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Syllabus part I: advanced planning

New things to be looked at include some more advanced mhateriplanning
algorithms:

e Heuristics and GraphPlan:incorporating heuristics into partial-order plan-
ning, planning graphs, the GraphPlan algorithm. [1 ledture

e Planning using propositional logicrrepresenting planning problems using
propositional logic, and generating plans using satidftglsolvers. [1 lec-
ture]

e Planning using constraint satisfactiorepresenting planning problems so that
they can be solved using constraint satisfaction solvéredture]

There is no warranty attached to the stated lecture timings.

Syllabus part II: uncertainty in Al

We then delve into some more modern material which takesustaaf uncer-
tainty:

¢ Uncertainty and Bayesian networkseview of probability as applied to Al,
Bayesian networks, inference in Bayesian networks usirtly éxact and ap-
proximate techniques, other ways of dealing with uncetyaid lectures]

¢ Utility and decision-makingmaximising expected utility, decision networks,
the value of information. [1 lecture]

Please read th&upplementary notes on probabilitandout.

Syllabus part lll: uncertainty and time

We then look at how uncertain reasoning and learning canpiaoe whertiimeis
to be taken into account:
e Markov processedransition and sensor models.

¢ Inferencein temporal models: filtering, prediction, smoothing andliingy the
most likely explanation.

e Hidden Markov modelq2 lectures]




Syllabus part 1V: learning

Finally, we apply probability tasupervised learningo obtain [1 lecture] more
sophisticated models of learning.

e Bayes theoreras applied to supervised learning. [1 lecture]
e Themaximum likelihoocdindmaximum a posteriotiypotheses. [1 lecture]
¢ Applying the Bayesian approachmeural networks[3 lectures]

We finish the course by taking a brief lookrainforcement learning

e How can we learn fromewards and punishmerits
e The Q-learningalgorithm. [1 lecture]

Reinforcement learning can be thought of as combining mdrthe elements
covered in this course and in Al |, and thus provides a napleale to stop.

Books
Once again, the main single text book for the course is:

o Artificial Intelligence: A Modern ApproachStuart Russell and Peter Norvig,
Prentice Hall.

There is an accompanying web site at
ai ma. cs. berkel ey. edu

Either the second or third edition should be fine, but avoalfirst edition as it
does not fit this course so well.

Chapter numbers given in these notes refer to the thirdoediti

Books

For some of the new material on neural networks you might kitsoto take a
look at:

e Pattern Recognition and Machine Learninghristopher M. Bishop. Springer,
2006.

For some of the new material on reinforcement learning yaghirlike to consult:
e Machine Learning Tom Mitchell. McGraw Hill, 1997.
For further material on planning try:

e Automated Planning: Theory and PracticdMalik Ghallab, Dana Nau and
Paolo Traverso. Morgan Kaufmann, 2004.

Dire Warning
DIRE WARNING

This course contains quite a lot of:

1. Probability

2. Matrix algebra

3. Calculus
As | am anevil and vindictive persomwho likes to beunkind to kittensl will

assume that you know everything on these subjects that wesezbin earlier
courses.

If you don't it is essentialthat you re-visit your old notes and make sure that
you're at home with that material.

YOU HAVE BEEN WARNED




How’s your maths?

To see if you're up to speed on the maths, have a go at the fiolpw

/_OO exp(—2?) da

o]

Evaluate the integral

Hint: this is a pretty standard result. Square the integral andgsh#o polar
coordinates.

How’s your maths?

Following on from that, here’s something a bit more challagg

Evaluate the integral

oo o0 1
/ / exp (2 (XTEX+XTQ+B)> dy -+ dr,

whereX is a symmetrie: x n matrix with real elementsy € R”, 5 € R and
x! = [:cl Ty - xn] eR"

(This second one is a bit tricky. I'll show you the answerilate)
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Planning Il
We now examine:

e The way in whichbasic heuristicsnight be defined for use in planning prob-
lems.

e The construction oplanning graphsand their use in obtaining more sensible
heuristics.

¢ Planning graphs as the basis of tBemphPlanalgorithm.
¢ Planning usingropositional logic
¢ Planning usingonstraint satisfaction

Reading: Russell and Norvig, relevant sections of chapter 11.
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A quick review

We used the following simple example problem.

The intrepid little scamps in th€ambridge University Roof-Climbing Society
wish to attach an inflatable gorilla to the spire of a famoudigge. To do this
they need to leave home and obtain:

¢ An inflatable gorilla these can be purchased from all good joke shops.
e Somerope available from a hardware store.

e A first-aid kit also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning their jolly escapade?
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The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” @97
States:areconjunctionof ground literalswith no functions
At (Hone) A —Have(Coril | a)
A —Have(Rope)
A —-Have(Kit)

Goals: are conjunctionsof literals where variables are assumed existentially
quantified.
At (z) ASel I s(z,Corilla)

A planner finds a sequence of actions that makes the goal traa performed.
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An example of partial-order planning

Here is the initial plan:

Start

At (Home) A Sel | s(JS, G AlSel I s(HS, R) ASel | s(HS, FA)

At (Home) A Have( G AHave(R) AHave(FA)

Fi ni sh

Thin arrows denote ordering.
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An example of partial-order planning

There are two actions available:

At (z) At (z),Sel | s(z,y)
Go(y) Buy (y)
At (y), At (z) Have(y)
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An example of partial-order planning

Start &At @)
At (Hone) At (Hone),Sel | s(JS\G , Se , R), Sel | s(HS, FA) Go(HS)
Go(JS) / )
At (JS),Sel 1s(JS, G Sel I s(HS, R) , At ( HS)
Buy( Q) Buy(R)

/

At (Hone) ,Have( G),Have(R) ,Have( FA)

Fi ni sh

TheAt (HS) precondition is easy to achieve.

But if we introduce a causal link fro®t art to Go( HS) then we risk invalidating
the precondition foilGo(JS) .

16




An example of partial-order planning

The planner could backtrack and try to achieve Ah¢z) precondition using the
existingGo(JS) step.

Start

At (JS)

At ( Horre) At (Home) , Sel | s(J%ﬁSWl I s(HS, FA) —
Go(JS) -
\ \/,// / ~AL (JS)

At(JS).Sel 1 s(JS, G " sells(HS,R), At (HS)

Buy(G | Buy(R)

At (Homre) ,Have( G) ,Have(R) ,Have( FA)

Fi ni sh

This involves a threat, but one that can be fixed using pramoti
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Using heuristics in planning

We found in looking at search problems theduristicswere a helpful thing to
have.

Note that now:

e There is no simple representation aoftate

e Consequently it is harder to measure the distancegtmeh

Defining heuristics for planning is therefore more difficthian it was for search
problems.
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Using heuristics in planning

We can quickly suggest some possibilities.
For example

h = number of unsatisfied preconditions
or

h =number of unsatisfied preconditions
— number satisfied by the start state
These can lead to underestimates or overestimates:

¢ Underestimates if actions can affect one another in uraldsimvays.
e Overestimates if actions achieve many preconditions.
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Using heuristics in planning

We can go a little further by learning fro@onstraint Satisfaction Problenand
adopting thanost constrained variableeuristic:

¢ Prefer the precondition satisfiable in the smallest numbesags.
This can be computationally demanding but two special casekelpful:

e Choose preconditions for which no action will satisfy them.

e Choose preconditions that can only be satisfied in one way.

20




Planning graphs

Planning graphs can be used:

e To compute more sensible heuristics.

¢ To generate entire plans.

Also, planning graphs amasy to construct

They apply only when it is possible to work entirely usiprppositionalrepresen-
tations of plans.

Luckily, STRIPS can always be propositionalized...
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Planning graphs

For example the triumphant return of the gorilla-purchasing roofxdiers...

Predicate Propositional
At (z) At (Horre) At (JS)
Go(y) ——— Go(JS) Go(HS)

At (), -At (z) At (JS), -At (Hone) At (HS), -At (JS)
At (Horre)
Go(HS) andsoon...

At (3S)

At (Horre), -At (JS)
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Planning graphs

A planning graph is constructed in levels:

e Level 0 corresponds to thetart state

e At each level we keeppproximatetrack of all things thatould be true at the
corresponding time.

¢ At each level we keeppproximatetrack of what actiongould be applicable
at the corresponding time.

The approximation is due to the fact that not all conflictsnssn actions are
tracked.Sa

e The graph camnderestimatdiow long it might take for a particular proposi-
tion to appear, and therefore . ..

e ... a heuristic can be extracted.
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Planning graphs: a simple example

Our intrepid student adventurers will of course need toteflaeirgorilla before
attaching it to alistinguished roof It has to be purchased before it can be inflated.

Start state Empty.
We assume that anything not mentioned in a state is falseheSstate is actually

—Have(Gorilla)and—Inflated(Corilla)

Actions
—Have(Corill a) Have(Gorill a)
Buy(Goril | a) Inflate(Corillg)
Have(Goril | a) Inflated(Gorilla)

Goal Have(Gorill a)andl nfl ated(Corill a).

