
Artificial Intelligence II

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Copyright c© Sean Holden 2002-12.

1

Syllabus part I: advanced planning

New things to be looked at include some more advanced material on planning
algorithms:

• Heuristics and GraphPlan:incorporating heuristics into partial-order plan-
ning, planning graphs, the GraphPlan algorithm. [1 lecture]

• Planning using propositional logic:representing planning problems using
propositional logic, and generating plans using satisfiability solvers. [1 lec-
ture]

• Planning using constraint satisfaction:representing planning problems so that
they can be solved using constraint satisfaction solvers. [1 lecture]

There is no warranty attached to the stated lecture timings.

2

Syllabus part II: uncertainty in AI

We then delve into some more modern material which takes account of uncer-
tainty:

• Uncertainty and Bayesian networks:review of probability as applied to AI,
Bayesian networks, inference in Bayesian networks using both exact and ap-
proximate techniques, other ways of dealing with uncertainty. [4 lectures]

• Utility and decision-making:maximising expected utility, decision networks,
the value of information. [1 lecture]

Please read thesupplementary notes on probabilityhandout.

3

Syllabus part III: uncertainty and time

We then look at how uncertain reasoning and learning can takeplace whentimeis
to be taken into account:

• Markov processes:transition and sensor models.

• Inferencein temporal models: filtering, prediction, smoothing and finding the
most likely explanation.

• Hidden Markov models. [2 lectures]

4

Syllabus part IV: learning

Finally, we apply probability tosupervised learningto obtain [1 lecture] more
sophisticated models of learning.

• Bayes theoremas applied to supervised learning. [1 lecture]

• Themaximum likelihoodandmaximum a posteriorihypotheses. [1 lecture]

• Applying the Bayesian approach toneural networks. [3 lectures]

We finish the course by taking a brief look atreinforcement learning.

• How can we learn fromrewards and punishments?

• TheQ-learningalgorithm. [1 lecture]

Reinforcement learning can be thought of as combining many of the elements
covered in this course and in AI I, and thus provides a naturalplace to stop.

5

Books

Once again, the main single text book for the course is:

• Artificial Intelligence: A Modern Approach. Stuart Russell and Peter Norvig,
Prentice Hall.

There is an accompanying web site at

aima.cs.berkeley.edu

Either the second or third edition should be fine, but avoid the first edition as it
does not fit this course so well.

Chapter numbers given in these notes refer to the third edition.

6

Books

For some of the new material on neural networks you might alsolike to take a
look at:

• Pattern Recognition and Machine Learning. Christopher M. Bishop. Springer,
2006.

For some of the new material on reinforcement learning you might like to consult:

• Machine Learning. Tom Mitchell. McGraw Hill, 1997.

For further material on planning try:

• Automated Planning: Theory and Practice. Malik Ghallab, Dana Nau and
Paolo Traverso. Morgan Kaufmann, 2004.

7

Dire Warning

DIRE WARNING

This course contains quite a lot of:

1. Probability

2. Matrix algebra

3. Calculus

As I am anevil and vindictive personwho likes to beunkind to kittensI will
assume that you know everything on these subjects that was covered in earlier
courses.

If you don’t it is essentialthat you re-visit your old notes and make sure that
you’re at home with that material.

YOU HAVE BEEN WARNED

8

How’s your maths?

To see if you’re up to speed on the maths, have a go at the following:

Evaluate the integral ∫ ∞

−∞
exp(−x2) dx

Hint: this is a pretty standard result. Square the integral and change to polar
coordinates.

9

How’s your maths?

Following on from that, here’s something a bit more challenging.

Evaluate the integral
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(

−1
2

(
xTΣx + xTααα + β

)
)

dx1 · · · dxn

whereΣ is a symmetricn× n matrix with real elements,ααα ∈ R
n, β ∈ R and

xT =
[
x1 x2 · · · xn

]
∈ R

n

(This second one is a bit tricky. I’ll show you the answer later. . .)

10

Planning II

We now examine:

• The way in whichbasic heuristicsmight be defined for use in planning prob-
lems.

• The construction ofplanning graphsand their use in obtaining more sensible
heuristics.

• Planning graphs as the basis of theGraphPlanalgorithm.

• Planning usingpropositional logic.

• Planning usingconstraint satisfaction.

Reading: Russell and Norvig, relevant sections of chapter 11.

11

A quick review

We used the following simple example problem.

The intrepid little scamps in theCambridge University Roof-Climbing Society
wish to attach an inflatable gorilla to the spire of a famous College. To do this
they need to leave home and obtain:

• An inflatable gorilla: these can be purchased from all good joke shops.

• Somerope: available from a hardware store.

• A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning their jolly escapade?

12

The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States:areconjunctionsof ground literalswith no functions.

At(Home) ∧ ¬Have(Gorilla)
∧ ¬Have(Rope)
∧ ¬Have(Kit)

Goals: are conjunctionsof literals where variables are assumed existentially
quantified.

At(x) ∧ Sells(x,Gorilla)
A planner finds a sequence of actions that makes the goal true when performed.

13

An example of partial-order planning

Here is the initial plan:

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

Finish

Start

At(Home)∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.

14

An example of partial-order planning

There are two actions available:

Go(y)

At(y),¬At(x)

Buy(y)

At(x),Sells(x, y)

Have(y)

At(x)

15

An example of partial-order planning

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

Sells(HS,R),At(HS)

Go(HS)

At(x)

¬At(x)

At(Home)

TheAt(HS) precondition is easy to achieve.

But if we introduce a causal link fromStart toGo(HS) then we risk invalidating
the precondition forGo(JS).

16

An example of partial-order planning

The planner could backtrack and try to achieve theAt(x) precondition using the
existingGo(JS) step.

Start

Buy(G)

At(JS),Sells(JS,G)

Go(JS)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R),At(HS)

At(Home)

This involves a threat, but one that can be fixed using promotion.

17

Using heuristics in planning

We found in looking at search problems thatheuristicswere a helpful thing to
have.

Note that now:

• There is no simple representation of astate.

• Consequently it is harder to measure the distance to agoal.

Defining heuristics for planning is therefore more difficultthan it was for search
problems.

18

Using heuristics in planning

We can quickly suggest some possibilities.

For example
h = number of unsatisfied preconditions

or

h =number of unsatisfied preconditions
− number satisfied by the start state

These can lead to underestimates or overestimates:

• Underestimates if actions can affect one another in undesirable ways.

• Overestimates if actions achieve many preconditions.

19

Using heuristics in planning

We can go a little further by learning fromConstraint Satisfaction Problemsand
adopting themost constrained variableheuristic:

• Prefer the precondition satisfiable in the smallest number of ways.

This can be computationally demanding but two special casesare helpful:

• Choose preconditions for which no action will satisfy them.

• Choose preconditions that can only be satisfied in one way.

20

Planning graphs

Planning graphs can be used:

• To compute more sensible heuristics.

• To generate entire plans.

Also, planning graphs areeasy to construct.

They apply only when it is possible to work entirely usingpropositionalrepresen-
tations of plans.

Luckily, STRIPS can always be propositionalized...

21

Planning graphs

For example: the triumphant return of the gorilla-purchasing roof-climbers...

At(y),¬At(x)

Go(y)

At(x)

Predicate

Go(Home)

At(JS)

At(Home)

Go(JS)

and so on...

Propositional

At(Home)

Go(HS)

Go(HS)

At(HS),¬At(Home)

At(Home),¬At(JS)

At(JS)

At(JS),¬At(Home) At(HS),¬At(JS)

22

Planning graphs

A planning graph is constructed in levels:

• Level 0 corresponds to thestart state.

• At each level we keepapproximatetrack of all things thatcouldbe true at the
corresponding time.

• At each level we keepapproximatetrack of what actionscould be applicable
at the corresponding time.

The approximation is due to the fact that not all conflicts between actions are
tracked.So:

• The graph canunderestimatehow long it might take for a particular proposi-
tion to appear, and therefore . . .

• . . . a heuristic can be extracted.

23

Planning graphs: a simple example

Our intrepid student adventurers will of course need to inflate theirgorilla before
attaching it to adistinguished roof. It has to be purchased before it can be inflated.

Start state: Empty.

We assume that anything not mentioned in a state is false. So the state is actually

¬Have(Gorilla) and¬Inflated(Gorilla)
Actions:

Buy(Gorilla)

¬Have(Gorilla)

Have(Gorilla) Inflated(Gorilla)

Have(Gorilla)

Inflate(Gorilla)

Goal: Have(Gorilla) andInflated(Gorilla).

24

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

¬I(G)

Describe start
state.

All actions available in
start state.

S1 S1

All possibilities for
what might be the
case at time1.

All actions that might
be available at time
1.

All possibilities for
what might be the
case at time2.

= apersistence action—what happens if no action is taken.

H(G)

I(G)

An action levelAi containsall actions thatcouldhappen given the propositions inSi.

25

Mutex links

We also record, usingmutual exclusion (mutex) linkswhich pairs of actions could
not occur together.

Mutex links 1: Effects are inconsistent.

Buy(G)

¬H(G) ¬H(G)

A0S0

H(G)

S1

The effect of one action negates the effect of another.

26

Mutex links

Mutex links 2: The actions interfere.

Inf(G)

¬I(G)

I(G)

¬I(G)

S1 A1 S1

The effect of an action negates the precondition of another.

27

Mutex links

Mutex links 3: Competing for preconditions.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

S1

The precondition for an action is mutually exclusive with the precondition for
another. (See next slide!)

28

Mutex links

A state levelSi containsall propositions thatcould be true, given the possible
preceding actions.

We also use mutex links to record pairs that can not be true simultaneously:

Possibility 1: pair consists of a proposition and its negation.

¬H(G)

H(G)

S1

29

Mutex links

Possibility 2: all pairs of actions that could achieve the pair of propositions are
mutex.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

I(G)

S1

The construction of a planning graph is continued until two identical levels are
obtained.

30

Planning graphs

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

31

Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

• Any proposition not appearing in the final level hasinfinite costandcan never
be reached.

• Thelevel costof a proposition is the level at which it first appearsbut this may
be inaccurate as several actions can apply at each level and this cost does not
count thenumber of actions. (It is howeveradmissible.)

• A serial planning graphincludes mutex links between all pairs of actions ex-
cept persistence actions.

Level cost in serial planning graphscan be quite a good measurement.

32

Obtaining heuristics from a planning graph

How about estimating the cost to achieve acollectionof propositions?

• Max-level: use the maximum level in the graph of any proposition in the set.
Admissible but can be inaccurate.

• Level-sum: use the sum of the levels of the propositions. Inadmissiblebut
sometimes quite accurate if goals tend to be decomposable.

• Set-level: use the level at whichall propositions appear with none being mutex.
Can be accurate if goals tendnot to be decomposable.

33

Other points about planning graphs

A planning graph guarantees that:

1. If a proposition appears at some level, theremaybe a way of achieving it.

2. If a proposition doesnot appear, it cannot be achieved.

The first point here is a loose guarantee because onlypairs of items are linked by
mutex links.

Looking at larger collections can strengthen the guarantee, but in practice the gains
are outweighed by the increased computation.

34

Graphplan

The GraphPlanalgorithm goes beyond using the planning graph as a source of
heuristics.

Start at level 0;
while(true) {
if (all goal propositions appear in the current level

AND no pair has a mutex link) {

attempt to extract a plan;
if (a solution is obtained)

return the solution;
else if (graph indicates there is no solution)

return fail;
}

else
expand the graph to the next level;

}

We extract a plandirectly from the planning graph. Termination can be proved
but will not be covered here.

35

Graphplan in action

Here, at levelsS0 andS1 we do not have bothH(G) andI(G) available with no
mutex links, and so we expand first toS1 and then toS2.

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

At S2 we try to extract a solution (plan).

36

Extracting a plan from the graph

Extraction of a plan can be formalised as asearch problem.

Statescontain alevel, and a collection ofunsatisfied goal propositions.

Start state:the current final level of the graph, along with the relevant goal propo-
sitions.

Goal: a state at levelS0 containing the initial propositions.

37

Extracting a plan from the graph

Actions:For a stateS with levelSi, a valid action is to select any setX of actions
in Ai−1 such that:

1. no pair has a mutex link;

2. no pair of their preconditions has a mutex link;

3. the effects of the actions inX achieve the propositions inS.

The effect of such an action is a state having levelSi−1, and containing the pre-
conditions for the actions inX.

Each action has a cost of1.

38

Graphplan in action

Start state

Action: Action:

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Buy(G)

H(G)

S0 S1 S2

H(G) I(G)

Inf(G) and✷

39

Heuristics for plan extraction

We can of course also applyheuristicsto this part of the process.

For example, when dealing with aset of propositions:

• Choose the proposition havingmaximum level costfirst.

• For that proposition, attempt to achieve it using the actionfor which themaxi-
mum/sum level cost of its preconditions is minimum.

40

Planning III: planning using propositional logic

Last year we saw that plans might be extracted from a knowledge base viatheorem
proving, usingfirst order logic (FOL)andsituation calculus.

BUT: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testingsatisfiability in propositional
logic, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence havingthe form

description of start state
∧ descriptions of the possible actions
∧ description of goal

41

Propositional logic for planning

We attempt to construct this sentence such that:

• If M is a model of the sentence thenM assigns⊤ to a proposition if and only
if it is in the plan.

• Any assignment denoting an incorrect plan will not be a modelas the goal
description will not be⊤.

• The sentence is unsatisfiable if no plan exists.

42

Propositional logic for planning

Start state:

S =At0(a,spire) ∧ At0(b,ground)

∧ ¬At0(a,ground) ∧ ¬At0(b,spire)

b

The two climbers want to swap places...

a

Remember that an expression such asAt0(a,spire) is a proposition. The su-
perscripted number now denotes time.

43

Propositional logic for planning

Goal:

G =Ati(a,ground) ∧ Ati(b,spire)

∧ ¬Ati(a,spire) ∧ ¬Ati(b,ground)

Actions: can be introduced using the equivalent of successor-stateaxioms

At1(a,ground)↔
(At0(a,ground) ∧ ¬Move0(a,ground,spire))

∨ (At0(a,spire) ∧ Move0(a,spire,ground))

(1)

Denote byA the collection of all such axioms.

44

Propositional logic for planning

We will now find thatS∧A∧G has a model in whichMove0(a,spire,ground)
andMove0(b,ground,spire) are⊤ while all remaining actions are⊥.

In more realistic planning problems we will clearly not knowin advance at what
time the goal might expect to be achieved.

We therefore:

• Loop through possible final timesT .

• Generate a goal for timeT and actions up to timeT .

• Try to find a model and extract a plan.

• Until a plan is obtained or we hit some maximum time.

45

Propositional logic for planning

Unfortunately there is a problem—we may, if considerable care is not applied,
also be able to obtain less sensible plans.

In the current example

Move0(b,ground,spire) = ⊤
Move0(a,spire,ground) = ⊤

Move0(a,ground,spire) = ⊤

is a model, because the successor-state axiom (1) does not infact preclude the
application ofMove0(a,ground,spire).

We need aprecondition axiom

Movei(a,ground,spire)→ Ati(a,ground)

and so on.

46

Propositional logic for planning

Life becomes more complicated still if a third location is added:hospital.

Move0(a,spire,ground) ∧ Move0(a,spire,hospital)

is perfectly valid and so we need to specify that he can’t moveto two places
simultaneously

¬(Movei(a,spire,ground) ∧ Movei(a,spire,hospital))
¬(Movei(a,ground,spire) ∧ Movei(a,ground,hospital))

...

and so on.

These areaction-exclusionaxioms.

Unfortunately they will tend to producetotally-orderedrather thanpartially-ordered
plans.

47

Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates the effect or precondition of
the other.

2. Or, specify that something can’t be in two places simultaneously

∀x, i,l1,l2 l1 6= l2→ ¬(Ati(x,l1) ∧ Ati(x,l2))

This is an example of astate constraint.

Clearly this process can become very complex, but there are techniques to help
deal with this.

48

Planning IV: planning using constraint satisfaction

49

Review of constraint satisfaction problems (CSPs)

We have:

• A set ofn variablesV1, V2, . . . , Vn.

• For eachVi a domainDi specifying the values thatVi can take.

• A set ofm constraintsC1, C2, . . . , Cm.

Each constraintCi involves a set of variables and specifies anallowable collection
of values.

• A stateis an assignment of specific values to some or all of the variables.

• An assignment isconsistentif it violates no constraints.

• An assignment iscompleteif it gives a value to every variable.

A solutionis a consistent and complete assignment.

50

Example

We will use the problem ofcolouring the nodes of a graphas a running example.

1

2

8

6
5

3
4

7 7

5
6

4
3

1

2

8

Each node corresponds to avariable. We have three colours and directly con-
nected nodes should have different colours.

Caution required:later on, edges will have a different meaning.

51

Example

This translates easily to a CSP formulation:

• The variables are the nodes
Vi = nodei

• The domain for each variable contains the values black, red and cyan

Di = {B,R,C}

• The constraints enforce the idea that directly connected nodes must have dif-
ferent colours. For example, for variablesV1 andV2 the constraints specify

(B,R), (B,C), (R,B), (R,C), (C,B), (C,R)

• VariableV8 is unconstrained.

52

Different kinds of CSP

This is an example of the simplest kind of CSP: it isdiscretewith finite domains.
We will concentrate on these.

We will also concentrate onbinary constraints; that is, constraints betweenpairs
of variables.

• Constraints on single variables—unary constraints—can be handled by ad-
justing the variable’s domain. For example, if we don’t wantVi to bered, then
we just remove that possibility fromDi.

• Higher-order constraintsapplying to three or more variables can certainly be
considered, but...

• ...when dealing with finite domains they can always be converted to sets of
binary constraints by introducing extraauxiliary variables.

How does that work?

53

The state-variable representation

Another planning language: thestate-variable representation.

Things of interest such as people, places, objectsetcare divided intodomains:

D1 = {climber1, climber2}
D2 = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope, inflatableGorilla}

Part of the specification of a planning problem involves stating which domain a
particular item is in. For example

D1(climber1)

and so on.

