
Artificial Intelligence II: further notes on machine learning

We now look at several issues that need to be considered whenapplying machine
learning algorithms in practice:

• We often have more examples from some classes than from others.

• Theobviousmeasure of performance is not always thebest.

• Much as we’d love to have an optimal method forfinding hyperparameters,
we don’t have one, and it’sunlikely that we ever will.

• We need to exercise care if we want to claim that one approach is superior to
another.
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Supervised learning

As usual, we want to design aclassifier.

x

Classifier
LabelAttribute vector hθ(x)

It should take an attribute vector

x
T =

(

x1 x2 · · · xn
)

and label it.

We now denote a classifier byhθ(x) where

θ
T =

(

w p
)

denotes any weightsw and (hyper)parametersp.

To keep the discussion and notation simple we assume aclassification problem
with two classeslabelled+1 (positive examples)and−1 (negative examples).

2

Supervised learning

Previously, the learning algorithm was a box labelledL.

Training sequence

Label

s

Learner
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Classifier
Attribute vector

x
hθ(x)

hθ = L(s)

Blood, sweat
and tears

Unfortunately that turns out not to be enough, so a new box hasbeen added.
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Measuring performance

How do you assess the performance of your classifier?

1. That is,after training, how do you know how well you’ve done?

2. In general, the only way to do this is to divide your examples into a smaller
training sets of m examples and atest sets′ of m′ examples.
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The GOLDEN RULE: data used to assess performance must NEVER have been
seen during training.

This might seem obvious, but it was a major flaw in a lot of earlywork.
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Measuring performance

How do we choosem andm′? Trial and error!

Assume the training is complete, and we have a classifierhθ obtained using only
s. How do we uses′ to assess our method’s performance?

The obvious way is to see how many examples ins
′ the classifier classifies cor-

rectly:

êrs′(hθ) =
1

m′

m′
∑

i=1

I(hθ(x
′
i) 6= y′i)

where
s
′ =

(

(x′
1, y

′
1) (x′

2, y
′
2) · · · (x′

m′, y′m′)
)T

and

I(z) =

{

1 if z = true
0 if z = false

.

This is just an estimate of theprobability of errorand is often called theaccuracy.
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Unbalanced data

Unfortunately it is often the case that we haveunbalanced dataand this can make
such a measure misleading. For example:

If the data is naturally such thatalmost all examples are negative(medical
diagnosis for instance) then simplyclassifying everything as negativegives a

high performance using this measure.

We need more subtle measures.

For a classifierh and any sets of sizem containingm+ positive examples andm−

negative examples...
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Unbalanced data

Define

1. Thetrue positives

P+ = {(x,+1) ∈ s|h(x) = +1}, andp+ = |P+|

2. Thefalse positives

P− = {(x,−1) ∈ s|h(x) = +1}, andp− = |P−|

3. Thetrue negatives

N+ = {(x,−1) ∈ s|h(x) = −1}, andn+ = |N+|

4. Thefalse negatives

N− = {(x,+1) ∈ s|h(x) = −1}, andn− = |N−|

Thusêrs(h) = (p+ + n+)/m.

This allows us to define more discriminating measures of performance.
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Performance measures

Some standard performance measures:

1. Precision p+

p++p− .

2. Recall p+

p++n− .

3. Sensitivity p+

p++n−.

4. Specificity n+

n++p−.

5. False positive rate p−
p−+n+

.

6. Positive predictive value p+

p++p−.

7. Negative predictive valuen+

n++n− .

8. False discovery ratep−
p−+p+

.

In addition, plotting sensitivity (true positive rate) against the false positive rate
while a parameter is varied gives thereceiver operating characteristic (ROC)
curve.
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Performance measures

The following specifically take account of unbalanced data:

1. Matthews Correlation Coefficient (MCC)

MCC =
p+n+ − p−n−

√

(p+ + p−)(n+ + n−)(p+ + n−)(n+ + p−)

2. F1 score

F1=
2× precision× recall

precision+ recall

When data is unbalanced these are preferred over the accuracy.
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Validation and crossvalidation

The next question: how do we choose hyperparameters?

Answer: try different values and see which values give the best (estimated)
performance.

There is however a problem:

If I use my test sets′ to find good hyperparameters,then I can’t use it to get a
final measure of performance. (See the Golden Rule above.)

Solution 1: make a further division of the complete set of examples to obtain a
third, validationset:

v1 v
m

′′

vs s
′

Originals
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Validation and crossvalidation

Now, to choose the value of a hyperparameterp:

For some range of valuesp1, p2, . . . , pn

1. Run the training algorithm using training datas and with the hyperparameter
set topi.

2. Assess the resultinghθ by computing a suitable measure (for example accu-
racy, MCC or F1) usingv.

Finally, select thehθ with maximum estimated performance and assess itsactual
performance usings′.

11

Validation and crossvalidation

This was originally used in a similar way when deciding the best point at which
to stop traininga neural network.