24




Planning graphs

So Ay Sy Ay S
-H(G) i, -H(G) {1 -H(G)
Buy(G) [—|
Lo —
Buy (G) H©) o |
= 1(G ——
nf© |
-l (G i, -l (G i, -l (G
Describe start All actions available in All possibilities for ~ All actions that might All possibilities for
state. start state. what might be the  be available at time what might be the
case attimd. 1. case at time.

[J = apersistence actior-what happens if no action is taken.
An action levelA; containsall actions thatould happen given the propositions .
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Mutex links

We also record, usingnutual exclusion (mutex) linkghich pairs of actions could
not occur together.

Mutex links 1 Effects are inconsistent.

So Ao S
e O ~HO)
Buy(G) H(G)

The effect of one action negates the effect of another.
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Mutex links Mutex links
Mutex links 2 The actions interfere. Mutex links 3 Competing for preconditions.

S A S s, A

-H(G) J

i O
I nf (G) Buy
-1 (G & -1 (G HO
o ——
The effect of an action negates the precondition of another.
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The precondition for an action is mutually exclusive witke threcondition for
another. (See next slide!)
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Mutex links

A state levelS; containsall propositions thatould be true, given the possible
preceding actions.

We also use mutex links to record pairs that can not be truslmeously:

Possibility I pair consists of a proposition and its negation.

S

-HG
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Mutex links

Possibility 2 all pairs of actions that could achieve the pair of proposg are
mutex.

Ay Sy
P\ -H©)
N
Buy(G) — |
HG
| we
L — 19—
inf@© 1 | )

The construction of a planning graph is continued until tefenitical levels are
obtained.
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Planning graphs

So Ay Sy Ay Sy
-H©) 0 -H(©) N ~H(©)
] o >> H©)
Buy(G) H(G)
el o
) 0 ) é -1
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Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:

¢ Any proposition not appearing in the final level hiaBnite costandcan never
be reached

e Thelevel cosbf a proposition is the level at which it first appeard this may
be inaccurate as several actions can apply at each levehncbist does not
count thenumber of actions(It is howeveradmissible)

¢ A serial planning graphincludes mutex links between all pairs of actions ex-
cept persistence actions.

Level cost in serial planning graptean be quite a good measurement.
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Obtaining heuristics from a planning graph

How about estimating the cost to achieveadiectionof propositions?
e Max-level use the maximum level in the graph of any proposition in &ie s
Admissible but can be inaccurate.

e Level-sum use the sum of the levels of the propositions. Inadmisdioke
sometimes quite accurate if goals tend to be decomposable.

e Set-leveluse the level at whichll propositions appear with none being mutex.
Can be accurate if goals tendt to be decomposable.
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Other points about planning graphs

A planning graph guarantees that:

1. If a proposition appears at some level, theybe a way of achieving it.
2. If a proposition doesot appear, it camot be achieved.

The first point here is a loose guarantee becausepailg of items are linked by
mutex links.

Looking at larger collections can strengthen the guarabigen practice the gains
are outweighed by the increased computation.
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Graphplan

The GraphPlanalgorithm goes beyond using the planning graph as a source of
heuristics.

Start at level O;
while(true) {
if (all goal propositions appear in the current |evel
AND no pair has a nutex |ink) {

attenpt to extract a plan;

if (a solution is obtained)
return the sol ution;

else if (graph indicates there is no solution)
return fail;

}

el se
expand the graph to the next |evel;

}

We extract a plandirectly from the planning graph. Termination can be proved
but will not be covered here.
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Graphplan in action

Here, at levelsS; and.S; we do not have bothl( G andl (G available with no
mutex links, and so we expand first$p and then taS,.

So Ay S A S»
) 0 -HO) 0 )
1
Buy(Q) N\ — | e
J— \ |
Buy(G) HG) L/
. (e E—
i@ —— | (
-1© 0 -1(© 0 -1 (9

At S, we try to extract a solution (plan).
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Extracting a plan from the graph

Extraction of a plan can be formalised asearch problem
Statescontain devel and a collection ofinsatisfied goal propositions

Start state:ithe current final level of the graph, along with the relevasdlgropo-
sitions.

Goal: a state at leveb, containing the initial propositions.
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Extracting a plan from the graph

Actions: For a state5 with level S;, a valid action is to select any s&tof actions
in A;_; such that:

1. no pair has a mutex link;

2. no pair of their preconditions has a mutex link;

3. the effects of the actions i achieve the propositions ifl.
The effect of such an action is a state having le¥el, and containing the pre-
conditions for the actions ixX.

Each action has a cost bf
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Graphplan in action

So Ay Sy Ay Sy

-H(©)

{]

~H©) ; ~H©)

= C)
Buy(G) HG) C—7
M IR E—
nt© —— | "
-1 (G 0 -1(G) 0 -1 ()

Start state

Action: Buy( G Action: | nf (G) andO
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Heuristics for plan extraction

We can of course also appiheuristicsto this part of the process.

For example, when dealing withst of propositions

e Choose the proposition havimgaximum level codirst.

e For that proposition, attempt to achieve it using the adtiwnwhich themaxi-
mum/sum level cost of its preconditions is minimum
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Planning lll: planning using propositional logic

Last year we saw that plans might be extracted from a knowlédge vidheorem
proving usingfirst order logic (FOL)andsituation calculus

BUT: this might be computationally infeasible for realistioplems.

Sophisticated techniques are available for tesagsfiability in propositional
logic, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence h#vafiprm

description of start state
A descriptions of the possible actions
A description of goal

a1

Propositional logic for planning

We attempt to construct this sentence such that:
o If M is a model of the sentence théh assignsT to a proposition if and only
if itis in the plan.

¢ Any assignment denoting an incorrect plan will not be a madethe goal
description will not beT.

e The sentence is unsatisfiable if no plan exists.
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Propositional logic for planning

Start state
S =At(a,spire)AAt b, ground)
A=At “(a,ground) A At °(b,spire)

The two climbers want to swap places...

Remember that an expression suchAn$(a, spi r e) is aproposition The su-
perscripted number now denotes time.

43

Propositional logic for planning

Goal

G =At‘(a,ground) A At ‘(b,spi re)

A=At ‘(a,spire) A —-At‘(b,ground)
Actions can be introduced using the equivalent of successor-sxiens
At '(a,ground)

(At °(a,gr ound) A -Move’(a, gr ound, spire)) 1)

Vv (At °(a,spi re) A Move'(a, spi re,ground))
Denote byA the collection of all such axioms.
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Propositional logic for planning

We will now find thatS A AAG has a model in whicivove’(a, spi r e, gr ound)
andMove'(b, gr ound, spi r e) are T while all remaining actions areé.

In more realistic planning problems we will clearly not knowadvance at what
time the goal might expect to be achieved.

We therefore:

e Loop through possible final times.

e Generate a goal for tim& and actions up to time'.

e Try to find a model and extract a plan.

¢ Until a plan is obtained or we hit some maximum time.
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Propositional logic for planning

Unfortunately there is a problem—we may, if considerablee ¢a not applied,
also be able to obtain less sensible plans.

In the current example

Move'(b,ground,spire) =T
Move'(a,spire,ground) =T

Move’(a,ground,spire) =T

is a model, because the successor-state axiom (1) does famt ipreclude the
application ofvbve’(a, gr ound, spi re).

We need grecondition axiom
Move'(a,ground,spire) — At ‘(a,gr ound)

and so on.
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Propositional logic for planning

Life becomes more complicated still if a third location iglad:hospi t al .
Move'(a, spi re,ground) A Move'(a, spire, hospital)

is perfectly valid and so we need to specify that he can't ntovevo places
simultaneously

—-(Movei(a,spi re,ground) A Movei(a,spire, hospital))
—-(Movei(a,ground,spire) A Mvei(a,ground, hospi tal))

and so on.
These araction-exclusioraxioms.

Unfortunately they will tend to produdetally-orderedrather tharpartially-ordered
plans.
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Propositional logic for planning

Alternatively:
1. Prevent actions occurring together if one negates tleetedi precondition of
the other.
2. Or, specify that something can’t be in two places sim@atarsly
Vo, il 1,12 11#12— =(At(z,] 1) AAt (2,1 2))

This is an example of state constraint

Clearly this process can become very complex, but thereeateniques to help
deal with this.
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Planning IV: planning using constraint satisfaction

Review of constraint satisfaction problems (CSPs)

We have:

e A set ofn variablesVy, Vs, ..., V.
e For eachV; adomainD; specifying the values thaf can take.

e A set ofm constraintsC, Cs, ..., C,,.

Each constraint’; involves a set of variables and specifiesatlawable collection
of values

¢ A stateis an assignment of specific values to some or all of the viesab
e An assignment isonsistentf it violates no constraints.

e An assignment isompletéf it gives a value to every variable.

A solutionis a consistent and complete assignment.
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Example

We will use the problem ofolouring the nodes of a grapds a running example.

| \ 4

1

Each node corresponds tovariable We have three colours and directly con-
nected nodes should have different colours.

Caution required:later on, edges will have a different meaning.