Relations and functions have arguments chosen from unions of these domains.

above(x, y) ⊆ Dabove
1 ×Dabove

2

is a relation. TheDabove
i are unions of one or moreDi.

54

The state-variable representation

The relationabove is in fact arigid relation (RR), as it is unchanging: it does not
depend uponstate. (Rememberfluentsin situation calculus?)

Similarly, we havefunctions

at(x1, s) : Dat
1 × S → Dat.

Here,at(x, s) is astate-variable. The domainDat
1 and rangeDat are unions of

one or moreDi. In general these can have multiple parameters

sv(x1, . . . , xn, s) : Dsv
1 × · · · × Dsv

n × S → Dsv.

A state-variable denotes assertions such as

at(gorilla, s) = jokeShop

wheres denotes astateand the setS of all states will be defined later.

The state variable allows things such as locations to change—again, much like
fluentsin the situation calculus.

Variables appearing in relations and functions are considered to betyped.

55

The state-variable representation

Note:

• For properties such as alocationa function might be considerably more suit-
able than a relation.

• For locations, everything has to besomewhereand it can only be inone place
at a time.

So a function is perfect and immediately solves some of the problems seen earlier.

56

The state-variable representation

Actionsas usual, have aname, aset of preconditionsand aset of effects.

• Namesare unique, and followed by a list of variables involved in the action.

• Preconditionsare expressions involving state variables and relations.

• Effectsare assignments to state variables.

For example:

buy(x, y, l)
Preconditionsat(x, s) = l

sells(l, y)
has(y, s) = l

Effects has(y, s) = x

57

The state-variable representation

Goalsare sets ofexpressionsinvolving state variables.

For example:

Goal:
at(climber, s) = home

has(rope, s) = climber

at(gorilla, s) = spire

From now on we will generally suppress the states when writing state variables.

58

The state-variable representation

We can essentially regard astateas just a statement of what values the state vari-
ables take at a given time.

Formally:

• For each state variablesv we can consider all ground instances such as—
sv(climber, rope)—with arguments that areconsistentwith the rigid rela-
tions.

DefineX to be the set of all such ground instances.

• A states is then just a set

s = {(v = c)|v ∈ X}
wherec is in the range ofv.

This allows us to define theeffect of an action.

A planning problem also needs astart states0, which can be defined in this way.

59

The state-variable representation

Considering all theground actions consistent with the rigid relations:

• An action isapplicable ins if all expressionsv = c appearing in the set of
preconditions also appear ins.

Finally, there is a functionγ that maps a state and an action to a new state

γ(s, a) = s′

Specifically, we have
γ(s, a) = {(v = c)|v ∈ X}

where eitherc is specified in an effect ofa, or otherwisev = c is a member ofs.

Note: the definition ofγ implicitly solves theframe problem.

60

The state-variable representation

A solution to a planning problem is a sequence(a0, a1, . . . , an) of actions such
that...

• a0 is applicable ins0 and for eachi, ai is applicable insi = γ(si−1, ai−1).

• For each goalg we have
g ∈ γ(sn, an).

What we need now is a method fortransforminga problem described in this lan-
guage into a CSP.

We’ll once again do this for a fixed upper limitT on the number of steps in the
plan.

61

Converting to a CSP

Step 1:encodeactionsasCSP variables.

For each time stept where0 ≤ t ≤ T − 1, the CSP has a variable

actiont

with domain

Dactiont = {a|a is the ground instance of an action} ∪ {none}
Example: at some point in searching for a plan we might attempt to find the

solution to the corresponding CSP involving

action5 = attach(inflatableGorilla, spire)

WARNING:be careful in what follows to distinguish betweenstate variables, ac-
tions etcin the planning problem andvariablesin the CSP.

62

Converting to a CSP

Step 2:encodeground state variablesasCSP variables, with a complete copy of
all the state variablesfor each time step.

So, for eacht where0 ≤ t ≤ T we have a CSP variable

svti(c1, . . . , cn)

with domainDsvi. (That is, thedomainof the CSP variable is therangeof the
state variable.)

Example: at some point in searching for a plan we might attempt to find the
solution to the corresponding CSP involving

location9(climber1) = hospital.

63

Converting to a CSP

Step 3: encode thepreconditions for actions in the planning problemas con-
straints in the CSP problem.

For each time stept and for each ground actiona(c1, . . . , cn) with argumentscon-
sistent with the rigid relations in its preconditions:

For a precondition of the formsvi = v include constraint pairs

(actiont = a(c1, . . . , cn),

svti = v)

Example:consider the actionbuy(x, y, l) introduced above, and having the pre-
conditionsat(x) = l, sells(l, y) andhas(y) = l.

Assumesells(y, l) is only true for

l = jokeShop

and
y = inflatableGorilla

(it’s a very strange town) so we only consider these values for l andy. Then for
each time stept we have the constraints...

64

Converting to a CSP

actiont = buy(climber1, inflatableGorilla, jokeShop)
paired with

att(climber1) = jokeShop

actiont = buy(climber1, inflatableGorilla, jokeShop)
paired with

hast(inflatableGorilla) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)
paired with

att(climber2) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)
paired with

hast(inflatableGorilla) = jokeShop

and so on...

65

Converting to a CSP

Step 4:encode theeffects of actions in the planning problemasconstraints in the
CSP problem.

For each time stept and for each ground actiona(c1, . . . , cn) with argumentscon-
sistent with the rigid relations in its preconditions:

For an effect of the formsvi = v include constraint pairs

(actiont = a(c1, . . . , cn),

svt+1
i = v)

Example:continuing with the previous example, we will include constraints

actiont = buy(climber1, inflatableGorilla, jokeShop)
paired with

hast+1(inflatableGorilla) = climber1

actiont = buy(climber2, inflatableGorilla, jokeShop)
paired with

hast+1(inflatableGorilla) = climber2

and so on...

66

Converting to a CSP

Step 5:encode theframe axiomsasconstraints in the CSP problem.

An action must not change things not appearing in its effects. So:

For:

1. Each time stept.

2. Each ground actiona(c1, . . . , cn) with argumentsconsistent with the rigid re-
lations in its preconditions.

3. Eachsvi thatdoes not appear in the effects ofa, and eachv ∈ Dsvi

include in the CSP the ternary constraint

(actiont = a(c1, . . . , cn),

svti = v,

svt+1
i = v)

67

Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.

The scheme has the following property:

A solution to the planning problem with at mostT steps exists if and only if there
is a a solution to the corresponding CSP.

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the values assigned to theactiont

variables in the solution of the CSP.

It is also the case that:

There is a solution to the planning problem with at mostT steps if and only if there
is a solution to the corresponding CSP from which the solution can be extracted
in this way.

For a proof see:

Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann2004.

68

Uncertainty I: Probability as Degree of Belief

We now examine:

• How probability theorymight be used to represent and reason with knowledge
when we areuncertainabout the world.

• How inferencein the presence of uncertainty can in principle be performed
using only basic results along with thefull joint probability distribution.

• How this approachfails in practice.

• How the notions ofindependenceandconditional independencemay be used
to solve this problem.

Reading:Russell and Norvig, chapter 13.

69

Uncertainty in AI

The (predominantly logic-based) methods covered so far have assorted shortcom-
ings:

• Limited epistemological commitment—true/false/unknown.

• Actions are possible whensufficient knowledgeis available...

• ...but this is not generally the case.

• In practice there is a need to cope withuncertainty.

For example in the Wumpus World:

• We can not make observations further afield than the current locality.

• Consequently inferences regarding pit/wumpus locationetcwill not usually be
possible.

70

Uncertainty in AI

A couple of more subtle problems have also presented themselves:

• The Qualification Problem:it is not generally possible to guarantee that an
action will succeed—only that it will succeed ifmany other preconditions
do/don’t hold.

• Rational actiondepends on thelikelihood of achieving different goals, and
their relative desirability.

71

Logic (as seen so far) has major shortcomings

An example:

∀x symptom(x,toothache)→ problem(x,cavity)

This is plainly incorrect. Toothaches can be caused by things other than cavities.

∀x symptom(x,toothache)→problem(x,cavity)∨
problem(x,abscess)∨
problem(x,gum-disease)∨
· · ·

BUT:

• It is impossible to completethe list.

• There’s no clear way to take account of therelative likelihoodsof different
causes.

72

Logic (as seen so far) has major shortcomings

If we try to make acausal rule

∀x problem(x,abscess)→ symptom(x,toothache)

it’s still wrong—abscesses do not always cause pain.

We need further information in addition to

problem(x,abscess)

and it’s still not possible to do this correctly.

73

Logic (as seen so far) has major shortcomings

FOL can fail for essentially three reasons:

1. Laziness:it is not feasible to assemble a set of rules that is sufficiently exhaus-
tive.

If we could, it would not be feasible to apply them.

2. Theoretical ignorance:insufficient knowledgeexiststo allow us to write the
rules.

3. Practical ignorance:even if the rules have been obtained there may be insuf-
ficient information to apply them.

Instead of thinking in terms of thetruth or falsity of a statement we want to deal
with an agent’sdegree of beliefin the statement.

• Probability theoryis the perfect tool for application here.

• Probability theoryallows us tosummarisethe uncertainty due to laziness and
ignorance.

74

An important distinction

There is a fundamental difference betweenprobability theoryandfuzzy logic:

• When dealing with probability theory, statements remainin fact eithertrue or
false.

• A probability denotes an agent’sdegree of beliefone way or another.

• Fuzzy logic deals withdegree of truth.

In practice the use of probability theory has proved spectacularly successful.

75

Belief and evidence

An agent’s beliefs will depend on what it hasperceived: probabilities are based
onevidenceand may be altered by the acquisition of new evidence:

• Prior (unconditional) probabilitydenotes a degree of belief in the absence of
evidence.

• Posterior (conditional) probabilitydenotes a degree of belief after evidence is
perceived.

As we shall seeBayes’ theoremis the fundamental concept that allows us to update
one to obtain the other.

76

Making rational decisions under uncertainty

When usinglogic, we concentrated on finding an action sequence guaranteed to
achieve a goal, and then executing it.

When dealing withuncertaintywe need to definepreferencesamong states of the
world and take into account theprobabilityof reaching those states.

Utility theory is used to assign preferences.

Decision theorycombines probability theory and utility theory.

A rational agent should act in order tomaximise expected utility.

77

Probability

We want to assign degrees of belief to propositions about theworld.

We will need:

• Random variableswith associateddomains—typically Boolean, discrete, or
continuous.

• All the usual concepts—events, atomic events, setsetc.

• Probability distributions and densities.

• Probability axioms (Kolmogorov).

• Conditional probability and Bayes’ theorem.

So if you’ve forgotten this stuff now is a good time to re-readit.

78

Probability

The standard axioms are:

• Range
0 ≤ Pr(x) ≤ 1

• Always true propositions

Pr(always true proposition) = 1

• Always false propositions

Pr(always false proposition) = 0

• Union
Pr(x ∨ y) = Pr(x) + Pr(y)− Pr(x ∧ y)

79

Origins of probabilities I

Historically speaking, probabilities have been regarded in a number of different
ways:

• Frequentist:probabilities come from measurements.

• Objectivist: probabilities are actual “properties of the universe” which fre-
quentist measurements seek to uncover.

An excellent example: quantum phenomena.

A bad example: coin flipping—the uncertainty is due to our uncertainty about
the initial conditions of the coin.

• Subjectivist:probabilities are an agent’s degrees of belief.

This means the agent is allowed to make up the numbers!

80

Origins of probabilities II

Thereference class problem: even frequentist probabilities are subjective.

Example:Say a doctor takes a frequentist approach to diagnosis. She examines
a large number of people to establish the prior probability of whether or not they
have heart disease.

To be accurate she tries to measure “similar people”. (She knows for example that
gender might be important.)

Taken to an extreme,all people aredifferentand there is therefore noreference
class.

81

Origins of probabilities III

Theprinciple of indifference(Laplace).

• Give equal probability to all propositions that are syntactically symmetric with
respect to the available evidence.

• Refinements of this idea led to the attempted development by Carnap and oth-
ers ofinductive logic.

• The aim was to obtain the correct probability of any proposition from an arbi-
trary set of observations.

It is currently thought that no unique inductive logic exists.

Any inductive logic depends on prior beliefs and the effect of these beliefs is
overcome by evidence.

82

Prior probability

A prior probability denotes the probability (degree of belief) assigned to a propo-
sition in the absence of any other evidence.

For example
Pr(Cavity = true) = 0.05

denotes the degree of belief that a random person has a cavitybefore we make
any actual observation of that person.

To keep things compact, we will use

Pr(Cavity)

to denote the entire probability distribution of the randomvariableCavity.

Instead of
Pr(Cavity = true) = 0.05

Pr(Cavity = false) = 0.95

write
Pr(Cavity) = (0.05, 0.95)

83

Notation

A similar convention will apply for joint distributions. For example, ifDecay
can take the valuessevere, moderate or low then

Pr(Cavity,Decay)

is a2 by 3 table of numbers.

severe moderate low
true 0.26 0.1 0.01
false 0.01 0.02 0.6

Similarly
Pr(true,Decay)

denotes3 numbersetc.

84

The full joint probability distribution

The full joint probability distribution is the joint distribution ofall random vari-
ables that describe the state of the world.

This can be used to answerany query.

(But of course life’s not really that simple!)

85

Conditional probability

We use theconditional probability

Pr(x|y)
to denote the probability that a propositionx holds given thatall the evidence we
have so faris contained in propositiony.

From basic probability theory

Pr(x|y) = Pr(x ∧ y)

Pr(y)

Conditional probability isnot analogous tological implication.

• Pr(x|y) = 0.1 doesnot mean that ify is true thenPr(x) = 0.1.

• Pr(x) is aprior probability.

• The notationPr(x|y) is for use wheny is theentire evidence.

• Pr(x|y ∧ z) might be very different.

86

Using the full joint distribution to perform inference

We can regard the full joint distribution as aknowledge base.

We want to use it to obtain answers to questions.

CP ¬CP
HBP ¬HBP HBP ¬HBP

HD 0.09 0.05 0.07 0.01
¬HD 0.02 0.08 0.03 0.65

We’ll use this medical diagnosis problem as a running example.

• HD = Heart disease

• CP = Chest pain

• HBP = High blood pressure

87

Using the full joint distribution to perform inference

The process is nothing more than the application of basic results:

• Sum atomic events:

Pr(HD ∨ CP) =Pr(HD ∧ CP ∧ HBP)
+ Pr(HD ∧ CP ∧ ¬HBP)
+ Pr(HD ∧ ¬CP ∧ HBP)
+ Pr(HD ∧ ¬CP ∧ ¬HBP)
+ Pr(¬HD ∧ CP ∧ HBP)
+ Pr(¬HD ∧ CP ∧ ¬HBP)
= 0.09 + 0.05 + 0.07 + 0.01 + 0.02 + 0.08

= 0.32

• Marginalisation: ifA andB are sets of variables then

Pr(A) =
∑

b

Pr(A ∧ b) =
∑

b

Pr(A|b) Pr(b)

88

Using the full joint distribution to perform inference

Usually we will want to compute theconditional probabilityof some variable(s)
givensome evidence.

For example

Pr(HD|HBP) = Pr(HD ∧ HBP)
Pr(HBP)

=
0.09 + 0.07

0.09 + 0.07 + 0.02 + 0.03
= 0.76

and

Pr(¬HD|HBP) = Pr(¬HD ∧ HBP)
Pr(HBP)

=
0.02 + 0.03

0.09 + 0.07 + 0.02 + 0.03
= 0.24

89

Using the full joint distribution to perform inference

The process can be simplified slightly by noting that

α =
1

Pr(HBP)

is a constant and can be regarded as anormalisermaking relevant probabilities
sum to1.

So a short cut is to avoid computing it as above. Instead:

Pr(HD|HBP) = αPr(HD ∧ HBP) = (0.09 + 0.07)α

Pr(¬HD|HBP) = αPr(¬HD ∧ HBP) = (0.02 + 0.03)α

and we need
Pr(HD|HBP) + Pr(¬HD|HBP) = 1

so
α =

1

0.09 + 0.07 + 0.02 + 0.03

90

Using the full joint distribution to perform inference

Thegeneral inference procedureis as follows:

Pr(Q|e) = 1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, e, u)

where

• Q is the query variable.

• e is the evidence.

• u are the unobserved variables.

• 1/Z normalises the distribution.

91

Using the full joint distribution to perform inference

Simple eh?

Well, no...

• Forn Boolean variables the table has2n entries.

• Storage and processing time are bothO(2n).

• You need to establish2n numbers to work with.

In reality we might well haven > 1000, and of course it’seven worseif variables
are non-Boolean.

How can we get around this?

92

Exploiting independence

If I toss a coin and roll a dice, the full joint distribution ofoutcomes requires
2× 6 = 12 numbers to be specified.

1 2 3 4 5 6
head 0.014 0.028 0.042 0.057 0.071 0.086
tail 0.033 0.067 0.1 0.133 0.167 0.2

HerePr(Coin = head) = 0.3 and the dice has probabilityi/21 for the ith
outcome.

BUT: if we assume the outcomes are independent then

Pr(Coin,Dice) = Pr(Coin) Pr(Dice)

WherePr(Coin) has two numbers andPr(Dice) has six.

So instead of12 numbers we only need8.

93

Exploiting independence

Similarly, say instead of just consideringHD, HBP andCP we also consider the
outcome of theOxford versus Cambridge tiddlywinks competitionTC:

Pr(TC = Oxford) = 0.2

Pr(TC = Cambridge) = 0.7

Pr(TC = Draw) = 0.1

Now

Pr(HD,HBP,CP,TC) = Pr(TC|HD,HBP,HD) Pr(HD,HBP,HD)
Assuming that the patient is not anextraordinarily keen fan of tiddlywinks, their
cardiac health has nothing to do with the outcome, so

Pr(TC|HD,HBP,HD) = Pr(TC)

and2× 2× 2× 3 = 24 numbers has been reduced to3 + 8 = 11.

94

Exploiting independence

In general you need to identify such independence throughknowledge of the prob-
lem.