Estimated error onv

Estimated error ons
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Time
Stop training here

The figure shows the typical scenario.
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Crossvalidation

The method ofcrossvalidationtakes this a step further.

We our complete set into training sets and testing sets′ as before.

But now instead of further subdividings just once we divide it inton folds s(i)

each havingm/n examples.

s
′

Originals
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Typically n = 10 although other values are also used, for example ifn = m we
haveleave-one-outcross-validation.
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Crossvalidation

Let s−i denote the set obtained froms by removings(i).

Let êr
s(i)
(h) denote any suitable error measure, such as accuracy, MCC or F1,

computed forh using foldi.

Let Ls−i,p be the classifier obtained by running learning algorithmL on examples
s−i using hyperparametersp.

Then,
1

n

n
∑

i=1

êr
s(i)
(Ls−i,p)

is then-fold crossvalidation error estimate.

So for example, lets(i)j denote thejth example in theith fold. Then using accuracy
as the error estimate we have

1

m

n
∑

i=1

m/n
∑

j=1

I(Ls−i,p(x
(i)
j ) 6= y

(i)
j )
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Crossvalidation

Two further points:

1. What if the data are unbalanced?Stratified crossvalidationchooses folds such
that the proportion of positive examples in each fold matches that ins.

2. Hyperparameter choice can be done just as above, using a basic search.

What happens however if we have multiple hyperparameters?

1. We can search over all combinations of values for specifiedranges of each
parameter.

2. This is thestandard method in choosing parameters for support vector ma-
chines (SVMs).

3. With SVMs it is generally limited to the case of only two hyperparameters.

4. Larger numbers quickly become infeasible.
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Comparing classifiers

Imagine I have compared theBloggs Classificator 2000and theCleverCorp Dis-
criminotronand found that:

1. Bloggs Classificator 2000 has estimated accuracy 0.981 onthe test set.

2. CleverCorp Discriminotron has estimated accuracy 0.982on the test set.

Can I claim that CleverCorp Discriminotron is the better classifier?

Answer:

NO! NO! NO! NO! NO! NO! NO! NO! NO!!!!!!!!!!!!!!
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Comparing classifiers

NO!!!!!!!

Note for next year: include photo of grumpy-looking cat.
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Comparing classifiers

FromMathematical Methods for Computer Science:

The Central Limit Theorem: If we have independent identically distributed (iid)
random variablesX1, X2, . . . , Xn with mean

E [X ] = µ

and standard deviation
E
[

(X − µ)2
]

= σ2

then asn → ∞
X̂n − µ

σ/
√
n

→ N(0, 1)

where

X̂n =
1

n

n
∑

i=1

Xi.
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Comparing classifiers

We have tables of valueszp such that ifx ∼ N(0, 1) then

Pr(−zp ≤ x ≤ zp) > p.

Rearranging this using the equation from the previous slidewe have that with
probabilityp

µ ∈
[

X̂n ±
zpσ√
n

]

.

We don’t knowσ but it can be estimated using

σ2 ≃ 1

n− 1

n
∑

i=1

(

Xi − X̂n

)2

.

Alternatively, whenX takes only values0 or 1

σ2 = E
[

(X − µ)2
]

= E
[

X2
]

− µ2 = µ(1− µ) ≃ X̂n(1− X̂n).
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Comparing classifiers

Now say I have classifiersh1 (Bloggs Classificator 2000) andh2 (CleverCorp
Discriminotron) and I want to know something about the quantity

d = er(h1)− er(h2)

where
er(h) = E [I(h(x) 6= y)]

is theactual probability of errorfor h.

Earlier, weestimateder(h) using theaccuracy

êrs(h) =
1

m

m
∑

i=1

I(h(xi) 6= yi)

for a test sets.

Say I estimated using
d ≃ êrs1(h1)− êrs2(h2)

wheres1 ands2 are two independent test sets.
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Comparing classifiers

Notice:

1. The estimate ofd is a sum of random variables, and we can apply the central
limit theorem.

2. Our estimate isunbiased

E [êrs1(h1)− êrs2(h2)] = d.

3. The two parts of the estimatêers1(h1) andêrs2(h2) are each sums of random
variables.

4. The variance of the estimate is the sum of the variances ofêrs1(h1) andêrs2(h2)

5. We can calculate a confidence interval for our estimate.

In fact, if we are using a split into training sets and test sets′ we can generally
obtainh1 andh2 usings and use the estimate

d ≃ êrs′(h1)− êrs′(h2)
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Comparing classifiers

And finally:

1. We would typically demand a 95% confidence interval beforeclaiming one
classifier is better than another.

2. Don’t assume this is the end of the story: statistical testing of this kind is a
LARGE subject.

3. For example, we haven’t taken account of the fact thath1 andh2 also depend
on the training set.

4. To do this we need thepairedt-test.
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