Example

This translates easily to a CSP formulation:

e The variables are the nodes
Vi = nodes

e The domain for each variable contains the values black, meddctgan
D;,={B,R,C}

e The constraints enforce the idea that directly connectesonust have dif-
ferent colours. For example, for variablésandV; the constraints specify

(B,R),(B,C),(R,B),(R,C),(C,B),(C,R)

e VariableVj is unconstrained.
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Different kinds of CSP

This is an example of the simplest kind of CSP: itliscretewith finite domains
We will concentrate on these.

We will also concentrate obinary constraintsthat is, constraints betwegrairs
of variables

e Constraints on single variablessrary constraints—can be handled by ad-
justing the variable’s domain. For example, if we don’t winto bered, then
we just remove that possibility frorm;.

e Higher-order constraint&pplying to three or more variables can certainly be

considered, but...

¢ ...when dealing with finite domains they can always be cdadeto sets of
binary constraints by introducing extaaxiliary variables

How does that work?
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The state-variable representation

Another planning language: tlsate-variable representation
Things of interest such as people, places, objettare divided intadomains

D; = {climberl, climber2}
Dy = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope, inflatableGorilla}

Part of the specification of a planning problem involvesistatvhich domain a
particular item is in. For example

Di(climberl)
and so on.
Relations and functions have arguments chosen from unicthese domains.
above(z,y) C D¢ x D3Pove

is a relation. TheéDz™°"® are unions of one or mor®;.
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The state-variable representation

The relationabove is in fact arigid relation (RR) as it is unchanging: it does not
depend upostate (Remembefluentsin situation calculus?)

Similarly, we havedunctions
at(xy,s): DI x S — D*".

Here,at(z, s) is astate-variable The domairD3* and rangeD=* are unions of
one or moreD;. In general these can have multiple parameters

sv(zy,...,2,8) DY x -+ x DIV x S — D,
A state-variable denotes assertions such as
at(gorilla,s) = jokeShop
wheres denotes atateand the seb of all states will be defined later.

The state variable allows things such as locations to chaagmin, much like
fluentsin the situation calculus.

Variables appearing in relations and functions are consitit® betyped

55

The state-variable representation

Note:

e For properties such aslacationa function might be considerably more suit-
able than a relation.

e For locations, everything has to bemewherand it can only be irone place
at atime

So afunction is perfect and immediately solves some of thblpms seen earlier.
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The state-variable representation

Actionsas usual, have mame aset of preconditionand aset of effects

e Namesare unique, and followed by a list of variables involved ia #ttion.
¢ Preconditionsare expressions involving state variables and relations.
o Effectsare assignments to state variables.

For example:
buy(z,y, )
Preconditionsat(z, s) = {
sells(l,y)
has(y, s) =1
Effects has(y,s) ==
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The state-variable representation

Goalsare sets oéxpressiongvolving state variables

For example:

Goal:

at(climber, s) = home
has(rope, s) = climber
at(gorilla,s) = spire

From now on we will generally suppress the statehen writing state variables.
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The state-variable representation

We can essentially regardstateas just a statement of what values the state vari-
ables take at a given time.

Formally:

e For each state variablev we can consider all ground instances such as—

sv(climber, rope)—with arguments that areonsistentwith the rigid rela-
tions

Define X to be the set of all such ground instances.
¢ A states is then just a set

s={(v=c)lve X}
wherec is in the range of.

This allows us to define theffect of an action

A planning problem also needsstart states,, which can be defined in this way.
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The state-variable representation

Considering all thground actions consistent with the rigid relations

e An action isapplicable ins if all expressionsy = ¢ appearing in the set of
preconditions also appear én

Finally, there is a functiory that maps a state and an action to a new state

V(s,a) =5
Specifically, we have
(s,a) = {(v=c)v € X}
where either is specified in an effect af, or otherwisev = ¢ is a member of.

Note: the definition ofy implicitly solves theframe problem.
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The state-variable representation

A solutionto a planning problem is a sequengg, ay, .. ., a,) of actions such
that...
e q is applicable insy and for eachi, a; is applicable ins; = y(s;_1, a;_1).
e For each goa we have
g e 7(5717 an)~
What we need now is a method fivansforminga problem described in this lan-
guage into a CSP.

We'll once again do this for a fixed upper limit on the number of steps in the
plan.
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Converting to a CSP

Step 1l:encodeactionsasCSP variables
For each time stepwhere0 < t < T — 1, the CSP has a variable
action'
with domain
pacvion’ — {ala is the ground instance of an actjpn {none}

Example: at some point in searching for a plan we might attempt to fired th
solution to the corresponding CSP involving

action’ = attach(inflatableGorilla, spire)

WARNING:be careful in what follows to distinguish betwestate variables, ac-
tions etcin the planning problem andhariablesin the CSP.
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Converting to a CSP

Step 2:encodgground state variableasCSP variableswith a complete copy of
all the state variablefor each time step

So, for eacht where0 < ¢t < T we have a CSP variable
svﬁ(cl, ceyCn)

with domainD="i. (That is, thedomainof the CSP variable is theange of the
state variable.)

Example: at some point in searching for a plan we might attempt to fired th
solution to the corresponding CSP involving

location®(climber1) = hospital.
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Converting to a CSP

Step 3: encode thepreconditions for actions in the planning problegs con-
straints in the CSP problem

For each time stepand for each ground actiaticy, . . ., ¢,,) with argumenton-
sistent with the rigid relations in its preconditions

For a precondition of the forrav; = v include constraint pairs
(action’ =a(cy,...,c,),
svl =)

Example: consider the actiobuy(z, y, ) introduced above, and having the pre-
conditionsat(x) = [, sells(l,y) andhas(y) = l.

Assumesells(y,!) is only true for
| = jokeShop

and

y = inflatableGorilla
(it's a very strange town) so we only consider these values &mdy. Then for
each time step we have the constraints...
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Converting to a CSP

action’ = buy(climberl, inflatableGorilla, jokeShop)
paired with
at’(climberl) = jokeShop
action’ = buy(climber1, inflatableGorilla, jokeShop)
paired with
has'(inflatableGorilla) = jokeShop
action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
at!(climber2) = jokeShop
action’ = buy(climber2, inflatableGorilla, jokeShop)

Converting to a CSP

Step 4:encode theffects of actions in the planning problersconstraints in the
CSP problem

For each time stepand for each ground actiaticy, . . . , ¢,,) with argumentgon-
sistent with the rigid relations in its preconditians

For an effect of the forngv, = v include constraint pairs
(action’ = a(cy, ..., ¢c,),

svﬁ+1 =)

Example:continuing with the previous example, we will include coasits

paired with
has’(inflatableGorilla) = jokeShop action’ = buy(climberl, inflatableGorilla, jokeShop)
and so on... paired with
has'™!(inflatableGorilla) = climberl
action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
has’™(inflatableGorilla) = climber2
and so on...
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Converting to a CSP Finding a plan

Step 5:encode thérame axioms@sconstraints in the CSP problem
An action must not change things not appearing in its effeds

For:

1. Each time step.

2. Each ground actioa(cy, . . ., ¢,) with argumentsonsistent with the rigid re-
lations in its preconditions

3. Eachsv; thatdoes not appear in the effectsagfand eachy € D"

include in the CSP the ternary constraint
(action’ =a(cy,...,c,),
sv§ =,
t+1 _

sV, =v)
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Finally, having encoded a planning problem into a CSP, weestble CSP.
The scheme has the following property:

A solution to the planning problem with at mdsisteps exists if and only if there
is a a solution to the corresponding CSP

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the valuegyassi to thexction!
variables in the solution of the CSP.

Itis also the case that:

There is a solution to the planning problem with at mBsteps if and only if there
is a solution to the corresponding CSP from which the sotutian be extracted
in this way

For a proof see:
Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufni2004.
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Uncertainty |: Probability as Degree of Belief

We now examine:

¢ How probability theorymight be used to represent and reason with knowledge

when we arauncertainabout the world.

e How inferencein the presence of uncertainty can in principle be performed

using only basic results along with thal joint probability distribution
e How this approacffails in practice.

e How the notions ofndependencandconditional independenamay be used
to solve this problem.

Reading:Russell and Norvig, chapter 13.
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Uncertainty in Al

The (predominantly logic-based) methods covered so fae hagorted shortcom-
ings:

¢ Limited epistemological commitmenttrue/false/unknown.

¢ Actions are possible whesufficient knowledgis available...

e ...but this is not generally the case.

e In practice there is a need to cope withcertainty
For example in the Wumpus World:

¢ We can not make observations further afield than the curoeatity.

e Consequently inferences regarding pit/wumpus locatowill not usually be
possible.
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Uncertainty in Al

A couple of more subtle problems have also presented theessel

e The Qualification Problem:it is not generally possible to guarantee that an
action will succeed—only that it will succeed iifiany other preconditions
do/don’t hold.

¢ Rational actiondepends on thékelihood of achieving different goals, and
theirrelative desirability
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Logic (as seen so far) has major shortcomings

An example:
Vz synpt om(z,t oot hache) — probl emz,cavity)
This is plainly incorrect. Toothaches can be caused by thatiger than cavities.