BUT:

• It generally does not work as clearly as this.

• The independent subsets themselves can be big.

95

Bayes theorem

From first principles
Pr(x, y) = Pr(x|y) Pr(y)

Pr(x, y) = Pr(y|x) Pr(x)
so

Pr(x|y) = Pr(y|x) Pr(x)
Pr(y)

The most important equation in modern AI?

Whenevidencee is involved this can be written

Pr(Q|R, e) = Pr(R|Q, e) Pr(Q|e)
Pr(R|e)

96

Bayes theorem

Taking another simple medical diagnosis example:does a patient with a fever
have malaria?A doctor might know that

Pr(fever|malaria) = 0.99

Pr(malaria) =
1

10000

Pr(fever) =
1

20
Consequently we can try to obtainPr(malaria|fever) by direct application

of Bayes theorem

Pr(malaria|fever) = 0.99× 0.0001

0.05
= 0.00198

or using the alternative technique

Pr(malaria|fever) = αPr(fever|malaria) Pr(malaria)
if the relevant further quantityPr(fever|¬malaria) is known.

97

Bayes theorem

• Sometimes the first possibility is easier, sometimes not.

• Causal knowledgesuch as

Pr(fever|malaria)
might well be available whendiagnostic knowledgesuch as

Pr(malaria|fever)
is not.

• Say the incidence of malaria, modelled byPr(Malaria), suddenly changes.
Bayes theorem tells us what to do.

• The quantity
Pr(fever|malaria)

would not be affected by such a change.

Causal knowledgecan be more robust.

98

Conditional independence

What happens if we havemultiple pieces of evidence?

We have seen that to compute

Pr(HD|CP,HBP)
directly might well run into problems.

We could try using Bayes theorem to obtain

Pr(HD|CP,HBP) = αPr(CP,HBP|HD) Pr(HD)
However whileHD is probably manageable, a quantity such asPr(CP,HBP|HD)

might well still be problematic especially in more realistic cases.

99

Conditional independence

However although in this case we might not be able to exploit independence di-
rectly wecansay that

Pr(CP,HBP|HD) = Pr(CP|HD) Pr(HBP|HD)
which simplifies matters.

Conditional independence:

• Pr(A,B|C) = Pr(A|C) Pr(B|C).

• If we know thatC is the case thenA andB are independent.

Although CP andHBP are not independent, they do not directly influence one
anotherin a patient known to have heart disease.

This is much nicer!

Pr(HD|CP,HBP) = αPr(CP|HD) Pr(HBP|HD) Pr(HD)

100

Naive Bayes

Conditional independence is often assumed even when it doesnot hold.

Naive Bayes:

Pr(A,B1, B2, . . . , Bn) = Pr(A)
n∏

i=1

Pr(Bi|A)

Also known asIdiot’s Bayes.

Despite this, it is often surprisingly effective.

101

Uncertainty II - Bayesian Networks

Having seen that in principle, if not in practice, the full joint distribution alone
can be used to perform any inference of interest, we now examine a practical
technique.

• We introduce theBayesian Network (BN)as a compact representation of the
full joint distribution.

• We examine the way in which a BN can beconstructed.

• We examine thesemanticsof BNs.

• We look briefly at howinferencecan be performed.

Reading:Russell and Norvig, chapter 14.

102

Bayesian networks

Also calledprobabilistic/belief/causal networksor knowledge maps.

CP HBP

HDTW

• Each node is arandom variable (RV).

• Each nodeNi has a distribution

Pr(Ni|parents(Ni))

• A Bayesian network is adirected acyclic graph.

• Roughly speaking, an arrow fromN toM meansN directly affectsM .

103

Bayesian networks

After a regrettable incidentinvolving aninflatable gorilla, a famous College has
decided to install an alarm for the detection of roof climbers.

• The alarm isverygood at detecting climbers.

• Unfortunately, it is also sometimes triggered when one of the extremely fat
geesethat lives in the College lands on the roof.

• One porter’s lodge is near the alarm, and inhabited by a chap with excellent
hearing and apathological hatredof roof climbers: healways reports an
alarm. His hearing is so good that he sometimes thinks he hears an alarm,
even when there isn’t one.

• Another porter’s lodge is a good distance away and inhabitedby anold chap
with dodgy hearingwho likes to listen to his collection ofDEATH METAL
with the sound turned up.

104

Bayesian networks

No: 0.95

Yes:0.05 Yes:0.2

No: 0.8

a

¬a ¬a
a

0.001

Y
N
Y

N
Y

Y
N

N

Alarm

Climber Goose

Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

105

Bayesian networks

Note that:

• In the present example all RVs arediscrete(in fact Boolean) and so in all cases
Pr(Ni|parents(Ni)) can be represented as atable of numbers.

• Climber andGoose have onlyprior probabilities.

• All RVs here are Boolean, so a node withp parents requires2p numbers.

A BN with n nodes represents the full joint probability distribution for those nodes
as

Pr(N1 = n1, N2 = n2, . . . , Nn = nn) =
n∏

i=1

Pr(Ni = ni|parents(Ni)) (2)

For example

Pr(¬C,¬G,A,L1,L2) = Pr(L1|A) Pr(L2|A) Pr(A|¬C,¬G) Pr(¬C) Pr(¬G)
= 0.99× 0.6× 0.08× 0.95× 0.8

106

Semantics

In generalPr(A,B) = Pr(A|B) Pr(B) so abbreviatingPr(N1 = n1, N2 = n2, . . . , Nn =
nn) to Pr(n1, n2, . . . , nn) we have

Pr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1) Pr(nn−1, . . . , n1)

Repeating this gives

Pr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1) Pr(nn−1|nn−2, . . . , n1) · · ·Pr(n1)

=
n∏

i=1

Pr(ni|ni−1, . . . , n1)
(3)

Now compare equations (2) and (3). We see that BNs make the assumption

Pr(Ni|Ni−1, . . . , N1) = Pr(Ni|parents(Ni))

for each node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.

EachNi is conditionally independent of its predecessors given itsparents

107

Semantics

• When constructing a BN we want to make sure the preceding property holds.

• This means we need to take care overordering.

• In generalcauses should directly precede effects.

· · ·

Ni

parents(Ni)

Here, parents(Ni) contains all preceding nodes having adirect influenceonNi.

108

Semantics

Deviation from this rule can have major effects on the complexity of the network.

That’s bad!We want to keep the network simple:

• If each node has at mostp parents and there aren Boolean nodes, we need to
specify at mostn2p numbers...

• ...whereas the full joint distribution requires us to specify 2n numbers.

So: there is a trade-off attached to the inclusion oftenuousalthoughstrictly-
speaking correctedges.

109

Semantics

As a rule, we should include themost basic causesfirst, then the things they
influence directly etc.

What happens if you get this wrong?

Example:add nodes in the orderL2,L1,G,C,A.

Goose

Lodge2

Climber Alarm

Lodge1

110

Semantics

In this example:

• Increased connectivity.

• Many of the probabilities here will be quite unnatural and hard to specify.

Once again:causal knowledgeis preferred todiagnostic knowledge.

111

Semantics

As an alternative we can say directly what conditional independence assumptions
a graph should be interpreted as expressing. There are two common ways of doing
this.

A

P2P1

N1 N2

Any nodeA is conditionally independent of theNi—its non-descendants—given
thePi—its parents.

112

Semantics

M7 M6 M5

M4M8

M1 M2 M3

A

Any nodeA is conditionally independent of all other nodes given theMarkov
blanketMi—that is, itsparents, its childrenand itschildren’s parents.

113

More complex nodes

How do we represent
Pr(Ni|parents(Ni))

when nodes can denotegeneral discrete and/or continuous RVs?

• BNs containing both kinds of RV are calledhybrid BNs.

• Naive discretisationof continuous RVs tends to result in both a reduction in
accuracy and large tables.

• O(2p) might still be large enough to be unwieldy.

• We can instead attempt to usestandard and well-understooddistributions,
such as theGaussian.

• This will typically require only a small number of parameters to be specified.

114

More complex nodes

Example: functionalrelationships are easy to deal with.

Ni = f(parents(Ni))

Pr(Ni = ni|parents(Ni)) =

{
1 if ni = f(parents(Ni))
0 otherwise

115

More complex nodes

Example:a continuous RV with one continuous and one discrete parent.

Pr(Speed of car|Throttle position,Tuned engine)

whereSC andTP are continuous andTE is Boolean.

• For a specific setting ofET = true it might be the case thatSC increases
with TP, but that some uncertainty is involved

Pr(SC|TP,et) = N(getTP + cet, σ
2
et)

• For an un-tuned engine we might have a similar relationship with a different
behaviour

Pr(SC|TP,¬et) = N(g¬etTP + c¬et, σ
2
¬et)

There is a set of parameters{g, c, σ} for each possible value of the discrete RV.

116

More complex nodes

Example:a discrete RV with a continuous parent

Pr(Go roofclimbing|Size of fine)

We could for example use theprobit distribution

Pr(Go roofclimbing = true|size) = Φ

(
t− size

s

)

where

Φ(x) =

∫ x

−∞
N(y)dy

andN(x) is the Gaussian distribution withzero mean and variance1.

117

More complex nodes

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
The probit distribution

x

Φ
(x

)

90 92 94 96 98 100 102 104 106 108 110
0

0.2

0.4

0.6

0.8

1
Pr(GRC = true |size) with t = 100 and different values of s

size

Φ
(t
−s
i
z
e

/s
)

118

More complex nodes

Alternatively, for this example we could use thelogit distribution

Pr(Go roofclimbing = true|size) = 1

1 + e(−2(t−size)/s)

which has a similar shape.

• Tails are longer for the logit distribution.

• The logit distribution tends to be easier to use...

• ...but the probit distribution is often more accurate.

119

Basic inference

We saw earlier that the full joint distribution can be used toperformall inference
tasks:

Pr(Q|e) = 1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, e, u)

where

• Q is the query variable

• e is the evidence

• u are the unobserved variables

• 1/Z normalises the distribution.

120

Basic inference

As the BN fully describes the full joint distribution

Pr(Q, u, e) =
n∏

i=1

Pr(Ni|parents(Ni))

It can be used to perform inference in theobviousway

Pr(Q|e) = 1

Z

∑

u

n∏

i=1

Pr(Ni|parents(Ni))

but as we’ll see this isin practice problematic.

• More sophisticated algorithms aim to achieve thismore efficiently.

• For complex BNs we resort toapproximation techniques.

121

Other approaches to uncertainty: Default reasoning

One criticism made of probability is that it isnumericalwhereas human argument
seems fundamentally different in nature:

• On the one hand this seems quite defensible. I certainly am not aware of doing
logical thoughtthrough directmanipulation of probabilities, but. . .

• . . . on the other hand, neither am I aware ofsolving differential equationsin
order towalk!

Default reasoning:

• Does not maintaindegrees of belief.

• Allows something to be believeduntil a reason is found not to.

122

Other approaches to uncertainty: rule-based systems

Rule-based systems have some desirable properties:

• Locality: if we establish the evidenceX and we have a ruleX → Y thenY
can be concluded regardless of any other rules.

• Detachment: once anyY has been established it can then be assumed. (It’s
justification is irrelevant.)

• Truth-functionality: truth of a complex formula is a function of the truth of its
components.

These are not in general shared by probabilistic systems. What happens if:

• We try to attach measures of belief to rules and propositions.

• We try to make a truth-functional system by, for example, making belief in
X ∧ Y a function of beliefs inX andY ?

123

Other approaches to uncertainty: rule-based systems

Problems that can arise:

1. Say I have the causal rule

Heart disease
0.95−→ Chest pain

and the diagnostic rule

Chest pain
0.7−→ Heart disease

Without taking very great care to keep track of the reasoningprocess, these
can form aloop.

2. If in addition I have

Chest pain
0.6−→ Recent physical exertion

then it is quite possible to form the conclusion that with some degree of cer-
taintyheart disease is explained by exertion, which may well be incorrect.

124

Other approaches to uncertainty: rule-based systems

In addition, we might argue that because heart disease is an explanation for chest
pain the belief in physical exertion shoulddecrease.

In general when such systems have been successful it has beenthrough very care-
ful control in setting up the rules.

125

Other approaches to uncertainty: Dempster-Shafer theory

Dempster-Shafer theory attempts to distinguish betweenuncertaintyand igno-
rance.

Whereas the probabilistic approach looks at theprobabilityof X, we instead look
at theprobability that theavailable evidence supportsX.

This is denoted by thebelief functionBel(X).

Example: given a coin but no information as to whether it is fair I haveno reason
to think one outcome should be preferred to another

Bel(outcome= head) = Bel(outcome= tail) = 0

These beliefs can be updated when new evidence is available.If an expert tells
us there isn percent certainty that it’s a fair coin then

Bel(outcome= head) = Bel(outcome= tail) =
n

100
× 1

2
.

We may still have agap in that

Bel(outcome= head) + Bel(outcome= tail) 6= 1.

Dempster-Shafer theory provides a coherent system for dealing with belief func-
tions.

126

Other approaches to uncertainty: Dempster-Shafer theory

Problems:

• The Bayesian approach deals more effectively with the quantification of how
belief changeswhennew evidence is available.

• The Bayesian approach has a better connection to the conceptof utility, whereas
the latter is not well-understood for use in conjunction with Dempster-Shafer
theory.

127

Uncertainty III: exact inference in Bayesian networks

We now examine:

• The basic equation for inference in Bayesian networks, the latter being hard to
achieve if approached in the obvious way.

• The way in which matters can be improved a little by a small modification to
the way in which the calculation is done.

• The way in which much better improvements might be possible using a still
more informed approach, although not in all cases.

Reading:Russell and Norvig, chapter 14, section 14.4.

128

Performing exact inference

We know that in principle any queryQ can be answered by the calculation

Pr(Q|e) = 1

Z

∑

u

Pr(Q, e, u)

whereQ denotes the query,e denotes the evidence,u denotes unobserved vari-
ables and1/Z normalises the distribution.

The naive implementation of this approach yields theEnumerate-Joint-Askalgo-
rithm, which unfortunately requiresO(2n) time and space forn Boolean random
variables (RVs).

129

Performing exact inference

In what follows we will make use of some abbreviations.

• C denotesClimber

• G denotesGoose

• A denotesAlarm

• L1 denotesLodge1

• L2 denotesLodge2

Instead of writing out Pr(C = ⊤), Pr(C = ⊥) etcwe will write Pr(c), Pr(¬c) and
so on.

130

Performing exact inference

Also Pr(Q, e, u) has a particular form expressing conditional independences:

No: 0.95

Yes:0.05 Yes:0.2

No: 0.8

a

¬a ¬a
a

0.001

Y
N
Y

N
Y

Y
N

N

Alarm

Climber Goose

Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

Pr(C,G,A, L1, L2) = Pr(C)Pr(G)Pr(A|C,G)Pr(L1|A)Pr(L2|A)

131

Performing exact inference

Consider the computation of the query Pr(C|l1, l2)
We have

Pr(C|l1, l2) = 1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)

Here there are 5 multiplications for each set of values that appears for summation,
and there are 4 such values.

In general this gives time complexityO(n2n) for n Boolean RVs.

Looking more closely we see that

Pr(C|l1, l2) = 1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)

=
1

Z
Pr(C)

∑

A

Pr(l1|A)Pr(l2|A)
∑

G

Pr(G)Pr(A|C,G)

=
1

Z
Pr(C)

∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

(4)

So for example...

132

Performing exact inference

Pr(c|l1, l2) = 1

Z
Pr(c)

(

Pr(g)

{
Pr(a|c, g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c, g)Pr(l1|¬a)Pr(l2|¬a)

}

+Pr(¬g)
{

Pr(a|c,¬g)Pr(l1|a)Pr(l2|a)
+Pr(¬a|c,¬g)Pr(l1|¬a)Pr(l2|¬a)

})

with a similar calculation for Pr(¬c|l1, l2).
Basically straightforward,BUT optimisations can be made.

133

Performing exact inference

Pr(c)

Pr(g) Pr(¬g)

Pr(¬a|c,¬g)

+

+

+

Pr(¬a|c, g)Pr(a|c, g) Pr(a|c,¬g)

Repeated Repeated

Pr(l1|a)

Pr(l2|a)

Pr(l1|¬a)

Pr(l2|¬a) Pr(l2|a)

Pr(l1|a) Pr(l1|¬a)

Pr(l2|¬a)

134

Optimisation 1: Enumeration-Ask

Theenumeration-askalgorithm improves matters toO(2n) time andO(n) space
by performing the computationdepth-first.

However matters can be improved further by avoiding theduplication of compu-
tationsthat clearly appears in the example tree.

135

Optimisation 2: variable elimination

Looking again at the fundamental equation (4)

1

Z
Pr(C)
︸ ︷︷ ︸

C

∑

G

Pr(G)
︸ ︷︷ ︸

G

∑

A

Pr(A|C,G)
︸ ︷︷ ︸

A

Pr(l1|A)
︸ ︷︷ ︸

L1

Pr(l2|A)
︸ ︷︷ ︸

L2

whereC, G, A, L1, L2 denote the relevantfactors.

The basic idea is to evaluate (4) from right to left (or in terms of the tree, bottom
up)storing resultsas we progress andre-using themwhen necessary.

Pr(l1|A) depends on the value ofA. We store it as a tableFL1(A). Similarly for
Pr(l2|A).

FL1(A) =

(
0.99
0.08

)

FL2(A) =

(
0.6
0.001

)

as Pr(l1|a) = 0.99, Pr(l1|¬a) = 0.08 and so on.

136

Optimisation 2: variable elimination

Similarly for Pr(A|C,G), which is dependent onA, C andG

FA(A,C,G) =

A C G FA(A,C,G)
⊤ ⊤ ⊤ 0.98
⊤ ⊤ ⊥ 0.96
⊤ ⊥ ⊤ 0.2
⊤ ⊥ ⊥ 0.08
⊥ ⊤ ⊤ 0.02
⊥ ⊤ ⊥ 0.04
⊥ ⊥ ⊤ 0.8
⊥ ⊥ ⊥ 0.92

Can we write
Pr(A|C,G)Pr(l1|A)Pr(l2|A) (5)

as
FA(A,C,G)FL1(A)FL2(A) (6)

in a reasonable way?

