_CLOSURE(add17, 3) + INVOKE_CLOSURE(add21, -1))

A possible
intermediate
representation

ALLOCATE_CLOSURE returns a pointer to the heap. INVOKE_CLOSURE ?

Return to example: How do functional
values find their free-var values?

fun g(x, c) {return !(c+1) + x;}

fun f(a) {return ALLOCATE_CLOSURE (g, [a]);}

let add21 = f(21);
let add17 : = f(17);

INVOKE_CLOSURE(add17, 3) + INVOKE_CLOSURE(add21, -1))

c

a1 = v1

h address

a2 = v2
 ….
ak = vk

INVOKE_CLOSURE(c, u1, …, un)

•  Push arguments ui on stack
•  Push c on stack
•  Call h:

–  Build activation record for h
–  Body of h must access non-local

vars using indirection through c.

6

Another example

fun f(a : int) : int -> int
{
 fun g(x :int) : int {return a + x;}
 fun h(x :int) : int {return a * x;}
 if a < 20 then return g else return h;
}

let f21 : int -> int = f(21);
let f17 : int -> int = f(17);

f17(3) + f21(-1)

7

Closure conversion (similar to “lambda lifting”)

fun f(a)
{
 fun g(x) {return a + x;}
 fun h(x) {return a * x;}
 if a < 20 then return g else return h;
}

fun g(x, c) {return !(c+1) + x;}
fun h(x, c) {return !(c+1) * x;}
fun f(a) {
 if a < 20
 then return ALLOCATE_CLOSURE (g, [a])
 else return ALLOCATE_CLOSURE (h, [a]);
}

8

 A simple optimization with
functions : Inline expansion

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = f(x) + g(x)

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = (x+1) + (x-1)

inline f and g

(+) Avoid building activation
 records at runtime

(-) May lead to “code bloat”
 (apply only to
 functions with “small”
 bodies?)

Question: if we inline all
occurrences of a function,
can we delete its definition from
the code?

What if it is needed at link time?

 Be careful with variable scope

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = g(x) + 1 !
in !
 h(17) !
end !

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(x) = x + y + 1 !
in !
 h(17) !
end !

Inline g in h

!
let val x = 1 !
 fun g(y) = x + y !
 fun h(z) = x + z + 1 !
in !
 h(17) !
end !

NO

YES

10

 Constant propagation and constant folding

David Gries : “Never put off till
run-time what you can do
at compile-time.”

How about this?

Replace

 x * 0

with

 0

OOPS, not if x has type
float!

 NAN*0 = NAN,

But be careful

Note : opportunities are often
exposed after inline expansion!

let x = 2
let y = x – 1
let z = y * 17

let x = 2
let y = 2 – 1
let z = y * 17

let x = 2
let y = 1
let z = y * 17

let x = 2
let y = 1
let z = 1 * 17

let x = 2
let y = 1
let z = 17

Propagate
constants and
evaluate simple
expressions at
compile-time

11

Tail recursion

fun foldl f e [] = e !
 | foldl f e (x::xr) = foldl f (f(x, e)) xr !

A recursive function exhibits tail recursion if on all recursive
branches the last thing it does is call itself.

We should be able to compile this to a LOOP in order to avoid
constructing many activation records at runtime.
Exercise : How?

12

The ultimate tail-recursive function

fun while c b r = !
 if c() !
 then r !
 else while c b (b ()) !
 !

13

Of course not all recursive
functions are tail recursive…

fun foldr f e [] = e !
 | foldr f e (x::xr) = f(x, foldr f e xr) !

The “last thing” this function does is call f, not foldr

Sometimes recursive functions can be
rewritten to tail recursive versions

fun sum_list [] = 0
 | sum_list (x::rest) = x + (sum_list rest)

fun sum_list il =
 let fun auxiliary carry [] = carry
 | auxiliary carry (x :: rest) =
 auxiliary (x + carry) rest
 in auxiliary 0 il end

Exercise : Think about trying to automate this kind
 of transformation in a compiler.