Va synpt omz,t oot hache) —probl emz,cavi ty)v
probl em(z,abscess)Vv
probl emz,gum di sease)V

BUT:

e |t is impossible to completibe list.

e There’s no clear way to take account of tiedative likelihoodsof different
causes.
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Logic (as seen so far) has major shortcomings

If we try to make acausal rule
Va pr obl emz,abscess) — synpt omz,t oot hache)
it’s still wrong—abscesses do not always cause pain.
We need further information in addition to
probl emz,abscess)

and it's still not possible to do this correctly.
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Logic (as seen so far) has major shortcomings

FOL can fail for essentially three reasons:

1. Lazinessit is not feasible to assemble a set of rules that is suffiiexhaus-
tive.

If we could, it would not be feasible to apply them.

2. Theoretical ignoranceinsufficient knowledgeexiststo allow us to write the
rules.

3. Practical ignorance:even if the rules have been obtained there may be insuf-
ficient information to apply them.

Instead of thinking in terms of thieuth or falsity of a statement we want to deal
with an agent'siegree of beliefn the statement.

e Probability theoryis the perfect tool for application here.

e Probability theoryallows us tosummarisehe uncertainty due to laziness and
ignorance.
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An important distinction

There is a fundamental difference betwegmobability theoryandfuzzy logic

e When dealing with probability theory, statements remaifact eithertrue or
false

e A probability denotes an agentkegree of beliebne way or another.
e Fuzzy logic deals witldegree of truth

In practice the use of probability theory has proved spedsaly successful.

75

Belief and evidence

An agent’s beliefs will depend on what it hperceived probabilities are based
onevidenceand may be altered by the acquisition of new evidence:

e Prior (unconditional) probabilitydenotes a degree of belief in the absence of
evidence.

e Posterior (conditional) probabilitglenotes a degree of belief after evidence is
perceived.

As we shall seBayes’ theorens the fundamental concept that allows us to update
one to obtain the other.
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Making rational decisions under uncertainty

When usingdogic, we concentrated on finding an action sequence guaranteed to
achieve a goal, and then executing it.

When dealing withuncertaintywe need to definpreferencesmong states of the
world and take into account thEobability of reaching those states.

Utility theory is used to assign preferences.
Decision theorycombines probability theory and utility theory.

A rational agent should act in order toaximise expected utility

7

Probability

We want to assign degrees of belief to propositions abouivtiréd.
We will need:
e Random variablesvith associatedlomains—typically Boolean, discrete, or
continuous.
¢ All the usual concepts—events, atomic events, stts
¢ Probability distributions and densities.
¢ Probability axioms (Kolmogorov).
e Conditional probability and Bayes’ theorem.

So if you've forgotten this stuff now is a good time to re-reéad
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Probability
The standard axioms are:

e Range
0<Pr(z)<1

¢ Always true propositions

Pr(al ways true proposition)=1
e Always false propositions

Pr(al ways fal se proposition)=0

e Union
Pr(z Vy) = Pr(z) + Pr(y) — Pr(z A y)
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Origins of probabilities |

Historically speaking, probabilities have been regarded number of different
ways:

e Frequentist:probabilities come from measurements.

e Objectivist: probabilities are actual “properties of the universe” whfece-
guentist measurements seek to uncover.
An excellent example: quantum phenomena.
A bad example: coin flipping—the uncertainty is due to ourartainty about
the initial conditions of the coin.

e Subjectivist;probabilities are an agent’s degrees of belief.
This means the agent is allowed to make up the numbers!
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Origins of probabilities Il

Thereference class probleneven frequentist probabilities are subjective.

Example: Say a doctor takes a frequentist approach to diagnosis. >@imaires
a large number of people to establish the prior probabilitywloether or not they
have heart disease.

To be accurate she tries to measure “similar people”. (Sbw&rfior example that
gender might be important.)

Taken to an extremall people ardifferentand there is therefore neference
class
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Origins of probabilities Il

Theprinciple of indifferencéLaplace).
¢ Give equal probability to all propositions that are syntadty symmetric with
respect to the available evidence.

¢ Refinements of this idea led to the attempted developmentoyap and oth-
ers ofinductive logic

e The aim was to obtain the correct probability of any proposifrom an arbi-
trary set of observations.
It is currently thought that no unigue inductive logic egist

Any inductive logic depends on prior beliefs and the effecthese beliefs is
overcome by evidence.
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Prior probability
A prior probability denotes the probability (degree of belief) assigned to pgro
sitionin the absence of any other evidence

For example

Pr(Cavity =true)=0.05
denotes the degree of belief that a random person has a tafidye we make
any actual observation of that person

To keep things compact, we will use
Pr(Cavity)
to denote the entire probability distribution of the randesmiableCavi t y.

Instead of
Pr(Cavity =true)=0.05

Pr(Cavity =fal se) =0.95

write
Pr(Cavi ty) = (0.05,0.95)
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Notation
A similar convention will apply for joint distributions. Faexample, ifDecay
can take the valuesever e, noder at e or| owthen
Pr(Cavi ty,Decay)

is a2 by 3 table of numbers.

sever e |noderate |l ow
true 0.26 0.1 0.01
fal se 0.01 0.02 0.6

Similarly
Pr(t rue, Decay)
denotess numbersetc
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The full joint probability distribution Conditional probability

Thefull joint probability distributionis the joint distribution ofall random vari-

We use theconditional probability
ables that describe the state of the world.

Pr(z[y)

to denote the probability that a propositiorolds given thatll the evidence we
have so faiis contained in proposition.

This can be used to answany query
(But of course life’s not really that simple!)

From basic probability theory

Pr(aly) =

Conditional probability isrot analogous tdogical implication
e Pr(z]y) = 0.1 doesnotmean that ify is true therPr(z) = 0.1.
e Pr(x) is aprior probability.

e The notatiorPr(z|y) is for use whery is theentire evidence
e Pr(z|y A z) might be very different.

85 86

Using the full joint distribution to perform inference Using the full joint distribution to perform inference

We can regard the full joint distribution akaowledge base The process is nothing more than the application of basidtees

We want to use it to obtain answers to questions. e Sum atomic events:

CP -CP Pr(HDV CP) = Pr(HD A CP A HBP)
HBP  —HBP HBP —~HBP + Pr(HDA CP A —HBP)
HD |0.09 0.05|0.07 0.01 + Pr(HD A ~CP A HBP)
-HD|0.02 0.08/0.03 0.65 + Pr(HD A =CP A —HBP)
We'll use this medical diagnosis problem as a running exampl + Pr(=HDA CP A\ HBP)
+ Pr(—=HD A CP A —=HBP)
e HD=Heart disease =0.09 4 0.05 4 0.07 +0.01 + 0.02 + 0.08
e CP = Chest pain = 0.32

e HBP = Hi gh bl ood pressure
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e Marginalisation: ifA and B are sets of variables then

Pr(A) =Y "Pr(AAb) = Pr(Alp) Pr(b)
b b

88




Using the full joint distribution to perform inference

Usually we will want to compute theonditional probabilityof some variable(s)
givensome evidence

For example
Pr(HD A HBP) 0.09 + 0.07
Pr(HD|HBP) = = =0.76
H(HDIHBP) = — 5 FBP) ~ ~ 0.09 1 0.07 1 0.02 - 0.0
and
Pr(—~HD A HBP) 0.02 +0.03
Pr(~HD|HBP) = = =0.24
r(~HDIHEBP) Pr(HBP) 000+ 0.07+0.02 4 0.03 "

Using the full joint distribution to perform inference

The process can be simplified slightly by noting that
B 1
~ Pr(HBP)

is a constant and can be regarded a®analisermaking relevant probabilities
sum tol.

So a short cut is to avoid computing it as above. Instead:
Pr(HD|HBP) = o Pr(HD A HBP) = (0.09 4 0.07)ax

Pr(—HD[HBP) = a Pr(—=HD A HBP) = (0.02 + 0.03)

and we need
Pr(HD|HBP) + Pr(—HD|HBP) = 1

o)
B 1
~0.09+0.07 4 0.02 + 0.03
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Using the full joint distribution to perform inference Using the full joint distribution to perform inference
Thegeneral inference proceduis as follows: Simple eh?
Well, no...

Pr(Q|e):—PrQ/\e ZPI Q,e,u)
where

e () is the query variable.

e ¢ is the evidence.

e y are the unobserved variables.
e 1/Z normalises the distribution.
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e Forn Boolean variables the table hzisentries.
e Storage and processing time are bot2").
e You need to establisti* numbers to work with.

In reality we might well have, > 1000, and of course it'®ven worséf variables
are non-Boolean

How can we get around this?
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Exploiting independence

If 1 toss a coin and roll a dice, the full joint distribution olutcomes requires
2 x 6 = 12 numbers to be specified.

1 [ 2 ]3] 4] 5] 6 |
head |0.014[0.0280.042|0.057 | 0.071]0.086
tail 0.033]0.067| 0.1 0.133/0.167 0.2

Here Pr(Coi n = head) = 0.3 and the dice has probability/21 for the ith
outcome.

BUT: if we assume the outcomes are independent then
Pr(Coi n,Di ce) = Pr(Coi n) Pr(Di ce)
WherePr(Coi n) has two numbers ariél:(Di ce) has six.