137

Optimisation 2: variable elimination

The answer is “yes” providedmultiplication of factorsis defined correctly. Look-
ing at (4)

1

Z
Pr(C)

∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

note that the values of the product (5) in the summation depend on the values of
C andG external to it, and the values ofA themselves. So (6) should be a table
collecting values for (5) where correspondences between RVs are maintained.

This leads to a definition for multiplication of factors bestgiven by example.

138

Optimisation 2: variable elimination

F(A,B)F(B,C) = F(A,B,C)

where

A B F(A,B) B C F(B,C) A B C F(A,B,C)
⊤ ⊤ 0.3 ⊤ ⊤ 0.1 ⊤ ⊤ ⊤ 0.3× 0.1
⊤ ⊥ 0.9 ⊤ ⊥ 0.8 ⊤ ⊤ ⊥ 0.3× 0.8
⊥ ⊤ 0.4 ⊥ ⊤ 0.8 ⊤ ⊥ ⊤ 0.9× 0.8
⊥ ⊥ 0.1 ⊥ ⊥ 0.3 ⊤ ⊥ ⊥ 0.9× 0.3

⊥ ⊤ ⊤ 0.4× 0.1
⊥ ⊤ ⊥ 0.4× 0.8
⊥ ⊥ ⊤ 0.1× 0.8
⊥ ⊥ ⊥ 0.1× 0.3

139

Optimisation 2: variable elimination

This process gives us

FA(A,C,G)FL1(A)FL2(A) =

A C G
⊤ ⊤ ⊤ 0.98× 0.99× 0.6
⊤ ⊤ ⊥ 0.96× 0.99× 0.6
⊤ ⊥ ⊤ 0.2× 0.99× 0.6
⊤ ⊥ ⊥ 0.08× 0.99× 0.6
⊥ ⊤ ⊤ 0.02× 0.08× 0.001
⊥ ⊤ ⊥ 0.04× 0.08× 0.001
⊥ ⊥ ⊤ 0.8× 0.08× 0.001
⊥ ⊥ ⊥ 0.92× 0.08× 0.001

140

Optimisation 2: variable elimination

How about

FA,L1,L2(C,G) =
∑

A

FA(A,C,G)FL1(A)FL2(A)

To denote the fact thatA has been summed out we place a bar over it in the
notation.

∑

A

FA(A,C,G)FL1(A)FL2(A) =FA(a, C,G)FL1(a)FL2(a)

+ FA(¬a, C,G)FL1(¬a)FL2(¬a)
where

FA(a, C,G) =

C G
⊤ ⊤ 0.98
⊤ ⊥ 0.96
⊥ ⊤ 0.2
⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly forFA(¬a, C,G), FL1(¬a) andFL2(¬a).

141

Optimisation 2: variable elimination

FA(a, C,G)FL1(a)FL2(a) =

C G
⊤ ⊤ 0.98× 0.99× 0.6
⊤ ⊥ 0.96× 0.99× 0.6
⊥ ⊤ 0.2× 0.99× 0.6
⊥ ⊥ 0.08× 0.99× 0.6

FA(¬a, C,G)FL1(¬a)FL2(¬a) =

C G
⊤ ⊤ 0.02× 0.08× 0.001
⊤ ⊥ 0.04× 0.08× 0.001
⊥ ⊤ 0.8× 0.08× 0.001
⊥ ⊥ 0.92× 0.08× 0.001

FA,L1,L2(C,G) =

C G
⊤ ⊤ (0.98× 0.99× 0.6) + (0.02× 0.08× 0.001)
⊤ ⊥ (0.96× 0.99× 0.6) + (0.04× 0.08× 0.001)
⊥ ⊤ (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)
⊥ ⊥ (0.08× 0.99× 0.6) + (0.92× 0.08× 0.001)

142

Optimisation 2: variable elimination

Now, say for example we have¬c, g. Then doing the calculation explicitly would
give
∑

A

Pr(A|¬c, g)Pr(l1|A))Pr(l2|A)

= Pr(a|¬c, g)Pr(l1|a)Pr(l2|a) + Pr(¬a|¬c, g)Pr(l1|¬a)Pr(l2|¬a)
= (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)

which matches!

Continuing in this manner form

FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C,G)

sum outG to obtainFG,A,L1,L2(C) =
∑

GFG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)

and normalise.

143

Optimisation 2: variable elimination

What’s the computational complexity now?

• For Bayesian networks with suitable structure we can perform inference in
linear time and space.

• However in the worst case it is#P -hard, which isworse thanNP -hard.

Consequently, we may need to resort toapproximate inference.

144

Uncertainty IV: Simple Decision-Making

We now examine:

• The concept of autility function.

• The way in which such functions can be related to reasonable axioms about
preferences.

• A generalization of the Bayesian network, known as adecision network.

• How to measure thevalue of information, and how to use such measurements
to design agents that canask questions.

Reading:Russell and Norvig, chapter 16.

145

Simple decision-making

We now look at choosing an action by maximisingexpected utility.

A utility functionU (s) measures thedesirabilityof astate.

If we can express a probability distribution for the states resulting from alternative
actions, then we can act in order to maximise expected utility.

For an actiona, letResult(a) = {s1, . . . , sn} be a set of states that might be the
result of performing actiona. Then the expected utility ofa is

EU(a|E) =
∑

s∈Result(a)
Pr(s|a, E)U (s)

Note that this applies toindividual actions. Sequences of actions will not be
covered in this course.

146

Simple decision-making: all of AI?

Much as this looks like a complete and highly attractive method for an agent to
decide how to act, it hides a great deal of complexity:

1. It may be hard to computeU (s). You generallydon’t know how good a state
is until you know where it might lead on to: planningetc...

2. Knowing what state you’re currently in involvesmost of AI!

3. Dealing with Pr(s|a,E) involvesBayesian networks.

147

Utility in more detail

Overall, we now want to expresspreferencesbetween different things.

Let’s use the following notation:

X > Y : X is preferred toY
X = Y : we are indifferent regardingX andY
X ≥ Y : X is preferred, or we’re indifferent

X, Y and so on arelotteries. A lottery has the form

X = [p1, O1|p2, O2| · · · |pn, On]

whereOi are the outcomes of the lottery andpi their respective probabilities.
Outcomes can beother lotteriesor actual states.

148

Axioms for utility theory

Given we are dealing with preferences it seems that there aresome clear properties
that such things should exhibit:

Transitivity: if X > Y andY > Z thenX > Z.

Orderability: eitherX > Y or Y > X orX = Y .

Continuity: if X > Y > Z then there is a probabilityp such that

[p,X|(1− p), Z] = Y

Substitutability: if X = Y then

[p,X|(1− p), L] = [p, Y |(1− p), L]

149

Axioms for utility theory

Monotonicity: if X > Y then for probabilitiesp1 andp2, p1 ≥ p2 if and only if

[p1, X|(1− p1), Y] ≥ [p2, X|(1− p2), Y]

Decomposability:

[p1, X|(1− p1), [p2, Y |(1− p2), Z]] = [p1, X|(1− p1)p2, Y |(1− p1)(1− p2), Z]

If an agent’s preferences conform to the utility theory axioms—and note that
we areonly considering preferences, not numbers—then it is possible to define a
utility function U (s) for states such that:

1. U (s1) > U (s2)←→ s1 > s2

2. U (s1) = U (s2)←→ s1 = s2

3. U ([p1, s1|p2, s2| · · · |pn, sn]) =
∑n

i=1 piU (si).

We therefore have a justification for the suggested approach.

150

Designing utility functions

There is complete freedom in how a utility function is defined, but clearly it will
pay to define them carefully.

Example: the utility of money (for most people) exhibits amonotonic preference.
That is, weprefer to havemore of it.

But we need to talk about preferences betweenlotteries.

Say you’ve won100, 000 pounds in a quiz and you’re offered a coin flip:

• For heads: you win a total of1, 000, 000 pounds.

• For tails: you walk away with nothing!

Would you take the offer?

151

Designing utility functions

Theexpected monetary value(EMV) of this lottery is

(0.5× 1, 000, 000) + (0.5× 0) = 500, 000

whereas the EMV of the initial amount is100, 000.

BUT: most of us would probably refuse to take the coin flip.

The story is not quite as simple as this though: our attitude probably depends on
how much money we have to start with. If I haveM pounds to start with then I am
in fact choosing between expected utility of

U (M + 100, 000)

and expected utility of

(0.5× U (M)) + (0.5× U (M + 1, 000, 000))

If M is 50, 000, 000 my attitude is much different to if it is10, 000.

152

Designing utility functions

In fact, research shows that the utility ofM pounds is for most people almost
exactly proportional tologM for M > 0. . .

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
8

−8

−6

−4

−2

0

2

4

6

8
The utility U(M) of M pounds

M

U
(M

)

. . . and follows a similar shape forM < 0.

153

Decision networks

Decision networks—also known asinfluence diagrams. . .

Build cost

Site of landfill

Legal action

Road traffic Air quality

Cost to taxpayer

Road conjestion

Utility

. . . allow us to workactionsandutilities into the formalism ofBayesian networks.

A decision network has three types of node. . .

154

Decision networks

A decision network has three types of node:

Chance nodes: are denoted by ovals. These are random variables (RVs) repre-
sented by a distribution conditional on their parents, as inBayesian networks.
Parents can be other chance nodes or a decision node.

Decision nodes: are denoted by squares. They describe possible outcomes ofthe
decision of interest. Here we deal only withsingledecisions: multiple decisions
require alternative techniques.

Utility nodes: are denoted by diamonds. They describe the utility function relevant
to the problem, as a function of the values of the node’s parents.

155

Decision networks

Sometimes such diagrams are simplified by leaving out the RVsdescribing the
new state and converting current state and decision directly to utility:

This gives us fewer nodes to deal with BUT
potentially less flexibility in exploring alternative
descriptions of the problem.

and so never appear as evidence.
road conjestion describe future state
Air quality, cost to taxpayer and

Build cost

Legal action

Road traffic

Site of landfill

Utility

EU(a|E) =
∑

s∈Result(a) Pr(s|a,E)U(s)

This is anaction-utility table. The utility no longer depends on a state but is the
expected utility for a given action.

156

Evaluation of decision networks

Once aspecificaction is selected for a decision node it acts like a chance node for
which a specific value is being used asevidence.

1. Set the current state chance nodes to their evidence values.

2. For each potential action

• Fix the decision node.

• Compute the probabilities for the utility node’s parents.

• Compute the expected utility.

3. Return the action that maximisedEU(a|E).

157

The value of information

We have been assuming that a decision is to be made withall evidence available
beforehand. This is unlikely to be the case.

Knowingwhat questions one should askis a central, and important part of making
decisions.Example:

• Doctors do not diagnose by first obtaining results for all possible tests on their
patients.

• They ask questions to decide what tests to do.

• They are informed in formulating which tests to perform by probabilities of
test outcomes, and by the manner in which knowing an outcome might im-
prove treatment.

• Tests can have associated costs.

158

The value of perfect information

Information value theoryprovides a formal way in which we can reason about
what further information to gather usingsensing actions.

Say we have evidenceE, so

EU(action|E) = max
a

∑

s∈Result(a)
Pr(s|a,E)U (s)

denotes how valuable the best action based onE must be.

How valuable would it be to learn about afurther piece of evidence?

If we examined another RVE ′ and found thatE ′ = e′ then thebest action might
be alteredas we’d be computing

EU(action′|E,E ′) = max
a

∑

s∈Result(a)
Pr(s|a,E,E ′)U (s)

BUT: becauseE ′ is a RV, and in advance of testing we don’t know its value, we
need toaverageover itspossible valuesusing ourcurrent knowledge.

159

The value of perfect information

This leads to the definition of thevalue of perfect information(VPI)

VPIE(E
′) =

{
∑

e′
Pr(E ′ = e′|E)EU(action′|E,E ′ = e′)

}

− EU(action|E)

VPI has the following properties:

• VPIE(E
′) ≥ 0

• It is not necessarily additive, that is, it is possible that

VPIE(E
′, E ′′) 6= VPIE(E

′) + VPIE(E
′′)

• It is independent of ordering

VPIE(E
′, E ′′) = VPIE(E

′) + VPIE,E′(E
′′)

= VPIE(E
′′) + VPIE,E′′(E

′)

160

Agents that can gather information

In constructing an agent with the ability to ask questions, we would hope that it
would:

• Use a good order in which to ask the questions.

• Avoid asking irrelevant questions.

• Trade off thecostof obtaining information against thevalueof that informa-
tion.

• Choose a good time tostopasking questions.

We now have the means with which to approach such a design.

161

Agents that can gather information

Assuming we can associate a costC(E ′) with obtaining the knowledge thatE ′ =
e′ an agent can act as follows:

• Given a decision network and current percept.

• Find the piece of evidenceE ′ maximisingVPIE(E
′)− C(E ′).

• If VPIE(E
′)− C(E ′) is positive then find the value ofE ′, else take the action

indicated by the decision network.

This is known as amyopicagent as it requests a single piece of evidence at once.

162

Uncertainty V: probabilistic reasoning through time

We now examine:

• How an agent might operate by keeping track of the state of itsenvironment
in an uncertain world, and how alterations in world state anduncertainty in
observing the world can be modelled using probability distributions.

• How inferences can be performed regarding the current state, past state and
future states.

• TheViterbi algorithmfor computing the most likely sequence.

• A slightly simplified system within this framework called ahidden Markov
model(HMM), and the way in which some inference tasks can be simplified
in the HMM case.

Reading:Russell and Norvig, chapter 15.

163

Probabilistic reasoning through time

A fundamental idea throughout the AI courses has been that anagent should keep
track of thestate of the environment:

• The environment’s statechanges over time.

• The knowledge ofhow the state changesmay beuncertain.

• The agent’sperceptionof the state of the environmentmay be uncertain.

For all the usual reasons related touncertainty, we need to move beyond logic,
situation calculusetc.

164

States and evidence

We model the (unobservable) state of the environment as follows:

• We use asequence
(S0, S1, S2, . . .)

of setsof random variables(RVs).

• EachSt is asetof RVs
St = {S(1)

t , . . . , S
(n)
t }

denoting the state of the environment at timet, wheret = 0, 1, 2,

Think of the state as changing over time.

S0→ S1 → S2→ · · ·

165

States and evidence

At each timet there is also anobservableset

Et = {E(1)
t , . . . , E

(m)
t }

of random variables denoting theevidence that an agent obtains about the stateat
time t.

As usual capitals denote RVs and lower case denotes actual values. So actual
values for the assorted RVs are denoted

St = {s(1)t , . . . , s
(n)
t } = st

Et = {e(1)t , . . . , e
(m)
t } = et

166

Stationary and Markov processes

As t can in principle increase without bound we now need some simplifying as-
sumptions.

Assumption 1: We deal withstationary processes: probability distributions do not
change over time.

Assumption 2: We deal withMarkov processes

Pr(St|S0:t−1) = Pr(St|St−1) (7)

whereS0:t−1 = (S0, S1, . . . , St−1).

(Strictly speaking this is afirst order Markov Process, and we’ll only consider
these.)

Pr(St|St−1) is called thetransition model.

167

Stationary and Markov processes

Assumption 3: We assume that evidence only depends on the current state

Pr(Et|S0:t, E1:t−1) = Pr(Et|St) (8)

Then

Pr(Et|St) is called thesensor model.

Pr(St|St−1)

Pr(Et|St)

Pr(S0) S0 S1 S2 S3

E1 E2 E3

· · ·

Pr(S0) is theprior probability of the starting state. We need this as there has to be
some way of getting the process started.

168

The full joint distribution

Given:

1. The prior Pr(S0).

2. The transition model Pr(St|St−1).

3. The sensor model Pr(Et|St).

along with the assumptions of stationarity and the assumptions of independence
in equations 7 and 8 we have

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)
t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si) .

This follows from basic probability theory as for example

Pr(S0, S1, S2, E1, E2) = Pr(E2|S0:2, E1)Pr(S2|S0:1, E1)Pr(E1|S0:1)Pr(S1|S0)Pr(S0)

= Pr(E2|S2)Pr(S2|S1)Pr(E1|S1)Pr(S1|S0)Pr(S0)

169

Example: two biased coins

Here’s a simple example with onlytwo statesandtwo observations.

I havetwo biased coins.

I flip oneandtell you the outcome.

I then eitherstaywith the same coin, orswapthem.

This continues, producing a succession of outcomes:

0.2

0.2

head

0.90.1

head

0.80.8 coin1 coin2

170

Example: two biased coins

We’ll use the following numbers:

• The prior Pr(S0 = coin1) = 0.5.

• The transition model

Pr(St = coin1|St−1 = coin1) = Pr(St = coin2|St−1 = coin2) = 0.8

Pr(St = coin1|St−1 = coin2) = Pr(St = coin2|St−1 = coin1) = 0.2

• The sensor model

Pr(Et = head|St = coin1) = 0.1

Pr(Et = head|St = coin2) = 0.9

171

Example: two biased coins

This is straightforward to simulate.

Here’s an example of what happens:

[C2,C2,C1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

⇓

[Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Tl,Tl,Hd,Tl,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd]

As expected, we tend to see runs of a single coin, and might expect to be able to
guess which is being used as one favours heads and the other tails.

172

Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make a good start to
the coming week, he climbs on a Sunday with probability0.98. Being concerned
for his own safety, he is less likely to climb today if he climbed yesterday, so

Pr(climb today|climb yesterday) = 0.4

If he did not climb yesterday then he is very unlikely to climbtoday, so

Pr(climb today|¬climb yesterday) = 0.1

Unfortunately, he is not a very good climber, and is quite likely to injure himself
if he goes climbing, so

Pr(injury|climb today) = 0.8

whereas
Pr(injury|¬climb today) = 0.1

173

Example: 2008, paper 9, question 5

This has a similar corresponding diagram:

0.1

0.10.8

0.4

0.6

0.9¬climbclimb

injury injury

We’ll look at the rest of this exam question later.

174

Performing inference

There are four basic inference tasks that we might want to perform.

In each of the following cases, assume that we have observed the evidence

E1:t = e1:t

Task 1:filtering

Deduce what state we might now be in by computing

Pr(St|e1:t).

In the coin tossing question:“If you’ve seen all the outcomes so far, infer which
coin was used last”.

In the exam question:“If you observed all the injuries so far, infer whether my
friend climbed today”.

175

Performing inference

Task 2:prediction

Deduce what state we might be in some time in the future by computing

Pr(St+T |e1:t) for someT > 0.

In the coin tossing question:“If you’ve seen all the outcomes so far, infer which
coin will be tossedT steps in the future”.

In the exam question:“If you’ve observed all the injuries so far, infer whether my
friend will go climbingT nights from now”.

176

Performing inference

Task 3:Smoothing

Deduce what state we might have been in at some point in the past by computing

Pr(St|e1:T) for 0 ≤ t < T.

In the coin tossing question:“If you’ve seen all the outcomes so far, infer which
coin was tossed at timet in the past”.

In the exam question:“If you’ve observed all the injuries so far, infer whether my
friend climbed on nightt in the past”.

177

Performing inference

Task 4:Find the most likely explanation

Deduce the most likely sequence of states so far by computing

argmax
s1:t

Pr(s1:t|e1:t)

In the coin tossing question:“If you’ve seen all the outcomes so far, infer the most
probable sequence of coins used”.

In the exam question:“If you’ve observed all the injuries so far, infer the most
probable collection of nights on which my friend climbed”.

178

Filtering

We want to compute Pr(St|e1:t). This is often called theforward messageand
denoted

f1:t = Pr(St|e1:t)
for reasons that are about to become clear.

Remember thatSt is an RV and sof1:t is a probability distributioncontaining a
probability for each possible value ofSt.

It turns out that this can be done in a simple manner with arecursive estimation.
Obtain the result at timet + 1:

1. using the result from timet and...

2. ...incorporating new evidenceet+1.

f1:t+1 = g(et+1, f1:t)

for a suitable functiong that we’ll now derive.

179

Filtering

Step 1:

Project the current state distribution forward

Pr(St+1|e1:t+1) = Pr(St+1|e1:t, et+1)

= cPr(et+1|St+1, e1:t)Pr(St+1|e1:t)
= cPr(et+1|St+1)
︸ ︷︷ ︸

Sensor model

Pr(St+1|e1:t)
︸ ︷︷ ︸
Needs more work

where as usualc is a constant that normalises the distribution. Here,

• The first line does nothing but splite1:t+1 into et+1 ande1:t.

• The second line is an application of Bayes’ theorem.

• The third line usesassumption 3regarding sensor models.

180

Filtering

Step 2:

To obtain Pr(St+1|e1:t)
Pr(St+1|e1:t) =

∑

st

Pr(St+1, st|e1:t)

=
∑

st

Pr(St+1|st, e1:t)Pr(st|e1:t)

=
∑

st

Pr(St+1|st)
︸ ︷︷ ︸
Transition model

Pr(st|e1:t)
︸ ︷︷ ︸

Available from previous step

Here,

• The first line uses marginalisation.

• The second line uses the basic equation Pr(A,B) = Pr(A|B)Pr(B).

• The third line usesassumption 2regarding transition models.

181

Filtering

Pulling it all together

Pr(St+1|e1:t+1) = cPr(et+1|St+1)
︸ ︷︷ ︸

Sensor model

∑

st

Pr(St+1|st)
︸ ︷︷ ︸

Transition model

Pr(st|e1:t)
︸ ︷︷ ︸

From previous step

(9)

This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)

Here

• f1:t is a shorthand for Pr(St|e1:t).
• f1:t is often interpreted as amessagebeing passed forward.

• The process is started using theprior.

182

Prediction

Prediction is somewhat simpler as

Pr(St+T+1|e1:t)
︸ ︷︷ ︸
Prediction att+T+1

=
∑

st+T

Pr(St+T+1, st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T , e1:t)Pr(st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T)
︸ ︷︷ ︸

Transition model

Pr(st+T |e1:t)
︸ ︷︷ ︸
Prediction att+T

However we do not get to make accurate predictions arbitrarily far into the future!

183

Smoothing

For smoothing, we want to calculate Pr(St|e1:T) for 0 ≤ t < T .

Again, we can do this in two steps.

Step 1:
Pr(St|e1:T) = Pr(St|e1:t, et+1:T)

= cPr(St|e1:t)Pr(et+1:T |St, e1:t)

= cPr(St|e1:t)Pr(et+1:T |St)

= cf1:tbt+1:T

Here

• f1:t is the forward message defined earlier.

• bt+1:T is a shorthand for Pr(et+1:T |St) to be regarded asa message being passed
backward.

184

Smoothing

Step 2:

bt+1:T = Pr(et+1:T |St) =
∑

st+1

Pr(et+1:T , st+1|St)

=
∑

st+1

Pr(et+1:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1, et+2:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1|st+1)
︸ ︷︷ ︸

Sensor model

Pr(et+2:T |st+1)
︸ ︷︷ ︸

bt+2:T

Pr(st+1|St)
︸ ︷︷ ︸

Transition model

= BACKWARD(et+1:T , bt+2:T)

(10)

This process is initialised with

bt+1:t = Pr(eT+1:T |ST) = (1, . . . , 1)

185

The forward-backward algorithm

So:our original aim of computing Pr(St|e1:T) can be achieved using:

• A recursive process working from time1 to timet (equation 9).

• A recursive process working from timeT to timet + 1 (equation 10).

This results in a process that isO(T) given the evidencee1:T and smooths for a
singlepoint at timet.

To smooth atall points1 : T we can easily repeat the process obtainingO(T 2).

Alternatively a very simple example ofdynamic programmingallows us to smooth
at all points inO(T) time.

186

The forward-backward algorithm

Done

Prior

Recursively compute all valuesbt+1:T and combine with stored values forf1:t.

Recursively compute all values forf1:t and store results

187

Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain

argmax
s1:t

Pr(s1:t|e1:t)

Earlier we derived the joint distribution for all relevant variables

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)
t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si)

188

Computing the most likely sequence: the Viterbi algorithm

We therefore have

max
s1:t

Pr(s1:t, St+1|e1:t+1)

= cmax
s1:t

Pr(et+1|St+1)Pr(St+1|st)Pr(s1:t|e1:t)

= cPr(et+1|St+1)max
st






Pr(St+1|st) max

s1:t−1
Pr(s1:t−1, st|e1:t)







This looksa bit fierce, despite the fact that:

• The second line is just Bayes’ theorem applied to the joint distribution.

• The last line is just a re-arrangement of the second line.

189

Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamic programming algo-
rithm called theViterbi algorithm.

Step 1:Simplify the notation.

• Assume there aren statess1, . . . , sn andm possible observationse1, . . . , em at
any given time.

• Denote Pr(St = sj|St−1 = si) by pi,j(t).

• Denote Pr(et|St = si) by qi(t).

It’s important to remember in what follows that theobservations are knownbut
that we’remaximising over all possible state sequences.

190

Computing the most likely sequence: the Viterbi algorithm

The equation we’re interested in is now of the form

P =
T∏

t=1

pi,j(t)qi(t)

(The prior Pr(S0) has been dropped out for the sake of clarity, but is easy to put
back in in what follows.)

The equationP will be referred to in what follows.

It is in fact afunctionof any given sequence of states.

191

Computing the most likely sequence: the Viterbi algorithm

Step 2:Make a grid: columns denote time and rows denote state.

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

192

Computing the most likely sequence: the Viterbi algorithm

Step 3:Label the nodes:

• Say at timet the actual observation waset. Then label the node forsi in
columnt with the valueqi(t).

• Any sequence of states through time is now a path through the grid. So for any
transition fromsi at timet− 1 to sj at timet label the transition with the value
pi,j(t).

In the following diagrams we can often just writepi,j andqi because the time is
clear from the diagram.

So for instance...

193

Computing the most likely sequence: the Viterbi algorithm

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1)
p1,3(3)

q3(3)

pn,n−1(k + 1)

qn−1(k + 1)

194

Computing the most likely sequence: the Viterbi algorithm

• The value ofP =
∏T

t=1 pi,j(t)qi(t) for any path through the grid is just the
product of the corresponding labels that have been added.

• But we don’t want to find the maximum by looking at all the possible paths
because this would be time-consuming.

• TheViterbi algorithmcomputes the maximum by moving from one column to
the next updating as it goes.

• Say you’re at columnk and for each nodem in that column you know the
highest valuefor the product to this point overany possible path. Call this:

Wm(k) = max
s1:k

k∏

t=1

pi,j(t)qi(t)

195

Computing the most likely sequence: the Viterbi algorithm

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

Wn(k)

196

Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

• The valuesWi(k) for i = 1, . . . , n at timek.

• The numberspi,j(k + 1).

• The numbersqi(k + 1).

to compute the valuesWi(k + 1) for the next columnk + 1.

This is because

Wi(k + 1) = max
j

Wj(k)pj,i(k + 1)qi(k + 1)

197

Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for timet:

• The node with the largest value forWi(t) tells you the largest possible value
of P .

• Provided you storedthe path taken to get thereyou canwork backwardsto
find the corresponding sequence of states.

This is theViterbi algorithm.

198

Computing the most likely sequence: the Viterbi algorithm

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

W3(t) maximum

199

Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we have asingle,
discretestate variableSi taking valuess1, s2, . . . , sn. For example, withn = 3 we
might have

s1

s2

s3

Pr(St+1|St = s1) Pr(St+1|St = s2)

0.3

0.6

0.1

0.2

0.6

0.2

Pr(St+1|St = s3)

0.2

0.3

0.5

s3

s2s1

200

Hidden Markov models

In this simplified case the conditional probabilities Pr(St+1|St) can be represented
using the matrix

Sij = Pr(St+1 = sj|St = si)

or for the example on the previous slide

S =





0.3 0.1 0.6
0.2 0.6 0.2
0.2 0.3 0.5





← Pr(S|s1)
← Pr(S|s2)
← Pr(S|s3)

=







Pr(s1|s1) Pr(s2|s1) · · · Pr(sn|s1)
Pr(s1|s2) Pr(s2|s2) · · · Pr(sn|s2)

...
Pr(s1|sn) Pr(s2|sn) · · · Pr(sn|sn)







To save space, I am abbreviating Pr(St+1 = si|St = sj) to Pr(si|sj).

201

Hidden Markov models

The computations we’re making are always conditional on some actual observa-
tionse1:T .

For eacht we can therefore use the sensor model to define a further matrix Et:

• Et is square and diagonal (all off-diagonal elements are0).

• Theith element of the diagonal is Pr(et|St = si).

So in our present example with3 states, there will be a matrix

Et =





Pr(et|s1) 0 0
0 Pr(et|s2) 0
0 0 Pr(et|s3)





for eacht = 1, . . . , T .

202

Hidden Markov models

In the general case the equation for filtering was

Pr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)

and the messagef1:t was introduced as a representation of Pr(St|e1:t).
In the present case we can definef1:t to be the vector

f1:t =







Pr(s1|e1:t)
Pr(s2|e1:t)

...
Pr(sn|e1:t)







Key point: the filtering equation now reduces to nothing but matrix multiplication.

203

What does matrix multiplication do?

What does matrix multiplication do?It computes weighted summations:

Ab =







a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
an,1 an,2 · · · an,m













b1
b2
...
bm







=







∑m
i=1 a1,ibi∑m
i=1 a2,ibi...

∑m
i=1 an,ibi







So the point at the end of the last slide shouldn’t come as a bigsurprise!

204

Hidden Markov models

Now, note that if we haven states

STf1:t =








Pr(s1|s1) · · · Pr(s1|sn)
Pr(s2|s1) · · · Pr(s2|sn)

...
Pr(sn|s1) · · · Pr(sn|sn)















Pr(s1|e1:t)
Pr(s2|e1:t)

...
Pr(sn|e1:t)








=








Pr(s1|s1)Pr(s1|e1:t) + · · · + Pr(s1|sn)Pr(sn|e1:t)
Pr(s2|s1)Pr(s1|e1:t) + · · · + Pr(s2|sn)Pr(sn|e1:t)

...
Pr(sn|s1)Pr(s1|e1:t) + · · · + Pr(sn|sn)Pr(sn|e1:t)








=








∑

s Pr(s1|s)Pr(s|e1:t)
∑

s Pr(s2|s)Pr(s|e1:t)
...

∑

s Pr(sn|s)Pr(s|e1:t)








205

Hidden Markov models

And taking things one step further

Et+1S
Tf1:t =





Pr(et+1|s1) 0
.. .

0 Pr(et+1|sn)











∑

s Pr(s1|s)Pr(s|e1:t)∑

s Pr(s2|s)Pr(s|e1:t)
...

∑

s Pr(sn|s)Pr(s|e1:t)







=







Pr(et+1|s1)
∑

s Pr(s1|s)Pr(s|e1:t)
Pr(et+1|s2)

∑

s Pr(s2|s)Pr(s|e1:t)
...

Pr(et+1|sn)
∑

s Pr(sn|s)Pr(s|e1:t)







Compare this with the equation for filtering

Pr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)

206

Hidden Markov models

Comparing the expression forEt+1S
Tf1:t with the equation for filtering we see

that

f1:t+1 = cEt+1S
Tf1:t

and a similar equation can be found forb

bT+1:t = SET+1bT+2:t

Exercise: derive this.

The fact that these can be expressed simply using only multiplication of vectors
and matrices allows us to make an improvement to the forward-backward algo-
rithm.

207

Hidden Markov models

Theforward-backwardalgorithm works by:

• Moving up the sequence from1 to T , computing and storing values forf .

• Moving down the sequence fromT to 1 computing values forb andcombining
them with the stored values forf using the equation

Pr(St|e1:T) = cf1:tbt+1:T

Now in our simplified HMM case we have

f1:t+1 = cEt+1S
Tf1:t

or multiplying through by(Et+1S
T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1

208

Hidden Markov models

So as long as:

• We know thefinal value forf .

• ST has an inverse.

• Every observation has non-zero probability in every state.

Wedon’t have to storeT different values forf—we just work through, discarding
intermediate values, to obtain the last value and then work backward.

209

Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make a good start to
the coming week, he climbs on a Sunday with probability0.98. Being concerned
for his own safety, he is less likely to climb today if he climbed yesterday, so

Pr(climb today|climb yesterday) = 0.4

If he did not climb yesterday then he is very unlikely to climbtoday, so

Pr(climb today|¬climb yesterday) = 0.1

Unfortunately, he is not a very good climber, and is quite likely to injure himself
if he goes climbing, so

Pr(injury|climb today) = 0.8

whereas
Pr(injury|¬climb today) = 0.1

210

Example: 2008, paper 9, question 5

You learn that on Monday and Tuesday evening he obtains an injury, but on
Wednesday evening he does not. Use the filtering algorithm tocompute the prob-
ability that he climbed on Wednesday.

Initially

f1:0 =

(
0.98
0.02

)

S =

(
0.4 0.6
0.1 0.9

)

E =

(
0.8 0
0 0.1

)

E ′ =

(
0.2 0
0 0.9

)

211

Example: 2008, paper 9, question 5

The update equation is
f1:t+1 = cEt+1S

Tf1:t

so

f1:1 =
c

10, 000

(
8 0
0 1

)(
4 1
6 9

)(
98
2

)

=

(
0.83874
0.16126

)

Repeating this twice more usingE ′ rather thanE the final time gives

f1:2 =

(
0.81268
0.18732

)

f1:3 =

(
0.10429
0.89571

)

so the answer is0.1.

212

Example: 2008, paper 9, question 5

Over the course of the week, you also learn that he does not obtain an injury on
Thursday or Friday. Use the smoothing algorithm to compute the probability that
he climbed on Thursday.

TheS, E andE ′ matrices are the same. The backward message starts as

b6:5 =

(
1
1

)

and the update equation is
bt:T = SEtbt+1:T

Then working backwards

b5:5 =
1

100

(
4 6
1 9

)(
2 0
0 9

)(
1
1

)

=

(
0.62
0.83

)

213

Example: 2008, paper 9, question 5

We also need one more forward step, which gives

f1:4 =

(
0.03249
0.96751

)

Finally

cf1:4b5:5 = c

(
0.03249× 0.62
0.96751× 0.83

)

=

(
0.02447
0.97553

)

giving the answer0.02447.

214

Online smoothing

Say we want to smooth at afixed number of time steps. We can also obtain a
simple algorithm for updating the result each time a newet+1 appears.

1 2 TT − lag
· · · · · ·

1 2 TT − lag
· · · · · ·

NeweT+1

Smooth here

Update to here

T + 1T − lag+ 1

215

Online smoothing

As usual we need to calculate

cf1:T−lagbT−lag+1:T

to smooth at time(T − lag) if we’ve progressed to timeT . So: assumef1:T−lag

andbT−lag+1:T are known.

What can we now do wheneT+1 arrives to obtainf1:T−lag+1 andbT−lag+2:T+1?

f is easy to update because as usual

f1:T−lag+1 = cET−lag+1S
T f1:T−lag

Known

216

Online smoothing

b is more tricky.

We know that
bT−lag+1:T = SET−lag+1bT−lag+2:T

and continuing this recursion up to the end of the sequence atT gives

bT−lag+1:T =

T∏

i=T−lag+1

SEi ×







1
1
...
1







Define

βa:b =
b∏

i=a

SEi

so

bT−lag+1:T = βT−lag+1:T ×







1
1
...
1







217

Online smoothing

Now wheneT+1 arrives we have

bT−lag+2:T+1 =
T+1∏

i=T−lag+2

SEi ×







1
1
...
1







= βT−lag+2:T+1 ×







1
1
...
1







= E−1T−lag+1S
−1βT−lag+1:TSET+1 ×







1
1
...
1







218

Online smoothing

This leads to an easy way to updateβ

βa+1:b+1 = E−1a S−1βa:bSEb+1

Using this gives the required update forb.

219

Supervised learning II: the Bayesian approach

We now place supervised learning into a probabilistic setting by examining:

• The application of Bayes’ theorem to thesupervised learning problem.