So instead of2 numbers we only neegl

93

Exploiting independence

Similarly, say instead of just consideritdp, HBP and CP we also consider the
outcome of thedxford versus Cambridge tiddlywinks competitiot

Pr(TC = Oxford)=0.2
Pr(TC = Canbridge)=10.7

Pr(TC = Draw) =0.1
Now
Pr(HD, HBP, CP, TC) = Pr(TC|HD, HBP, HD) Pr(HD, HBP, HD)

Assuming that the patient is not amtraordinarily keen fan of tiddlywinksheir
cardiac health has nothing to do with the outcome, so

Pr(TC|HD, HBP, HD) = Pr(TC)

and2 x 2 x 2 x 3 = 24 numbers has been reduceditg 8 = 11.
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Exploiting independence

In general you need to identify such independence thréuaghvledge of the prob-
lem

BUT:

e |t generally does not work as clearly as this.
¢ The independent subsets themselves can be big.
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Bayes theorem

From first principles
Pr(z,y) = Pr(z[y) Pr(y)

Pr(z,y) = Pr(yle) Pr(x)

SO
Pr(y|) Pr(a)

Pr(y)
The most important equation in modern Al?

Pr(zly) =

Whenevidence is involved this can be written

PH(QIR. ¢) = P“R'ﬁﬁ%i; (@)
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Bayes theorem
Taking another simple medical diagnosis exampulees a patient with a fever
have malaria?A doctor might know that
Pr(f ever |mal ari a) = 0.99

PI"([THI ar | a) = m

1
Pr(f ever) = 20

Consequently we can try to obtaiir(mal ar i a|f ever ) by direct application
of Bayes theorem
. 0.99 x 0.0001
Pr(mal ari alf ever ) = (TW =0.00198

or using the alternative technique
Pr(mal ari alf ever ) = aPr(f ever jmal ari a) Pr(nmal ari a)

if the relevant further quantityr(f ever |-mal ari a) is known.
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Bayes theorem

e Sometimes the first possibility is easier, sometimes not.
e Causal knowledgsuch as
Pr(f ever mal ari a)
might well be available whediagnostic knowledgsuch as
Pr(mal ari a|f ever)
is not.

e Say the incidence of malaria, modelled By(Mal ar i a), suddenly changes.
Bayes theorem tells us what to do.

e The quantity
Pr(f ever mal ari a)

would not be affected by such a change.
Causal knowledgean be more robust.
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Conditional independence

What happens if we hawaultiple pieces of evidenee
We have seen that to compute
Pr(HD|CP, HBP)
directly might well run into problems.
We could try using Bayes theorem to obtain
Pr(HD|CP, HBP) = o Pr(CP, HBP|HD) Pr(HD)

However whileHD is probably manageable, a quantity suctPasCP, HBP|HD)
might well still be problematic especially in more realistases.
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Conditional independence

However although in this case we might not be able to exphaiependence di-
rectly wecansay that

Pr(CP, HBP|HD) = Pr(CP|HD) Pr(HBP|HD)
which simplifies matters.
Conditional independence
e Pr(A, B|C) = Pr(A|C) Pr(B]|C).
o If we know thatC' is the case thed and B are independent.

Although CP and HBP are not independent, they do not directly influence one
anotherin a patient known to have heart disease

This is much nicer!
Pr(HD|CP, HBP) = « Pr(CP|HD) Pr(HBP|HD) Pr(HD)
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Naive Bayes

Conditional independence is often assumed even when itraudwld.

Naive Bayes ’
Pr(A, By, By, ..., B,) = Pr(A) [ Pr(Bi|A)
i=1

Also known addiot’s Bayes

Despite this, it is often surprisingly effective.
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Uncertainty Il - Bayesian Networks

Having seen that in principle, if not in practice, the fulljbdistribution alone
can be used to perform any inference of interest, we now examipractical

technique.

e We introduce théBayesian Network (BN8s a compact representation of the
full joint distribution.

¢ We examine the way in which a BN can benstructed
¢ We examine theemanticof BNs.
e We look briefly at howinferencecan be performed.

Reading:Russell and Norvig, chapter 14.
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Bayesian networks

Also calledprobabilistic/belief/causal networks knowledge maps

)

e Each node is eandom variable (RV)
e Each nodéV, has a distribution
Pr(V;|par ent s(XV;))

e A Bayesian network is directed acyclic graph

¢ Roughly speaking, an arrow froth to M meansV directly affectsi.
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Bayesian networks

After aregrettable incidentnvolving aninflatable gorilla a famous College has
decided to install an alarm for the detection of roof clintber

e The alarm isverygood at detecting climbers.

e Unfortunately, it is also sometimes triggered when one efekiremely fat
geesdhat lives in the College lands on the roof.
e One porter’s lodge is near the alarm, and inhabited by a chtipexcellent

hearing and apathological hatredof roof climbers: healwaysreports an
alarm. His hearing is so good that he sometimes thinks hestaaalarm,

even when there isn’t one

e Another porter’s lodge is a good distance away and inhaltiyeanold chap
with dodgy hearingwho likes to listen to his collection dEATH METAL

with the sound turned up.
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Bayesian networks

Pr(Cl i mber) Pr(Goose)
Yes: 0.05 Yes: 0.2
No: 0.95 No: 0.8

Pr(AIC.G)
G Pr(AlC,G)
Y 0.98
N 0.08
N 0.96
Y 0.2

Lodge2
Pr(L1|A) Pr(L2|A)
a 0.99 a 0.6
—a 0.08 —a 0.001
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Semantics

Bayesian networks

Note that:

¢ In the present example all RVs atiscrete(in fact Boolean) and so in all cases
Pr(V;|parent$N;)) can be represented asadole of numbers

e C i mber andGoose have onlyprior probabilities.

¢ All RVs here are Boolean, so a node witlparents require® numbers.

A BN with n nodes represents the full joint probability distribution those nodes
as

Pr(Ny =ny, Ny = na, ..., N, = ny) = [ [ Pr(N; = n;|parentsN;))  (2)
i=1
For example

Pr(—C, -G A, L1,L2) = Pr(L1|A) Pr(L2|A) Pr(A|~C, =G) Pr(~C) Pr(-G)
=0.99 x 0.6 x 0.08 x 0.95 x 0.8
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IngeneraPr(A, B) = Pr(A|B) Pr(B) so abbreviatind’r(N; = ny, No = na,

N, =
ny,) to Pr(ny, ng, ..., n,) we have
Pr(ny,...,n,) = Pr(ngn,—1,...,n1) Pr(n,_1,...,n1)
Repeating this gives
Pr(ny,...,n,) = Pr(n,|n,—1,...,n1) Pr(np_1|nn—2,...,n1) - - Pr(ny)
- ﬁPr(nimi_l,...,m) ©)
i=1

Now compare equations (2) and (3). We see that BNs make thengtisn

PI'(M‘M*D BERE Nl) = PI(Nt|parent$Nt))

for each node, assuming that paréntg C {N;_,..., Ni}.

EachN; is conditionally independent of its predecessors givepatents
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Semantics

e When constructing a BN we want to make sure the precedingepipholds.
e This means we need to take care owgtering

¢ In generakauses should directly precede effects

e® o

parentsN;)

Here, parentsV;) contains all preceding nodes havindigect influenceon N;
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Semantics

Deviation from this rule can have major effects on the coxipteof the network.

That's bad!We want to keep the network simple:

e If each node has at mogtparents and there areBoolean nodes, we need to
specify at mosh2? numbers...

¢ ...whereas the full joint distribution requires us to speél' numbers.

So: there is a trade-off attached to the inclusiont@huousalthoughstrictly-
speaking correcedges.
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Semantics

As a rule, we should include theost basic causefirst, thenthe things they
influence directly etc
What happens if you get this wrong?

Example:add nodes in the ordé&r2,L1,GCA.

Lodge2 Lodgel
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Semantics
In this example:

e Increased connectivity.

e Many of the probabilities here will be quite unnatural andcha specify.

Once againcausal knowledges preferred taliagnostic knowledge
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Semantics

As an alternative we can say directly what conditional irefgfence assumptions
a graph should be interpreted as expressing. There are twmon ways of doing
this.