• Priors, the likelihood, and the posterior probabilityof a hypothesis.

• The maximum likelihoodand maximum a posteriorihypotheses, and some
examples.

• Bayesian decision theory: minimising the error rate.

• Application of the approach toneural networks, using approximation tech-
niques.

220

Reading

There is some relevant material to be found inRussell and Norvigchapters 18 to
20 although the intersection between that material and whatI will cover is small.

Almost all of what I cover can be found in:

• Machine Learning. Tom Mitchell, McGraw Hill 1997, chapter 6.

• Pattern Recognition and Machine Learning. Christopher M. Bishop, Springer,
2006.

221

Supervised learning: a quick reminder

We want to design aclassifier, denotedh(x)

x

Classifier

h(x) LabelAttribute vector

It should take an attribute vector

xT =
(
x1 x2 · · · xn

)

and label it.

What we mean bylabel depends on whether we’re doingclassificationor regres-
sion.

222

Supervised learning: a quick reminder

In classificationwe’re assigningx to one of a set{ω1, . . . , ωc} of c classes.

For example, ifx contains measurements taken from a patient then there mightbe
three classes:

ω1 = patient has disease
ω2 = patient doesn’t have disease
ω3 = don’t ask me buddy, I’m just a computer!

We’ll often specialise to the case of two classes, denotedC1 andC2.

223

Supervised learning: a quick reminder

In regressionwe’re assigningx to areal numberh(x) ∈ R.

For example, ifx contains measurements taken regarding today’s weather then we
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refer to a situation somewhat
between the two, where

h(x) = Pr(x is inC1)

224

Supervised learning: a quick reminder

We don’t want to designh explicitly.

Training sequence

h = L(s)

Labelh(x)

s

Learner
L

Classifier
Attribute vector

x

So we use alearnerL to infer it on the basis of a sequences of training examples.

225

Supervised learning: a quick reminder

Thetraining sequences is a sequence ofm labelled examples.

s =







(x1, y1)
(x2, y2)

...
(xm, ym)







That is, examples of attribute vectorsx with their correct label attached.

So a learner only gets to see the labels for a—most probably small—subset of the
possible inputsx.

Regardless, we aim that the hypothesish = L(s) will usually be successful at
predicting the label of an input it hasn’t seen before.

This ability is calledgeneralization.

226

Supervised learning: a quick reminder

There is generally a setH of hypotheses from whichL is allowed to selecth

L(s) = h ∈ H
H is called thehypothesis space.

The learner can output a hypothesis explicitly or—as in the case of a multilayer
perceptron—it can output a vector

w =
(
w1 w2 · · · wW

)

of weightswhich in turn specifyh

h(x) = f(w;x)

wherew = L(s).

227

Supervised learning: a quick reminder

In AI I you saw thebackpropagation algorithmfor training multilayer percep-
trons, in the case ofregression.

This worked by minimising a function of the weights representing theerror cur-
rently being made:

E(w) =
1

2

m∑

i=1

(f(w;xi)− yi)
2

The summation here is over the training examples. The expression in the summa-
tion grows asf ’s prediction forxi diverges from the known labelyi.

Backpropagation tries to find aw that minimisesE(w) by performinggradient
descent

wt+1 = wt − α
∂E(w)

∂w

∣
∣
∣
∣
wt

228

Difficulties with classical neural networks

There are some well-known difficulties associated with neural network training of
this kind.

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!!

229

Sources of uncertainty

So we have to be careful. But let’s press on with this approachfor a little while
longer...

The model used above suggests two sources of uncertainty that we might treat
with probabilities.

• Let’s assumewe’ve selected anH to use,and it’s the same one nature is using.

• We don’t know how nature choosesh′ fromH. We therefore model our uncer-
tainty by introducing theprior distribution Pr(h) onH.

• There is noise on the training examples.

It’s worth emphasising at this point that in modelling noiseon the training exam-
pleswe’ll only consider noise on the labels. The input vectorsx are not modelled
using a probability distribution.

230

The likelihood

We model our uncertainty in the training examples by specifying a likelihood:

Pr(Y |h,x)
Translation: the probability of seeing a given labelY , when the input vector isx
and the underlying hypothesis ish.

Example: two-class classification. A common likelihood is

Pr(Y = C1|h,x) = σ(h(x))

where
σ(z) =

1

1 + exp(−z)
(Note: strictly speakingx should not appear in these probabilities because it’s not
a random variable. It is included for clarity.)

231

The likelihood

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)

−10
−5

0
5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)

232

The likelihood

So: if we’re given a training sequence,what is the probability that it was generated
using someh?

For an example(x, y), y can beC1 or C2. It’s helpful here to rename the classes
as just1 and0 respectively because this leads to a nice simple expression. Now

Pr(Y |h,x) =
{
σ(h(x)) if Y = 1
1− σ(h(x)) if Y = 0

Consequentlywhen y has a known valuewe can write

Pr(y|h,x) = [σ(h(x))]y [1− σ(h(x))](1−y)

If we assume that the examples are independent then the probability of seeing the
labels in a training sequences is straightforward.

233

The likelihood

Collecting the inputs and outputs ins together into separate matrices, so

yT =
(
y1 y2 · · · ym

)

and
X =

(
x1 x2 · · · xm

)

we have thelikelihood of the training sequence

Pr(y|h,X) =
m∏

i=1

Pr(yi|h,xi)

=
m∏

i=1

[σ(h(xi))]
yi [1− σ(h(xi))]

(1−yi)

234

The likelihood

Another example: regression. A common likelihood in the regression case works
by assuming that examples are corrupted by Gaussian noise with mean0 and some
specified varianceσ2

y = h(x) + ǫ, whereǫ ∼ N (0, σ2)

As usual, the density forN (µ, σ2) is

p(Z) =
1√
2πσ2

exp

(

−(z − µ)2

2σ2

)

by addingh(x) to ǫ we just shift its mean, so

p(y|h,x) = 1√
2πσ2

exp

(

−(y − h(x))2

2σ2

)

235

The likelihood

Consequently if the examples are independent then the likelihood of a training
sequences is

p(y|h,X) =

m∏

i=1

p(yi|h,xi)

=
m∏

i=1

1√
2πσ2

exp

(

−(yi − h(xi))
2

2σ2

)

=
1

(2πσ2)m/2
exp

(

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

)

where we’ve used the fact that

exp(a) exp(b) = exp(a + b)

236

Bayes’ theorem appears once more...

Right: we’ve take care of the uncertainty by introducing theprior p(h) and the
likelihood of the training sequencep(y|h,X).

By this point you hopefully want to apply Bayes’ theorem and write

p(h|y) = p(y|h)p(h)
p(y)

where
p(y) =

∑

h∈H
p(h,y) =

∑

h∈H
p(y|h)p(h)

and to simplify the expression we have now dropped the mention of X as the
inputs are fixed.p(h|y) is called theposterior distribution.

The denominatorZ = p(y) is called theevidenceand leads on to fascinating
issues of its own. Unfortunately we won’t have time to explore them.

237

Bayes’ theorem appears once more...

The boxed equation on the last slide has a very simple interpretation:what’s the
probability that this specifich was used to generate the training sequence I’ve
been given?

Two natural learning algorithms now present themselves:

1. Themaximum likelihood hypothesis

hML = argmax
h∈H

p(y|h)

2. Themaximum a posteriori hypothesis

hMAP = argmax
h∈H

p(h|y)
= argmax

h∈H
p(y|h)p(h)

ObviouslyhML corresponds to the case where the priorp(h) is uniform.

238

Example: maximum likelihood learning

We derived an exact expression for the likelihood in the regression case above:

p(y|h) = 1

(2πσ2)m/2
exp

(

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

)

Proposition: under the assumptions used,any learning algorithm that works by
minimising the sum of squared errors ons findshML .

This is clearly of interest: the notable example is thebackpropagation algorithm.

We now prove the proposition...

239

Example: maximum likelihood learning

The proposition holds because:

hML = argmax
h∈H

p(y|h)

= argmax
h∈H

log p(y|h)

= argmax
h∈H

log

[

1

(2πσ2)m/2
exp

(

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

)]

= argmax
h∈H

log

[
1

(2πσ2)m/2

]

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmax
h∈H

− 1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmin
h∈H

m∑

i=1

(yi − h(xi))
2

240

Example: maximum likelihood learning

Note:

• If the distribution of the noise isnot Gaussiana different result is obtained.

• The use oflog above to simplify a maximisation problem is a standard trick.

• The Gaussian assumption is sometimes, but not always a good choice. (Be-
ware the Central Limit Theorem!).

241

The next step...

We have so far concentrated throughout our coverage of machine learning on
choosing asingle hypothesis.

Are we asking the right question though?

Ultimately, we want to generalise.

That means being presented with a newx and asking the question:what is the
most probable classification ofx?

Is it reasonable to expect a single hypothesis to provide theoptimal answer?

We need to look at what the optimal solution to this kind of problem might be...

242

Bayesian decision theory

What is theoptimalapproach to this problem?

Put another way: how should we make decisions in such a way that the outcome
obtained is, on average, the best possible? Say we have:

• Attribute vectorsx ∈ R
d.

• A set ofclasses{ω1, . . . , ωc}.
• Several possibleactions{α1, . . . , αa}.

The actions can be thought of as saying“assign the vector to class 1”and so on.

There is also alossλ(αi, ωj) associated with taking actionαi when the class isωj.

The loss will sometimes be abbreviated toλ(αi, ωj) = λij.

243

Bayesian decision theory

Say we can alsomodelthe world as follows:

• Classes have probabilities Pr(ω) of occurring.

• The probability of seeingx when the class isω has densityp(x|ω).

Think of nature choosing classes at random (although not revealing them) and
showing us a vector selected at random usingp(x|ω).
As usual Bayes rule tells us that

Pr(ω|x) = p(x|ω)Pr(ω)
p(x)

and now the denominator is

p(x) =
c∑

i=1

p(x|ωi)Pr(ωi).

244

Bayesian decision theory

Say nature shows usx and we take actionαi.

If we alwaystake actionαi when we seex then theaverageloss on seeingx is

R(αi|x) = Eω∼p(ω|x) [λij|x] =
c∑

j=1

λ(αi, ωj)Pr(ωj|x).

The quantityR(αi|x) is called theconditional risk.

Note that this particularx is fixed.

245

Bayesian decision theory

Now say we have adecision ruleα : Rd → {α1, . . . , αa} telling us what action to
take on seeinganyx ∈ R

d.

The average loss, orrisk, is

R = E(x,ω)∼p(x,ω) [λ(α(x), ω)]

= Ex∼p(x)
[
Eω∼Pr(ω|x) [λ(α(x), ω)|x]

]

= Ex∼p(x) [R(α(x)|x)] (11)

=

∫

R(α(x)|x)p(x)dx

where we have used the standard result from probability theory that

E [E [X|Y]] = E [X] .

(See the supplementary notes for a proof.)

246

Bayesian decision theory

Clearly the risk is minimised for the decision rule defined asfollows:

α outputs the actionαi that minimisesR(αi|x), for all x ∈ R
d.

The provides us with the minimum possible risk, orBayes riskR⋆.

The rule specified is called theBayes decision rule.

247

Example: minimum error rate classification

In supervised learning our aim is often to work in such a way that weminimise
the probability of error.

What loss should we consider in these circumstances? From basic probability
theory

Pr(A) = E [I(A)]

where

I(A) =

{
1 if A happens
0 otherwise

(See the supplementary notes for a proof.)

248

Example: minimum error rate classification

So if we are addressing a supervised learning problem withc classes{ω1, . . . , ωc}
and we interpret actionαi as meaning ‘the input is in classωi’, then a loss

λij =

{
1 if i 6= j
0 otherwise

means that the riskR is

R = E [λ] = Pr(α(x) is in error)

and the Bayes decision rule minimises the probability of error.

249

Example: minimum error rate classification

Now, what is the Bayes decision rule?

R(αi|x) =
c∑

j=1

λ(αi, ωj)Pr(ωj|x)

=
∑

i 6=j

Pr(ωj|x)

= 1− Pr(ωi|x)
soα(x) should bethe class that maximisesPr(ωi|x).
THE IMPORTANT SUMMARY: Given a newx to classify, choosing the class that
maximises Pr(ωi|x) is the best strategy if your aim is to obtain the minimum error
rate!

250

Bayesian learning II

Bayes decision theory tells us that in this context we shouldconsider the quantity
Pr(ωi|s,x) where the involvement of the training sequence has been madeexplicit.

Pr(ωi|s,x) =
∑

h∈H
Pr(ωi, h|s,x)

=
∑

h∈H
Pr(ωi|h, s,x)Pr(h|s,x)

=
∑

h∈H
Pr(ωi|h,x)Pr(h|s).

Here we have re-introducedH using marginalisation. In moving from line 2 to
line 3 we are assuming some independence properties.

251

Bayesian learning II

So our classification should be

ω = argmax
ω∈{ω1,...,ωc}

∑

h∈H
Pr(ω|h,x)Pr(h|s)

If H is infinite the sum becomes an integral. So for example for a neural network

ω = argmax
ω∈{ω1,...,ωc}

∫

RW
Pr(ω|w,x)Pr(w|s) dw

whereW is the number of weights inw.

252

Bayesian learning II

Why might this make any difference? (Aside from the fact thatwe now know it’s
optimal!)

Example 1: Say|H| = 3 andh(x) = Pr(x is in classC1) for a2 class problem.

Pr(h1|s) = 0.4

Pr(h2|s) = Pr(h3|s) = 0.3

Now, say we have anx for which

h1(x) = 1

h2(x) = h3(x) = 0

sohMAP says thatx is in classC1.

253

Bayesian learning II

However,

Pr(class 1|s,x) = 1× 0.4 + 0× 0.3 + 0× 0.3

= 0.4

Pr(class 2|s,x) = 0× 0.4 + 1× 0.3 + 1× 0.3

= 0.6

so classC2 is the more probable!

In this casethe Bayes optimal approach in fact leads to a different answer.

254

A more in-depth example

Let’s take this a step further and work through something a little more complex in
detail. For a two-class classification problem withh(x) denoting Pr(C1|h, x) and
x ∈ R:

Hypotheses: We have three hypotheses

h1(x) = exp(−(x− 1)2)

h2(x) = exp(−(2x− 2)2)

h3(x) = exp(−(1/10)(x− 3)2)

Prior: The prior is Pr(h1) = 0.1, Pr(h2) = 0.05 and Pr(h3) = 0.85.

255

A more in-depth example

We see the examples(0.5, C1), (0.9, C1), (3.1, C2) and(3.4, C1).

Likelihood: For the individual hypotheses the likelihoods are given by

Pr(s|h) = h(x1)h(x2)[1− h(x3)]h(x4)

Which in this case tells us

Pr(s|h1) = 0.0024001365

Pr(s|h2) = 0.0031069836

Pr(s|h3) = 0.0003387476

Posterior: Multiplying by the priors and normalising gives

Pr(h1|s) = 0.3512575000

Pr(h2|s) = 0.2273519164

Pr(h3|s) = 0.4213905836

256

A more in-depth example

Now let’s classify the pointx′ = 2.5.

We need

Pr(C1|s, x′) = Pr(C1|h1)Pr(h1|s) + Pr(C1|h2)Pr(h2|s) + Pr(C1|h3)Pr(h3|s)
= 0.6250705317

So: it’s most likely to be in classC1, but not with great certainty.

257

The Bayesian approach to neural networks

Let’s now see how this can be applied toneural networks. We have:

• A neural network computing a functionf(w;x).

• A training sequences = ((x1, y1), . . . , (xm, ym)), split into

y = (y1 y2 · · · ym)

and
X = (x1 x2 · · · xm)

Theprior distributionp(w) is now on the weight vectors and Bayes’ theorem tells
us that

p(w|s) = p(w|X,y) =
p(y|w,X)p(w|X)

p(y|X)

Nothing new so far...

258

The Bayesian approach to neural networks

As usual, we don’t consider uncertainty inx and soX will be omitted. Conse-
quently

p(w|y) = p(y|w)p(w)

p(y)

where

p(y) =

∫

RW
p(y|w)p(w)dw

p(y|w) is a model of the noise corrupting the labels and as previously is thelike-
lihood function.

259

The Bayesian approach to neural networks

p(w) is typically abroad distributionto reflect the fact that in the absence of any
data we have little idea of whatw might be.

When we see some data the above equation tells us how to obtainp(w|y). This
will typically be more localised.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

wMAP

p(
w
|y

)
a
n
d

p(
w

)

The posterior density p(w|y) becomes more localised

Prior
Posterior

To put this into practice we need expressions forp(w) andp(y|w).

260

Reminder: the general Gaussian density

Reminder: we’re going to be making a lot of use of the generalGaussian density
N (µ,Σ) in d dimensions

p(z) = (2π)−d/2|Σ|−1/2 exp
[

−1
2

(
(z− µ)TΣ−1(z− µ)

)
]

whereµ is themean vectorandΣ is thecovariance matrix.

−5

0

5

−5

0

5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

z1

Gaussian density, µ = [0 0], Σ = I

z2

p(
z
)

261

The Gaussian prior

A common choice forp(w) is theGaussian priorwith zero mean and

Σ = σ2I

so

p(w) = (2π)−W/2σ−W exp

[

−w
Tw

2σ2

]

Note thatσ controls the distribution of other parameters.

• Such parameters are calledhyperparameters.

• Assume for now that they are both fixed and known.

Hyperparameters can be learnt usings through the application of more advanced
techniques.

262

The Bayesian approach to neural networks

Physicists like to express quantities such asp(w) in terms of a measure of“en-
ergy”. The expression is therefore usually re-written as

p(w) =
1

ZW (α)
exp
(

−α
2
||w||2

)

where

EW (w) =
1

2
||w||2

ZW (α) =

(
2π

α

)d/2

α =
1

σ2

This is simply a re-arranged version of the more usual equation.

263

The Gaussian noise model for regression

We’ve already seen that for a regression problem with zero mean Gaussian noise
having varianceσ2

n

yi = f(xi) + ǫi

p(ǫi) =
1

√

2πσ2
n

exp

(

− ǫ2i
2σ2

n

)

wheref corresponds to some unknown network, the likelihood function is

p(y|w) =
1

(2πσ2
n)

m/2
exp

(

− 1

2σ2
n

m∑

i=1

(yi − f(w;xi))
2

)

Note that there are now two variances:σ2 for the prior andσ2
n for the noise.

264

The Bayesian approach to neural networks

This expression can also be rewritten in physicist-friendly form

p(y|w) =
1

Zy(β)
exp (−βEy(w))

where

β =
1

σ2
n

Zy(β) =

(
2π

β

)m/2

Ey(w) =
1

2

m∑

i=1

(yi − f(w;xi))
2

Here,β is a secondhyperparameter. Again, we assume it is fixed and known,
although it can be learnt usings using more advanced techniques.

265

The Bayesian approach to neural networks

Combining the two boxed equations gives

p(w|y) = 1

ZS(α, β)
exp(−S(w))

where
S(w) = αEW (w) + βEy(w)

The quantity

ZS(α, β) =

∫

RW
exp(−S(w))dw

normalises the density. Recall that this is called theevidence.

266

Example I: gradient descent revisited...

To findhMAP (in this scenario by findingwMAP) we therefore maximise

p(w|y) = 1

ZS(α, β)
exp(−(αEW (w) + βEy(w)))

or equivalently find

wMAP = argmin
w

α

2
||w||2 + β

2

m∑

i=1

(yi − f(w;xi))
2

This algorithm has also been used a lot in the neural network literature and is
called theweight decaytechnique.

267

Example II: two-class classification in two dimensions

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Examples

x1

x
2

−10
0

10

−10

0

10
0.5

1

1.5

2

x 10
−3

w1

Prior density p(w)

w2

−10
0

10

−10

0

10
0

0.02

0.04

0.06

w1

Likelihood p(y|w)

w2 −10
0

10

−10

0

10
0

0.5

1

x 10
−4

w1

Posterior density p(w|y)

w2

268

The Bayesian approach to neural networks

What happens as the numberm of examples increases?

• The first termcorresponding to the priorremains fixed.

• The second termcorresponding to the likelihoodincreases.

So for small training sequences the prior dominates, but forlarge oneshML is a
good approximation tohMAP.

269

The Bayesian approach to neural networks

Where have we got to...?We have obtained

p(w|y) = 1

ZS(α, β)
exp(−(αEW (w) + βEy(w)))

ZS(α, β) =

∫

RW
exp(−(αEW (w) + βEy(w)))dw

Translating the expression for theBayes optimalsolution given earlier into the
current scenario, we need to compute

p(Y |y,x) =
∫

RW
p(y|w,x)p(w|y) dw

Easy huh?Unfortunately not...

270

The Bayesian approach to neural networks

In order to make further progress it’s necessary to perform integrals of the general
form ∫

RW
F (w)p(w|y)dw

for various functionsF and this is generally not possible.

There are two ways to get around this:

1. We can use anapproximate formfor p(w|y).
2. We can useMonte Carlomethods.

271

Method 1: approximation top(w|y)

The first approach introduces aGaussian approximationto p(w|y) by using a
Taylor expansionof

S(w) = αEW (w) + βEy(w)

atwMAP.

This allows us to use astandard integral.

The result will beapproximatebut we hope it’s good!

Let’s recall how Taylor series work...

272

Reminder: Taylor expansion

In one dimension the Taylor expansion about a pointx0 ∈ R for a functionf :
R→ R is

f(x) ≈ f(x0) +
1

1!
(x− x0)f

′(x0) +
1

2!
(x− x0)

2f ′′(x0) + · · · +
1

k!
(x− x0)

kfk(x0)

What does this look like for the kinds of function we’re interested in? We can try
to approximate

exp (−f(x))
where

f(x) = x4 − 1

2
x3 − 7x2 − 5

2
x + 22

This has a form similar toS(w), but in one dimension.

273

Reminder: Taylor expansion

The functions of interest look like this:

−5 0 5
0

100

200

300

400

500

600
The function f(x)

x

f
(x

)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The function exp(−f(x))

x

ex
p(
−f
(x

))

By replacing−f(x) with its Taylor expansion about its maximum, which is at

xmax = 2.1437

we can see what the approximation toexp(−f(x)) looks like. Note that theexp
hugely emphasises peaks.

274

Reminder: Taylor expansion

Here are the approximations fork = 1, k = 2 andk = 3.

−5 0 5
−600

−400

−200

0

Taylor expansion for k = 1

x
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 2

x
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 3

x

−5 0 5
0

0.2

0.4

0.6

0.8
exp(−f(x)) exact

x
−5 0 5
0

0.2

0.4

0.6

0.8
exp(−f(x)) using Taylor expansion for k = 2

x

The use ofk = 2 looks promising...

275

Reminder: Taylor expansion

In multiple dimensionsthe Taylor expansion fork = 2 is

f(x) ≈ f(x0) +
1

1!
(x− x0)

T ∇f(x)|x0 +
1

2!
(x− x0)

T ∇2f(x0)
∣
∣
x0
(x− x0)

where∇ denotesgradient

∇f(x) =
(

∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

)

and∇2f(x) is the matrix with elements

Mij =
∂2f(x)

∂xi∂xj

(Although this looks complicated, it’s just the obvious extension of the 1-dimensional
case.)

276

Method 1: approximation top(w|y)

Applying this toS(w) and expanding aroundwMAP

S(w) ≈ S(wMAP) + (w −wMAP)
T ∇S(w)|wMAP

+
1

2
(w −wMAP)

TA(w −wMAP)

notice the following:

• As wMAP minimisesthe function the first derivatives are zero and the corre-
sponding term in the Taylor expansiondisappears.

• The quantityA = ∇∇S(w)|wMAP
can be simplified.

This is because
A = ∇∇(αEW (w) + βEy(w))|

wMAP

= αI + β∇∇Ey(wMAP)

277

Method 1: approximation top(w|y)

Defining
∆w = w −wMAP

we now have
S(w) ≈ S(wMAP) +

1

2
∆wTA∆w

The vectorwMAP can be obtained using any standard optimisation method (such
asbackpropagation).

The quantity∇∇Ey(w) can be evaluated using anextended form of backpropa-
gation.

278

A useful integral

Droppingfor this slide onlythe special meanings usually given to vectorsx and
y, here is a useful standard integral:

If A ∈ R
n×n is symmetric then forb ∈ R

n andc ∈ R

∫

Rn
exp

(

−1
2

(
xTAx + xTb + c

)
)

dx

= (2π)n/2|A|−1/2 exp
(

−1
2

(

c− bTA−1b

4

))

At the beginning of the course, two exercises were set involving the evaluation of
this integral.

To make this easy to refer to, let’s call it theBIG INTEGRAL.

279

Method 1: approximation top(w|y)

We now have

p(w|y) ≈ 1

Z(α, β)
exp

(

−S(wMAP)−
1

2
∆wTA∆w

)

where∆w = w −wMAP and using theBIG INTEGRAL

Z(α, β) = (2π)W/2|A|−1/2 exp(−S(wMAP))

Our earlier discussion tells us that given a new inputx we should calculate

p(Y |y,x) =
∫

RW
p(y|w,x)p(w|y)dw

p(y|w,x) is just thelikelihoodso...

280

Method 1: approximation top(w|y)

The likelihood we’re using is

p(y|w,x) =
1√
2πσ2

exp

(

−(y − f(w;x))2

2σ2

)

∝ exp

(

−β
2
(y − f(w;x))2

)

and plugging it into the integral gives

p(y|x,y) ∝
∫

RW
exp

(

−β
2
(y − f(w;x))2

)

exp

(

−1
2
∆wTA∆w

)

dw

which has no solution!

We needanother approximation...

281

Method 1: approximation top(w|y)

If we assumethatp(w|y) is narrow (this depends onA) then we can introduce a
linear approximationof f(w;x) atwMAP:

f(w;x) ≈ f(wMAP;x) + gT∆w

whereg = ∇f(w;x)|wMAP
.

By linear approximation we just mean the Taylor expansion for k = 1.

This leads to

p(Y |y,x) ∝
∫

RW
exp

(

−β
2

(
y − f(wMAP;x)− gT∆w

)2 − 1

2
∆wTA∆w

)

dw

and this integral can be evaluated using theBIG INTEGRALto give THE AN-
SWER...

282

Method 1: approximation top(w|y)

Finally

p(Y |y,x) = 1
√

2πσ2
y

exp

(

−(y − f(wMAP;x))
2

2σ2
y

)

where
σ2
y =

1

β
+ gTA−1g.

Hooray! But what does it mean?

283

Method 1: approximation top(w|y)

This is aGaussian density, so we can now see thatp(Y |y,x) peaksatf(wMAP;x).
That is, theMAP solution.

Thevarianceσ2
y can be interpreted as a measure ofcertainty.

• The first term ofσ2
y is 1/β and corresponds to the noise.

• The second term ofσ2
y is gTA−1g and corresponds to the width ofp(w|y).

Or interpreted graphically...

284

Method 1: approximation top(w|y)

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

4
Typical behaviour of the Bayesian solution

x

285

Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

I =

∫

F (w)p(w|y)dw

is to useMonte Carlomethods. The basic approach is to make the approximation

I ≈
1

N

N∑

i=1

F (wi)

where thewi have distributionp(w|y). Unfortunately, generatingwi with agiven
distributioncan be non-trivial.

286

MCMC methods

A simple technique is to introduce a random walk, so

wi+1 = wi + ǫ

whereǫ is zero mean spherical Gaussian and has small variance. Obviously the
sequencewi does not have the required distribution. However, we can usethe
Metropolis algorithm, which doesnot accept all the steps in the random walk:

1. If p(wi+1|y) > p(wi|y) then accept the step.

2. Else accept the step with probabilityp(wi+1|y)
p(wi|y) .

In practice, the Metropolis algorithm has several shortcomings, and a great deal
of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain MonteCarlo methods,”
University of Toronto, Department of Computer Science Technical Report

CRG-TR-93-1, 1993.

287

Approximate inference for Bayesian networks

MCMC methods also provide a method for performingapproximate inferencein
Bayesian networks.

Say a system can be in a states and moves from state to state in discrete time steps
according to a probabilistic transition

Pr(s→ s′)

Let πt(s) be the probability distribution for the state aftert steps, so

πt+1(s
′) =

∑

s

Pr(s→ s′)πt(s)

If at some point we obtainπt+1(s) = πt(s) for all s then we have reached a
stationary distributionπ. In this case

∀s′π(s′) =
∑

s

Pr(s→ s′)π(s)

There is exactly one stationary distribution for a given Pr(s → s′) provided the
latter obeys some simple conditions.

288

Approximate inference for Bayesian networks

The condition ofdetailed balance

∀s, s′π(s)Pr(s→ s′) = π(s′)Pr(s′ → s)

is sufficient to provide aπ that is a stationary distribution. To see this simply sum:
∑

s

π(s)Pr(s→ s′) =
∑

s

π(s′)Pr(s′ → s)

= π(s′)
∑

s

Pr(s′ → s)

︸ ︷︷ ︸
=1

= π(s′)

If all this is looking a little familiar, it’s because we now have an excellent ap-
plication for the material inMathematical Methods for Computer Science. That
course used the alternative termlocal balance.

289

Approximate inference for Bayesian networks

Recalling once again the basic equation for performing probabilistic inference

Pr(Q|e) = 1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, u, e)

where

• Q is the query variable.

• e is the evidence.

• u are the unobserved variables.

• 1/Z normalises the distribution.

We are going to consider obtaining samples from the distribution Pr(Q,U |e).

290

Approximate inference for Bayesian networks

The evidence is fixed. Let thestateof our system be a specific set of values for
thequery variable and the unobserved variables

s = (q, u1, u2, . . . , un) = (s1, s2, . . . , sn+1)

and definesi to be the state vectorwith si removed

si = (s1, . . . , si−1, si+1, . . . , sn+1)

To move froms to s′ we replace one of its elements, saysi, with a new values′i
sampled according to

s′i ∼ Pr(Si|si, e)
This has detailed balance, and has Pr(Q,U |e) as its stationary distribution.

291

Approximate inference for Bayesian networks

To see that Pr(Q,U |e) is the stationary distribution

π(s)Pr(s→ s′) = Pr(s|e)Pr(s′i|si, e)
= Pr(si, si|e)Pr(s′i|si, e)
= Pr(si|si, e)Pr(si|e)Pr(s′i|si, e)
= Pr(si|si, e)Pr(s′i, si|e)
= Pr(s′ → s)π(s′)

As a further simplification, sampling from Pr(Si|si, e) is equivalent to sampling
Si conditional on its parents, children and children’s parents.

292

Approximate inference for Bayesian networks

So:

• We successively sample the query variable and the unobserved variables, con-
ditional on their parents, children and children’s parents.

• This gives us a sequences1, s2, . . .which has been sampled according to Pr(Q,U |e).

Finally, note that as
Pr(Q|e) =

∑

u

Pr(Q, u|e)

we can just ignore the values obtained for the unobserved variables. This gives
usq1, q2, . . . with

qi ∼ Pr(Q|e)

293

Approximate inference for Bayesian networks

To see that the final step works, consider what happens when weestimate the
expected value of some function ofQ.

E[f(Q)] =
∑

q

f(q)Pr(q|e)

=
∑

q

f(q)
∑

u

Pr(q, u|e)

=
∑

q

∑

u

f(q)Pr(q, u|e)

so sampling using Pr(q, u|e) and ignoring the values foru obtained works exactly
as required.

294

A (very) brief introduction into how to learn hyperparameters

So far in our coverage of the Bayesian approach to neural networks, thehyperpa-
rametersα andβ were assumed to be known and fixed.

• But this is not a good assumption because...

• ...α corresponds to the width of the prior andβ to the noise variance.

• So we really want to learn these from the data as well.

• How can this be done?

We now take a look at one of several ways of addressing this problem.

295

The Bayesian approach to neural networks

Earlier we looked at the Bayesian approach toneural networksusing the following
notation. We have:

• A neural network computing a functionf(w;x).

• A training sequences = ((x1, y1), . . . , (xm, ym)), split into

y = (y1 y2 · · · ym)

and
X = (x1 x2 · · · xm)

Theprior distributionp(w) is now on the weight vectors and Bayes’ theorem tells
us that

p(w|y) = p(y|w)p(w)

p(y)

In addition we have aGaussian priorand a likelihood assumingGaussian noise.

296

The Bayesian approach to neural networks

The prior and likelihood depend onα andβ respectively so we now make this
clear and write

p(w|y, α, β) = p(y|w, β)p(w|α)
p(y|α, β)

(Don’t worry about recalling theactual expressionsfor the prior and likelihood
just yet, they appear in a few slides time.)

In the earlier slides we found that the Bayes classifier should in fact compute

p(Y |y,x, α, β) =
∫

RW
p(y|w,x, β)p(w|y, α, β) dw

and we found an approximation to this integral. (Again, the necessary parts of the
result are repeated later.)

297

Hierarchical Bayes and the evidence

Let’s write down directly something that might be useful to know:

p(α, β|y) = p(y|α, β)p(α, β)
p(y)

If we know p(α, β|y) then a straightforward approach is touse the values forα
andβ that maximise it.

Here is a standard trick:assume that the priorp(α, β) is flat, so that we can just
maximise

p(y|α, β)
This is calledtype II maximum likelihoodand is one common way of doing the
job.

As usual there are other ways of handlingα andβ, some of which are regarded as
more “correct”.

298

Hierarchical Bayes and the evidence

The quantity
p(y|α, β)

is called theevidence.

When we re-wrote our earlier equation for the posterior density of the weights,
makingα andβ explicit, we found

p(w|y, α, β) = p(y|w, α, β)p(w|α, β)
p(y|α, β)

Sothe evidence is the denominator in this equation.

This is thecommon patternand leads to the idea ofhierarchical Bayes: the ev-
idence for the hyperparametersat one level is thedenominator in the relevant
application of Bayes theorem.

299

An expression for the evidence

We have alreadyderived everything necessaryto write anexplicit equation for the
evidencefor the case of regression that we’ve been following.

First, as we know about a lot of expressions involvingw we can introduce it by
the standard trick ofmarginalising:

p(y|α, β) =
∫

p(y,w|α, β)dw

=

∫

p(y|w, α, β)p(w|α, β)dw

=

∫

p(y|w, β)p(w|α)dw

where we’ve made the obvious independence simplifications.

The two densities in this integralare just the likelihood and prior we’ve already
studied.

We’ve just conditioned onα andβ, which previously were constants but are now
being treated as random variables.

300

An expression for the evidence

Here are the actual expression for the prior and likelihood.

The prior is

p(w|α) = 1

ZW (α)
exp (−αEW (w))

where

ZW (α) =

(
2π

α

)W/2

andEW (w) =
1

2
||w||2

and the likelihood is

p(y|w, β) =
1

Zy(β)
exp (−βEy(w))

where

Zy(β) =

(
2π

β

)m/2

andEy(w) =
1

2

m∑

i=1

(yi − h(w;xi))
2

Both of these equations have been copied directly from earlier slides: there is
nothing to add.

301

An expression for the evidence

That gives us

p(y|α, β) =
(
2π

α

)−W/2(
2π

β

)−m/2 ∫

exp (−S(w)) dw

where
S(w) = αEW (w) + βEy(w)

This isexactly the integral we first derived an approximation for.

Specifically
∫

exp (−S(w)) dw ≃ (2π)W/2|A|−1/2 exp(−S(wMAP))

where
A = αI + β∇∇Ey(wMAP)

andwMAP is themaximum a posteriori solution.

302

An expression for the evidence

Putting all that together we get anexpression for the logarithm of the evidence:

log p(y|α, β) ≃W
2
logα− m

2
log 2π +

m

2
log β

− 1

2
log |A|

− αEW (wMAP)− βEy(wMAP)

Again, we’re using the fact that we want tomaximise the evidenceand this is
equivalent tomaximising its logarithmwhich turns a product into a more friendly
sum.

303

Maximising the evidence

We want to maximise this, so let’s differentiate it with respect toα andβ.