Any nodeA is conditionally independent of th&¥,—its non-descendantsgiven
the P—its parents.
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Semantics

Any node A is conditionally independent of all other nodes given Warkov
blanketM;—that is, itsparents its childrenand itschildren’s parents
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More complex nodes

How do we represent
Pr(V;|parentsN;))

when nodes can denogeneral discrete and/or continuous RVs

¢ BNs containing both kinds of RV are callégbrid BNs

o Naive discretisationof continuous RVs tends to result in both a reduction in
accuracy and large tables.

e O(2P) might still be large enough to be unwieldy.

e We can instead attempt to uséandard and well-understoodistributions,
such as th&aussian

e This will typically require only a small number of parametéo be specified.
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More complex nodes

Example: functionatelationships are easy to deal with.
N; = f(parents;))

1 if n; = f(parentsV;))

Pr(N; = n;|parent$N;)) = { 0 otherwise
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More complex nodes

Example:a continuous RV with one continuous and one discrete parent.
Pr(Speed of car|Throttle position,Tuned engi ne)

whereSC andTP are continuous and@E is Boolean.

e For a specific setting 0ET = t r ue it might be the case th&C increases
with TP, but that some uncertainty is involved

Pr(SC|TP, et ) = N(get TP + cet, 0% )

e For an un-tuned engine we might have a similar relationsliip adifferent
behaviour
Pr(SC|TP,—€et ) = N(g-et TP+ et , 02 )

There is a set of parametefg, c, o } for each possible value of the discrete RV.
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More complex nodes

Example:a discrete RV with a continuous parent
Pr(Go roofclinbing|Size of fine)

We could for example use thgobit distribution

Pr(Go roof cl i nbing =truelsi ze) = (ﬂ)

0= [ OO Niy)dy

andN(z) is the Gaussian distribution witero mean and variance

where
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More complex nodes

The probit distribution
1 T T

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

oy I I
90 92 94 96 98 100 102 104 106 108 110
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More complex nodes

Alternatively, for this example we could use tlogit distribution
1

Pr(Go roofclinmbing =truelsize)= [T o2t sizel)

which has a similar shape.

e Tails are longer for the logit distribution.
e The logit distribution tends to be easier to use...
e ...but the probit distribution is often more accurate.
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Basic inference

We saw earlier that the full joint distribution can be usegéoformall inference
tasks

(Q|):—P1Q/\e ZPI (Q,e,u)
where

e () is the query variable

e ¢ is the evidence

e y are the unobserved variables
¢ 1/Z normalises the distribution.
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Basic inference

As the BN fully describes the full joint distribution

Pr(Q,u,e) = H Pr(N;|parents;))

1=1
It can be used to perform inference in thieviousway

Pr(Qle) = % Z H Pr(N;|parents$hN;))

u i

but as we’'ll see this it practice problematic

e More sophisticated algorithms aim to achieve thisre efficiently

e For complex BNs we resort @pproximation techniques
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Other approaches to uncertainty: Default reasoning

One criticism made of probability is that it imimericalwhereas human argument
seems fundamentally different in nature:

e On the one hand this seems quite defensible. | certainly dawere of doing
logical thoughtthrough directmanipulation of probabilitiesbut. . .

e ...0n the other hand, neither am | awaresofving differential equations
order towalk!

Default reasoning:

e Does not maintailegrees of belief

¢ Allows something to be believaghtil a reason is found not to
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Other approaches to uncertainty: rule-based systems

Rule-based systems have some desirable properties:

e Locality: if we establish the evidenc¥ and we have a rul& — Y thenY
can be concluded regardless of any other rules.

e Detachment once anyY has been established it can then be assumed. (It's
justification is irrelevant.)

¢ Truth-functionality truth of a complex formula is a function of the truth of its
components.

These are not in general shared by probabilistic systemst Wappens if:

¢ We try to attach measures of belief to rules and propositions

e We try to make a truth-functional system by, for example, imglbelief in
X A'Y afunction of beliefs inX andY ?
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Other approaches to uncertainty: rule-based systems

Problems that can arise:
1. Say | have the causal rule

Heart diseasé2 Chest pain
and the diagnostic rule

Chest pain% Heart disease

Without taking very great care to keep track of the reasopiugess, these
can form aoop.

2. Ifin addition | have

Chest painﬂ Recent physical exertion

then it is quite possible to form the conclusion that with sategree of cer-
tainty heart disease is explained by exertiorhich may well be incorrect.
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Other approaches to uncertainty: rule-based systems

In addition, we might argue that because heart disease ispanation for chest
pain the belief in physical exertion shouddcrease

In general when such systems have been successful it hashiveegh very care-
ful control in setting up the rules.

125

Other approaches to uncertainty: Dempster-Shafer theory

Dempster-Shafer theory attempts to distinguish betwegrertaintyand igno-
rance

Whereas the probabilistic approach looks atgtabability of X, we instead look
at theprobability that theavailable evidence supporfs.

This is denoted by thbelief functionBel(X).

Example given a coin but no information as to whether it is fair | haxereason
to think one outcome should be preferred to another

Bel(outcome= head = Bel(outcome= tail) = 0
These beliefs can be updated when new evidence is availditaa.expert tells
us there is1 percent certainty that it’s a fair coin then

Bel(outcome= head = Bel(outcome= tail) = 1% X

N =

We may still have gapin that
Bel(outcome= head + Bel(outcome= tail) # 1.

Dempster-Shafer theory provides a coherent system foindealth belief func-
tions.
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Other approaches to uncertainty: Dempster-Shafer theory

Problems
e The Bayesian approach deals more effectively with the dfigatton of how
belief changesvhennew evidence is availahle

e The Bayesian approach has a better connection to the casfagpity, whereas
the latter is not well-understood for use in conjunctiontvitempster-Shafer
theory.
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Uncertainty lll: exact inference in Bayesian networks

We now examine:
e The basic equation for inference in Bayesian networks,dtterlbeing hard to
achieve if approached in the obvious way.

e The way in which matters can be improved a little by a small ification to
the way in which the calculation is done.

e The way in which much better improvements might be possiblegua still
more informed approach, although not in all cases.

Reading:Russell and Norvig, chapter 14, section 14.4.
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Performing exact inference

We know that in principle any quer§ can be answered by the calculation

= 2> PrQ.cu)

where( denotes the query, denotes the evidence,denotes unobserved vari-

ables and /Z normalises the distribution.

The naive implementation of this approach yields Bmimerate-Joint-Asklgo-

rithm, which unfortunately require@(2") time and space for Boolean random

variables (RVs).
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Performing exact inference

In what follows we will make use of some abbreviations.

e C denote i nber
e (G denotes>00se
e AdenotedAl arm
e L1 denoted.odgel
e .2 denoted.odge?

Instead of writing out RIC' = T), Pr{C = L) etcwe will write Pr(c), Pr{—c) and
so on.
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Performing exact inference

Also Pr{Q, e, u) has a particular form expressing conditional independence

Pr(C i nber) Pr(Goose)
Yes: 0.05 Yes: 0.2
No: 0.95 No: 0.8

AC.G)

Pr(AIC,0)
0.98
0.08
0.96
02

<zz<|o|?

Lodgel

Pr(L1|A) Pr(L2|A)
a 0.99 a 0.6
-a 0.08 -a 0.001

PC, G, A, L1, L2) = Pr(C)PI(G)PI(A|C, G)PHL1|A)Pr(L2|A)
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Performing exact inference

Consider the computation of the query @Y1, [2)

We have

Pr(C|i1,12) = ZZPr(O Pr(G)Pr(A|C, G)Pr{I1|A)Pr(i2| A)
Here there are 5 muItlpllcatlons for each set of values thpears for summation,
and there are 4 such values.

In general this gives time complexity(n2") for n Boolean RVs.

Looking more closely we see that

Pr(C|I1,12) ZZPr G)PI(A|C, G)Pr(I1| A)Pr(12| A)
= EPr ZPrll|A )Pr(i2| A) ZPr PHAIC,G)  (4)

1
:EPr E Pr(G % Pr(A|C, G)Pr(I1|A)Pr(i2|A)
So for example...
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Performing exact inference

Pr(c

) Pr(alc, g)Pr{I1|a)Pr(12|a)
11,12) =—Pr(c) (Pr(g) { +Pr{—dlc, g)pr(mﬁa)Pr(l?Iﬁa) }

Pr(alc, ~g)Pr(i1]a)Pr(i2|a)
+Pr(—g) { +Pr(—ale, ﬁz)Pr(llha)Pr(l?Iﬁa) }>

with a similar calculation for Rrc|i1, 12).

Basically straightforwardBUT optimisations can be made.
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Performing exact inference

Pr(alc, g) Pr(—alc, g)

Pr(alc, —~g) Pr(—alc, —g)

******************************************************

! Pr1a) o PriLa) Pr(I1]-a) !

U Pr(12|a) Lo Pri2la) Pr(12]-a) |
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Optimisation 1: Enumeration-Ask

The enumeration-asklgorithm improves matters 0(2") time andO(n) space
by performing the computatiotepth-first

However matters can be improved further by avoidingahplication of compu-
tationsthat clearly appears in the example tree.
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Optimisation 2: variable elimination

Looking again at the fundamental equation (4)

%Pr(C) S PrG) ST PHAIC, G)PHITA)PRI2]A)
C G G A A L1 L2

whereC, G, A, L1, L2 denote the relevarfifictors

The basic idea is to evaluate (4) from right to left (or in teraf the tree, bottom
up) storing resultsas we progress and-using thenwhen necessary.

Pr(i1|A) depends on the value of. We store it as a tablE';(A). Similarly for

Pr(12|A).
0.99 0.6
Fr(4)= <().()8> Frald) = <0.001>

as P(l1]a) = 0.99, Pr{{1|—a) = 0.08 and so on.