Forα
∂ log p(y|α, β)

∂α
=

W

2α
− EW (wMAP)−

1

2

∂ log |A|
∂α

How do we handle the final term? This is straightforward if we can compute the
eigenvaluesof A.

Recall that then eigenvaluesλi andn eigenvectorsvi of ann × n matrixM are
defined such that

Mvi = λivi for i = 1, . . . , n

and the eigenvectors are orthonormal

vT
i vj =

{
1 if i = j
0 otherwise.

One standard result is thatthe determinant of a matrix is the product of its eigen-
values.

|M| =
n∏

i=1

λi

304

Maximising the evidence

We have
A = αI + β∇∇Ey(wMAP)

Say the eigenvalues ofβ∇∇Ey(wMAP) areλi. (These can be computed using
standard numerical algorithms.)

Then the eigenvalues ofA areα + λi and

∂ log |A|
∂α

=
∂

∂α

(

log
W∏

i=1

(α + λi)

)

=
∂

∂α

(
W∑

i=1

log(α + λi)

)

=
W∑

i=1

1

α + λi

∂(α + λi)

∂α

This remains tricky becausethe eigenvalues might be functions ofα.

305

Maximising the evidence

To make further progress, assume(sometimes correct, sometimes not!)that theλi

do notdepend onα.

In that case
∂ log |A|

∂α
=

W∑

i=1

1

α + λi

= Trace(A−1)

becauseM−1 has eigenvalues1/λi and the trace of a matrix is equal to the sum of
its eigenvalues.

Finally, equating the derivative to zero gives:

W

2α
− EW (wMAP)−

1

2
Trace(A−1) = 0

or

α =
1

2EW (wMAP)

(

W −
W∑

i=1

α

α + λi

)

which can be used to update the value forα.

306

Maximising the evidence

We can now repeat the process to obtain an update forβ:

∂ log p(y|α, β)
∂β

=
m

2β
− Ey(wMAP)−

1

2

∂ log |A|
∂β

In this case
∂ log |A|

∂β
=

∂

∂β

(
W∑

i=1

log(α + λi)

)

=

W∑

i=1

1

α + λi

∂

∂β
(α + λi)

=
W∑

i=1

1

α + λi

∂λi

∂β

and again we have apotentially tricky derivative.

307

Maximising the evidence

As theλi are the eigenvalues ofβ∇∇Ey(wMAP) we have

∂λi

∂β
=

λi

β

(can you see why?)so

∂ log |A|
∂β

=
1

β

W∑

i=1

λi

α + λi

Equating the derivative to zero gives

β =
1

2Ey(wMAP)

(

m−
W∑

i=1

λi

α + λi

)

which can be used to update the value forβ.

308

Maximising the evidence

Here’s why the derivative works.

Say
M = ∇∇Ey(wMAP)

so we’re interested in∂λi/∂β when theλi are the eigenvalues ofβM. Thus

(βM)vi = λivi

and using the fact that the eigenvectors are orthonormal

βvT
i Mvi = λiv

T
i vi = λi.

So

vT
i Mvi =

λi

β
and

∂λi

∂β
= vT

i Mvi =
λi

β
.

309

Maximising the evidence

Summary:

Define

θt =

W∑

i=1

λi

αt + λi

where the subscript denotes the fact that we’re using the following equations to
periodically update our estimates ofα andβ.

Collecting the two update equations together we have

αt+1 =
θt

2EW (wMAP)

and

βt+1 =
m− θt

2Ey(wMAP)

310

Maximising the evidence

This suggests amethod for the overall learning process:

1. Choose the initial valuesα0 andβ0 at random.

2. Choose an initial weight vectorw according to the prior.

3. Use a standard optimisation algorithm to iteratively estimatewMAP.

4. While the optimisation progresses, periodically use theequations above to re-
estimateα andβ.

Step 4 requires that we compute an eigendecomposition, which might well be
time-consuming. If necessary we can make a simplification.

Whenm >> W it is reasonable to expect thatθt ≃ W an so we can use

αt+1 =
W

2EW (wMAP)

and

βt+1 =
m

2Ey(wMAP)

311

An alternative: integrate the hyperparameters out

While choosingα andβ by maximising the evidence leads to an effective algo-
rithm, it might be argued that a more correct way to deal with these parameters
would be tointegrate them out.

p(w|y) =
∫ ∫

p(w, α, β|y)dαdβ.

(Recall thegeneral equation for probabilistic inferencewhere we integrate out
unobserved random variables.)

Re-arranging this we have
∫ ∫

p(w, α, β|y)dαdβ =
1

p(y)

∫ ∫

p(y|w, α, β)p(w, α, β)dαdβ

=
1

p(y)

∫ ∫

p(y|w, α, β)p(w|α, β)p(α, β)dαdβ

=
1

p(y)

∫ ∫

p(y|w, β)p(w|α)p(α)p(β)dαdβ

where we’re assumingα andβ are independent.

312

An alternative: integrate the hyperparameters out

In order to continue we need to specify priors onα andβ.

On this occasion we have a good reason to choose particular priors, asα andβ are
scale parameters.

In general, a scale parameterσ is one that appears in a density of the form

p(x|σ) = 1

σ
f
(x

σ

)

The standard deviation of a Gaussian density is an example.

What happens to this density if wescalex such thatx′ = cx?

313

Standard result number 1

We need to recall how to deal withtransformations of continuous random vari-
ables.

Say we have a random variablex with probability densitypx(x).

We then transformx to y = f(x) wheref is strictly increasing.

What is the probability density function ofy? There is a standard method for
computing this. (See NST maths, or the 1A Probability course.)

py(y) =
px(f

−1(y))

f ′(f−1(y))

314

An alternative: integrate the hyperparameters out

Applying this whenx′ = cx we have

f(x) = cx

f−1(x′) =
x′

c
f ′(x) = c

and so

px′(x
′) =

1

cσ
f

(
x′

cσ

)

=
1

σ′
f

(
x′

σ′

)

Thus the transformation leaves the density essentially unchanged, and in particular
we want the densitiesp(σ) andp(σ′) to be identical.

It turns out that this forces the choice

p(σ) =
c′

σ
.

This is animproper priorand it is conventional to takec′ = 1.

315

Standard result number 2

Returning to the integral of interest

1

p(y)

∫ ∫

p(y|w, β)p(w|α)p(α)p(β)dαdβ

Taking the integral forα first we have
∫

p(w|α)p(α)dα =

∫
1

αZW (α)
exp(−αEW (w))dα

=

∫
1

α

(α

2π

)W/2

exp
(

−α
2
||w||2

)

dα

and to evaluate this we use the followingstandard result:
∫ ∞

0

xn exp(−ax)dx =
Γ(n + 1)

an+1

wheren > −1 anda > 0. So the integral becomes

(2π)−W/2 Γ(W/2)

EW (w)W/2

316

An alternative: integrate the hyperparameters out

Repeating the process forβ and using the same standard result we have
∫

p(y|w, β)p(β)dβ =

∫
1

β

(
β

2π

)m/2

exp(−βEy(w))dβ

= (2π)−m/2 Γ(m/2)

Ey(w)m/2

Combining the two expression we obtain

− log p(w|y) = − log

(
1

p(y)
(2π)−W/2 Γ(W/2)

EW (w)W/2
(2π)−m/2 Γ(m/2)

Ey(w)m/2

)

=
W

2
logEW (w) +

m

2
logEy(w) + constant

andwe want to minimise thisso we need

W

2

1

EW (w)

∂EW (w)

∂w
+
m

2

1

Ey(w)

∂Ey(w)

∂w
= 0

317

An alternative: integrate the hyperparameters out

Theactual value for the evidenceis

− log p(w|y) = − log

(
1

p(y)

1

Zy(α, β)
exp(−(αEW (w) + βEy(w)))

)

= αEW (w) + βEy(w) + constant

andwe want to minimise thisso we need

α
∂EW (w)

∂w
+ β

∂Ey(w)

∂w
= 0

This should make usVERY VERY HAPPYbecause if we equate the two boxed
equations we get

α =
W

2EW (w)

and
β =

m

2Ey(w)

and so the result forintegrating out the hyperparametersagrees with the result for
optimising the evidence.

318

Reinforcement Learning

We now examine:

• Some potential shortcomings of hidden Markov models, and ofsupervised
learning.

• An extension know as theMarkov Decision Process (MDP).

• The way in which we mightlearn from rewardsgained as a result ofacting
within an environment.

• Specific, simple algorithms for performing such learning, and their conver-
gence properties.

Reading:Russell and Norvig, chapter 21. Mitchell chapter 13.

319

Reinforcement learning and HMMs

Hidden Markov Models (HMMs) are appropriate when our agent models the
world as follows

Pr(S0) S0 S1 S2 S3

E1 E3

Pr(St|St−1)

Pr(Et|St)

E2

· · ·

and only wants to infer information about thestateof the world on the basis of
observing the availableevidence.

This might be criticised as un-necessarily restricted, although it is very effective
for the right kind of problem.

320

Reinforcement learning and supervised learning

Supervised learners learn fromspecifically labelled chunks of information:

x ???

(x1, 1)

(x2, 1)

(x3, 0)
...

This might also be criticised as un-necessarily restricted: there are other ways to
learn.

321

Reinforcement learning: the basic case

We now begin to model the world in a more realistic way as follows:

S0 S1 S2 S3

In any state:

Perform an actiona to move to a new state. (There may be many possibilities.)

Receive a rewardr depending on the start state and action.

· · ·

The agent canperform actionsin order tochange the world’s state.

If the agent performs an action in a particular state, then itgains a corresponding
reward.

322

Deterministic Markov Decision Processes

Formally, we have a set of states

S = {s1, s2, . . . , sn}
and in each state we can perform one of a set of actions

A = {a1, a2, . . . , am}.
We also have a function

S : S × A→ S

such thatS(s, a) is the new state resulting from performing actiona in states,
and a function

R : S × A→ R

such thatR(s, a) is therewardobtained by executing actiona in states.

323

Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of considerable importance:

The agent does not have access to the functionsS andR .

It therefore has tolearn apolicy, which is a function

p : S → A

such thatp(s) provides the actiona that should be executed in states.

What might the agent use as its criterion for learning a policy?

324

Measuring the quality of a policy

Say we start in a state at timet, denotedst, and we follow a policyp. At each
future step in time we get a reward. Denote the rewardsrt, rt+1, . . . and so on.

A common measure of the quality of a policyp is thediscounted cumulative re-
ward

V p(st) =
∞∑

i=0

ǫirt+i

= rt + ǫrt+1 + ǫ2rt+2 + · · ·
where0 ≤ ǫ ≤ 1 is a constant, which defines a trade-off for how much we value
immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we should like our agent to
prefer rewards gained quickly.

325

Measuring the quality of a policy

Other common measures are theaverage reward

lim
T→∞

1

T

T∑

i=0

rt+i

and thefinite horizon reward
T∑

i=0

rt+i

In these notes we will only address the discounted cumulative reward.

326

Two important issues

Note that in this kind of problem we need to address two particularly relevant
issues:

• The temporal credit assignmentproblem: that is, how do we decide which
specific actions are important in obtaining a reward?

• Theexploration/exploitationproblem. How do we decide betweenexploiting
the knowledge we already have, andexploring the environment in order to
possibly obtain new (and more useful) knowledge?

We will see later how to deal with these.

327

The optimal policy

Ultimately, our learner’s aim is to learn theoptimal policy

popt = argmax
p

V p(s)

for all s. We will denote the optimal discounted cumulative reward as

Vopt(s) = V popt(s).

How might we go about learning the optimal policy?

328

Learning the optimal policy

The only information we have during learning is the individual rewards obtained
from the environment.

We could try to learnVopt(s) directly, so that states can be compared:

Considers as better thans′ if Vopt(s) > Vopt(s
′).

However we actually want to compareactions, notstates. LearningVopt(s) might
help as

popt(s) = argmax
a

[R(s, a) + ǫVopt(S(s, a))]

butonly if we knowS andR.

As we are interested in the case where these functions arenot known, we need
something slightly different.

329

TheQ function

The trick is to define the following function:

Q(s, a) = R(s, a) + ǫVopt(S(s, a))
This function specifies the discounted cumulative reward obtained if you do ac-

tion a in states and then follow the optimal policy.

As
popt(s) = argmax

a
Q(s, a)

then provided one can learnQ it is not necessary to have knowledge ofS andR
to obtain the optimal policy.

330

TheQ function

Note also that
Vopt(s) = max

α
Q(s, α)

and so
Q(s, a) = R(s, a) + ǫmax

α
Q(S(s, a), α)

which suggests a simple learning algorithm.

LetQ′ be our learner’s estimate of what the exactQ function is.

That is, in the current scenarioQ′ is a table containing the estimated values of
Q(s, a) for all pairs(s, a).

331

Q-learning

Start with all entries inQ′ set to0. (In fact we will see in a moment that random
entries will do.)

Repeat the following:

1. Look at the current states and choose an actiona. (We will see how to do this
in a moment.)

2. Do the actiona and obtain some rewardR(s, a).
3. Observe the new stateS(s, a).
4. Perform the update

Q′(s, a) = R(s, a) + ǫmax
α

Q′(S(s, a), α)

Note that this can be done inepisodes. For example, in learning to play games,
we can play multiple games, each being a single episode.

332

Convergence ofQ-learning

This looks as though it might converge!

Note that, if the rewards are at least0 and we initialiseQ′ to 0 then,

∀n, s, a Q′n+1(s, a) ≥ Q′n(s, a)

and
∀n, s, a Q(s, a) ≥ Q′n(s, a) ≥ 0

However, we need to be a bit more rigorous than this...

333

Convergence ofQ-learning

If:

1. The agent is operating in an environment that is a deterministic MDP.

2. Rewards are bounded in the sense that there is a constantδ > 0 such that

∀s, a |R(s, a)| < δ

3. All possible pairss anda are visited infinitely often.

Then theQ-learning algorithm converges, in the sense that

∀a, s Q′n(s, a)→ Q(s, a)
asn→∞.

334

Convergence ofQ-learning

This is straightforward to demonstrate.

Using condition3, take two stretches of time in which alls anda pairs occur:

All s, a occur All s, a occur

Define
ξ(n) = max

s,a
|Q′n(s, a)−Q(s, a)|

the maximum error inQ′ atn.

What happens whenQ′n(s, a) is updated toQ′n+1(s, a)?

335

Convergence ofQ-learning

We have,

|Q′n+1(s, a)−Q(s, a)|
= |(R(s, a) + ǫmax

α
Q′n(S(s, a), α))− (R(s, a) + ǫmax

α
Q(S(s, a), α))|

= ǫ|max
α

Q′n(S(s, a), α)−max
α
Q(S(s, a), α)|

≤ ǫmax
α
|Q′n(S(s, a), α)−Q(S(s, a), α)|

≤ ǫmax
s,a
|Q′n(s, a)−Q(s, a)|

= ǫξ(n).

Convergence as described follows.

336

Choosing actions to perform

We have not yet answered the question of how to choose actionsto perform during
learning.

One approach is to choose actions based on our current estimateQ′. For instance

action chosen in current states = argmax
a

Q′(s, a).

However we have already noted the trade-off between exploration and exploita-
tion. It makes more sense to:

• Exploreduring the early stages of training.

• Exploit during the later stages of training.

This seems particularly important in the light of condition3 of the convergence
proof.

337

Choosing actions to perform

One way in which to choose actions that incorporates these requirements is to
introduce a constantλ and choose actionsprobabilisticallyaccording to

Pr(actiona|states) =
λQ′(s,a)

∑

a λ
Q′(s,a)

Note that:

• If λ is small this promotesexploration.

• If λ is large this promotesexploitation.

We can varyλ as training progresses.

338

Improving the training process

There are two simple ways in which the process can be improved:

1. If training is episodic, we can store the rewards obtainedduring an episode
and updatebackwardsat the end.

This allows better updating at the expense of requiring morememory.

2. We can remember information about rewards and occasionally re-useit by
re-training.

339

Nondeterministic MDPs

TheQ-learning algorithm generalises easily to a more realisticsituation, where
the outcomes of actions areprobabilistic.

Instead of the functionsS andR we haveprobability distributions

Pr(new state|current state,action)

and
Pr(reward|current state,action).

and we now useS(s, a) andR(s, a) to denote the corresponding random vari-
ables.

We now have

V p = E

(∞∑

i=0

ǫirt+i

)

and the best policypopt maximisesV p.

340

Q-learning for nondeterministic MDPs

We now have

Q(s, a) = E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)V opt(σ)

= E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)max
α
Q(σ, α)

and the rule for learning becomes

Q′n+1 = (1− θn+1)Q
′
n(s, a) + θn+1

[

R(s, a) + max
α

Q′n(S(s, a), α)
]

with

θn+1 =
1

1 + vn+1(s, a)

wherevn+1(s, a) is the number of times the pairs anda has been visited so far.

341

Convergence ofQ-learning for nondeterministic MDPs

If:

1. The agent is operating in an environment that is a nondeterministic MDP.

2. Rewards are bounded in the sense that there is a constantδ > 0 such that

∀s, a |R(s, a)| < δ

3. All possible pairss anda are visited infinitely often.

4. ni(s, a) is theith time that we do actiona in states.

and also...

342

Convergence ofQ-learning for nondeterministic MDPs

...we have

0 ≤θn < 1
∞∑

i=1

θni(s,a) =∞
∞∑

i=1

θ2ni(s,a) <∞

then with probability1 theQ-learning algorithm converges, in the sense that

∀a, s Q′n(s, a)→ Q(s, a)
asn→∞.

343

Alternative representation for theQ′ table

But there’s always a catch...

We have to store the table forQ′:

• Even for quite straightforward problems it is HUGE!!! - certainly big enough
that it can’t be stored.

• A standard approach to this problem is, for example, to represent it as aneural
network.

• One way might be to makes anda the inputs to the network and train it to
produceQ′(s, a) as its output.

This, of course, introduces its own problems, although it has been used very suc-
cessfully in practice.

It might be covered inArtificial Intelligence III, which unfortunately does not yet
exist.

344