136




Optimisation 2: variable elimination

Similarly for PrA|C, G), which is dependent oA, C andG

FA(4,C,G)
0.93
0.96
0.2
0.08
0.02
0.04
0.8
0.92

FA(A7 Ca G) =

s
e e S e
FAbE AR AEHQ

Can we write

Pr(A|C, G)Pr(I1|A)Pr(I2|A)
as

FAu(A, C,G)F1(A)F 5(A)

in a reasonable way?
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®)
(6)

Optimisation 2: variable elimination

The answer is “yes” providechultiplication of factords defined correctly. Look-
ing at (4)

1

ZP(C)%;P«G)%?P«AﬂxcnpmnpnpmmA)
note that the values of the product (5) in the summation dperthe values of
C and@ external to it, and the values df themselves. So (6) should be a table
collecting values for (5) where correspondences betweendR¥ maintained.

This leads to a definition for multiplication of factors bgsten by example.
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Optimisation 2: variable elimination

F(A, B)F(B,C) = F(A, B,C)

where
A B|F(A,B)|B C|F(B,C)|A B C|F(A,B,C)
T T 0.3 T T 0.1 T T T] 03x0.1
T L 0.9 T 1L 0.8 T T L] 03x0.8
1 T 0.4 1 T 0.8 T L T] 09x0.8
1 1L 0.1 1 L 0.3 T L 1] 09x%x0.3
1 T T] 04x0.1
1 T L] 04x0.8
1 1L T] 01x0.8
1 1 1] 01x0.3
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Optimisation 2: variable elimination

This process gives us

0.98 x 0.99 x 0.6
0.96 x 0.99 x 0.6
0.2x0.99 x0.6
0.08 x 0.99 x 0.6
0.02 x 0.08 x 0.001
0.04 x 0.08 x 0.001
0.8 x 0.08 x 0.001
0.92 x 0.08 x 0.001

F4(A C,G)F1(A)F2(A) =

FEEE A A
e e e S e
A A A HQ
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Optimisation 2: variable elimination Optimisation 2: variable elimination

How about
C G
Fi.1.5(C,G) =) Fa(A C,GFL(AF15(A) T T10.98 % 0.99 x 0.6
A FA((I, C, G)FLl(a)FLQ(a) =T 11]0.96 x 0.99 x 0.6
To denote the fact thatl has been summed out we place a bar over it in the 1L T]102x%x0.99 % 0.6
notation. 1 1]0.08 x0.99 x 0.6

0.02 x 0.08 x 0.001

> Fu(A,C,G)F 11 (A)F 15(A) =F 4(a, C, G)F 11(a)F 15(a)
A

C G
TT
+ Fa(=a,C,G)Fi(-a)Fy(—a) F(—a,C, G)F1(—a)Fs(=a) =| T L]0.04 x 0.08 x 0.001
where 1L T1]0.8x0.08 % 0.001
ele 1L 1]0.92 x 0.08 x 0.001
T T0.98 ¢a
Fula,0,G) =T L 0.96| Fp(a) =0.99 Fry(a) = 0.6 T T (098 % 0.99 x 0.6) + (0.02 x 0.08 x 0.001)
L T/02 Fi1(C.G) =T L[(0.96 x 0.99 x 0.6) + (0.04 x 0.08 x 0.001)
1 1008 ' L T (0.2%0.99 x 0.6) + (0.8 x 0.08 x 0.001)
11 /(0.08 % 0.99 x 0.6) + (0.92 x 0.08 x 0.001)

and similarly forF 4(—a, C, G), F1(—a) andF 5(—a).
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Optimisation 2: variable elimination Optimisation 2: variable elimination
Now, say for example we haver, g. Then doing the calculation explicitly would What's the computational complexity now?
give
e For Bayesian networks with suitable structure we can perfmference in
> Pr(A|-e, g)PrI1|A))Pri2] A) linear time and space.
A

= Pr{a|~c, g)Pr{l1]a)PK(12]a) + Pr(=a|—c, ¢)Pr(11|~a)Pr(i2|-a) e However in the worst case it #P-hard, which isworse thanV P-hard.
= (0.2 x0.99 x 0.6) + (0.8 x 0.08 x 0.001)
which matches!

Consequently, we may need to resorafiproximate inference

Continuing in this manner form
FG.ELLLZ‘(Q G) = FG(G>FZ,LLL2(O» G)
sum outG: to obtainFg 1 1, 15(C) = > Fa(G)F7 1 10(C, G), form

FOE.,Z,LLLQ = FC(C)FG,Z,LLLQ(C)
and normalise.
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Uncertainty IV: Simple Decision-Making

We now examine:

e The concept of atility function

e The way in which such functions can be related to reasonatitens about
preferences

¢ A generalization of the Bayesian network, known aeaision network

e How to measure thealue of informationand how to use such measurements
to design agents that caisk questions

Reading:Russell and Norvig, chapter 16.
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Simple decision-making

We now look at choosing an action by maximisiexpected utility
A utility functionU (s) measures thdesirability of a state

If we can express a probability distribution for the statsuiting from alternative
actions, then we can act in order to maximise expectedyutilit

For an actionz, letResul t (a) = {s1, ..., s, } be a set of states that might be the
result of performing action. Then the expected utility of is

EU(a|E) = Z Pr(sla, E)U(s)
seResul t (a)

Note that this applies tindividual actions Sequences of actions will not be
covered in this course.
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Simple decision-making: all of Al?

Much as this looks like a complete and highly attractive rodtfor an agent to
decide how to act, it hides a great deal of complexity:

1. It may be hard to computé(s). You generallydon’'t know how good a state
is until you know where it might lead on:tplanningetc..
2. Knowing what state you're currently in involvasost of Al

3. Dealing with Pfs|a, E) involvesBayesian networks
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Utility in more detail

Overall, we now want to expregseferencedbetween different things.
Let’s use the following notation:

X >Y : Xis preferred ta”
X =Y : we are indifferent regarding andY’
X >Y : X is preferred, or we're indifferent

X, Y and so on aréotteries A lottery has the form
X = [ph Ol‘p% 02| o |pn7 On]

where O; are the outcomes of the lottery apgtheir respective probabilities.
Outcomes can bether lotteriesor actual states.
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Axioms for utility theory

Given we are dealing with preferences it seems that thersoane clear properties
that such things should exhibit:

Transitivity. if X > Y andY > Z thenX > Z.

Orderability. eitherX >Y orY > XorX =Y.

Continuity, if X > Y > Z then there is a probability such that
b, X|(1—p).Z] =Y

Substitutability if X =Y then
[p. X|(L = p), L] = [p. Y|(1 = p), L]
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Axioms for utility theory

Monotonicity if X > Y then for probabilitiep; andp,, p1 > p, if and only if
[plaX‘(l 7p1>7Y} Z [p?vX‘(l 7p2),Y}

Decomposability

[p1, X|(1 = p1), [p2, YI(1 = p2), Z]] = [p1, X[(1 — p1)p2, Y[(1 = p1)(1 — p2), Z]

If an agent’s preferences conform to the utility theory axée—and note that
we areonly considering preferences, not numbers—then it is possibliefine a
utility function U(s) for states such that:

1. U(Sl) > U(SQ) > S1 > S9
2.U(s1) =U(s9) «— 51 =59

3. U([p1, s1|p2, S| - -+ |Pns $n)) = Doiey 2iU(80).

We therefore have a justification for the suggested approach
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Designing utility functions

There is complete freedom in how a utility function is definbdt clearly it will
pay to define them carefully.

Example the utility of money (for most people) exhibitsnaonotonic preference
That is, wepreferto havemore of it

But we need to talk about preferences betwietteries

Say you've wonl 00, 000 pounds in a quiz and you're offered a coin flip:

e For heads: you win a total df 000, 000 pounds.

e For tails: you walk away with nothing!

Would you take the offer?
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Designing utility functions

Theexpected monetary valdEMV) of this lottery is

(0.5 x 1,000, 000) + (0.5 x 0) = 500, 000
whereas the EMV of the initial amount 180, 000.
BUT: most of us would probably refuse to take the coin flip.

The story is not quite as simple as this though: our attitvdégbly depends on
how much money we have to start withl have M pounds to start with then | am
in fact choosing between expected utility of

U(M + 100, 000)
and expected utility of
(0.5 x U(M)) + (0.5 x U(M + 1,000, 000))
If M is 50,000,000 my attitude is much different to if it i$0, 000.
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Designing utility functions

In fact, research shows that the utility 6f pounds is for most people almost
exactly proportional tdog M for M > 0...

The utility U(M) of M pounds
T T T

U

...and follows a similar shape fad < 0.
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Decision networks

Decision networks-also known agnfluence diagrams.

Site of landfill

Legal acion

Build cost Road conjestiol

... allow us to worlactionsandutilities into the formalism oBayesian networks

A decision network has three types of node. ..
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Decision networks

A decision network has three types of node:

Chance nodesare denoted by ovals. These are random variables (RVs3-repr
sented by a distribution conditional on their parents, aBagesian networks.
Parents can be other chance nodes or a decision node.

Decision nodesare denoted by squares. They describe possible outcontles of
decision of interest. Here we deal only wihngledecisions: multiple decisions
require alternative techniques.

Utility nodes are denoted by diamonds. They describe the utility funatedevant
to the problem, as a function of the values of the node’s pigren
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Decision networks

Sometimes such diagrams are simplified by leaving out the d@ésribing the
new state and converting current state and decision directltility:

Air quality, cost to taxpayer and
road conjestion describe future state
and so never appear as evidence.

Site of landfill

Road traffic

Legal action
Build cost

This is anaction-utility table The utility no longer depends on a state but is the
expected utility for a given action.

This gives us fewer nodes to deal with BUT
potentially less flexibility in exploring alternative
descriptions of the problem.

EU(a|E) = 3 eresui t (a) PHsla; E)U(s)
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Evaluation of decision networks

Once aspecificaction is selected for a decision node it acts like a chande far
which a specific value is being usedeagdence

1. Set the current state chance nodes to their evidencesvalue

2. For each potential action

e Fix the decision node.
e Compute the probabilities for the utility node’s parents.
o Compute the expected utility.

3. Return the action that maximisétl(a|E).
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The value of information

We have been assuming that a decision is to be madealigvidence available
beforehand This is unlikely to be the case.

Knowingwhat questions one should aska central, and important part of making
decisions Example
e Doctors do not diagnose by first obtaining results for allgildle tests on their
patients.
e They ask questions to decide what tests to do.

e They are informed in formulating which tests to perform bplmabilities of
test outcomes, and by the manner in which knowing an outcorghtrim-
prove treatment.

e Tests can have associated costs.
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The value of perfect information

Information value theoryprovides a formal way in which we can reason about
what further information to gather usirsgnsing actions

Say we have evidendg, so
EU(acti on|E) = max Z Pr(s|a, E)U(s)
seResul t (a)
denotes how valuable the best action based onust be.
How valuable would it be to learn aboufather piece of evidenée

If we examined another R¥’ and found thaf’ = ¢’ then thebest action might
be alteredas we’'d be computing

EU(acti on’|E, E') = max Z Pr(s|a, E, E"\U(s)
! seResul t (a)

BUT: becausé?’ is a RV, and in advance of testing we don’t know its value, we
need toaverageover itspossible valuessing ourcurrent knowledge
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The value of perfect information

This leads to the definition of thealue of perfect informatio(VP1)
VPI p(E') = {Z Pr(E' = ¢'|E)EU(act i on’|E, E' = e)} — EU(acti on|E)

VPI has the following properties:
o VPl 5(E') >0
e It is not necessarily additive, that is, it is possible that
VPI 5(E',E") # VPl g(E') + VPI p(E")
e Itis independent of ordering

VPI p(E', E") = VPl 5(E') + VPI 1 p(E")
= VPl 5(E") + VPl g pi(E)
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Agents that can gather information

In constructing an agent with the ability to ask questions,would hope that it
would:

e Use a good order in which to ask the questions.

¢ Avoid asking irrelevant questions.

e Trade off thecostof obtaining information against thelue of that informa-
tion.

e Choose a good time tstopasking questions.

We now have the means with which to approach such a design.
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Agents that can gather information

Assuming we can associate a cO8tF’) with obtaining the knowledge thdt’ =
¢ an agent can act as follows:

e Given a decision network and current percept.
e Find the piece of evidencB’ maximisingVPIl x(E’) — C(E’).

o If VPI p(E’) — C(E") is positive then find the value d’, else take the action
indicated by the decision network.

This is known as anyopicagent as it requests a single piece of evidence at once.
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Uncertainty V: probabilistic reasoning through time

We now examine:

e How an agent might operate by keeping track of the state @mt&ronment
in an uncertain world, and how alterations in world state andertainty in
observing the world can be modelled using probability dhstions.

e How inferences can be performed regarding the current, gtasd state and
future states.

e The Viterbi algorithmfor computing the most likely sequence.

e A slightly simplified system within this framework calledréddden Markov
model(HMM), and the way in which some inference tasks can be sfiagli
in the HMM case.

Reading:Russell and Norvig, chapter 15.

163

Probabilistic reasoning through time

A fundamental idea throughout the Al courses has been thagamt should keep
track of thestate of the environment

e The environment'’s statehanges over time
e The knowledge ohow the state changesay beuncertain
e The agent'perceptionof the state of the environmentay be uncertain

For all the usual reasons relateduocertainty we need to move beyond logic,
situation calculugtc
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States and evidence

We model the (unobservable) state of the environment asAsll

e We use asequence
(So, S1,59, .. .)
of setsof random variablegRVS).

e EachsS; is asetof RVs )
= {88y

denoting the state of the environment at timeheret = 0,1, 2, . . ..

Think of the state as changing over time.

So—>51—>52—>“'
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States and evidence

At each timet there is also anbservableset
—{EY,.. E"

of random variables denoting tlegidence that an agent obtains about the stdte
timet.

As usual capitals denote RVs and lower case denotes actedsvaSo actual
values for the assorted RVs are denoted

Si={si",. 5"} =5
= {et PR 7etm)} =€

Stationary and Markov processes

As t can in principle increase without bound we now need somelsiyimy as-
sumptions.

Assumption 1 We deal withstationary processeprobability distributions do not
change over time.

Assumption 2 We deal withMarkov processes
Pr(S:|So.t—1) = Pr(S¢|Si-1) (7)
WhereS();t,1 = (S[), Sh ey Stfl).

(Strictly speaking this is &irst order Markov Processand we’ll only consider
these.)

Pr(S;|S;—1) is called thetransition model
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Stationary and Markov processes

Assumption 3We assume that evidence only depends on the current state
Pr(Ey|So.t, Erii—1) = PI(E|S)) (8)
Then

Pr(E:|S;) is called thesensor model

Pr( SL‘SI 1)

<Q/\/\f\

)
/
:w

PrES) . Ty

Pr(Sy) is theprior probability of the starting state. We need this as there has to be
some way of getting the process started.
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The full joint distribution

Given:

1. The prior PtSy).
2. The transition model P$;|S;_1).
3. The sensor model Fx;|S;).

along with the assumptions of stationarity and the assumgtof independence

in equations 7 and 8 we have

t
P((Sy, St ..., Sty By, Ea, ..., ) = Pi(Sy) [ [ PH(Si|Si-1)PHES)) |

i=1

This follows from basic probability theory as for example

Pr(SO7 Sl, SQ, El, EQ) = Pr(EQ‘SU:Q, El)Pr(SQ|SU:1, El)Pr(EﬂSUI)Pr(Sl|So)Pr<SU)
= PF(EQ‘SQ)PF(SﬂSl)PI’(El|Sl>Pr(Sl|50)Pr(50)
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Example: two biased coins

Here’s a simple example with ontwo statesandtwo observations
| havetwo biased coins

| flip oneandtell you the outcome

| then eitherstaywith the same coin, cswapthem.

This continues, producing a succession of outcomes:

0.2
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Example: two biased coins

We'll use the following numbers:
e The prior P(S; = coi n1) = 0.5.
e The transition model
Pr(S; = coi n1|S;_; = coi n1) = Pr(S; = coi n2|S;_; = coi n2) = 0.8
Pr(S; = coi n1]S;_; = coi n2) = Pr(S; = coi n2|S;_; =coi nl) =0.2
e The sensor model

Pr(E; = head|S; = coi n1) = 0.1
Pr(E; = head|S, = coi n2) = 0.9

171

Example: two biased coins

This is straightforward to simulate.

Here’s an example of what happens:

[C2,C,C,c,ca,c,c,0,0,C,C,CL,Ce2,C1,C1,C1,CL,CLL,CLLCL,CL, 2, 2,22, C2,C2,C2,C2,C2,C2,C2,C2, 2, C2, 2, C2,C2,C2,C2, C2]
2

[Hd, TI, T, T, Hd, T, Hd, TI, TI, T, Hd, TI, Hd, T, T, T, T, T, Hd, T, T1, Hd, Hd, Hd, Hd, Hd, Hd, Hd, Hd, T, Hd, Hd, Hd, Hd, Hd, Hd, Hd, Hd, TI, Hd]

As expected, we tend to see runs of a single coin, and migtgcgxp be able to
guess which is being used as one favours heads and the dther ta
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Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. Tokea good start to
the coming week, he climbs on a Sunday with probabilifg. Being concerned
for his own safety, he is less likely to climb today if he cliethyesterday, so

Pricl i mb todaylclinb yesterday)=04
If he did not climb yesterday then he is very unlikely to clinaldlay, so
Pricl i nb today|—-clinmb yesterday)=0.1

Unfortunately, he is not a very good climber, and is quitellkto injure himself
if he goes climbing, so

Pr(i nj ury|clinb today)=0.8

whereas
Pr(i njury|—-clinmb today)=0.1
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Example: 2008, paper 9, question 5

This has a similar corresponding diagram:

injury injury

We'll look at the rest of this exam question later.
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Performing inference

There are four basic inference tasks that we might want tmper
In each of the following cases, assume that we have obsemeesl/idence
Ery = ey
Task 1:filtering
Deduce what state we might now be in by computing
Pr(Si|e1.).
In the coin tossing questiorilf you've seen all the outcomes so far, infer which
coin was used last”

In the exam questionlf you observed all the injuries so far, infer whether my
friend climbed today”
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Performing inference

Task 2:prediction

Deduce what state we might be in some time in the future by ciimgp
Pr(S;.r|e1.;) for someT > 0.

In the coin tossing questiorilf you've seen all the outcomes so far, infer which

coin will be tossed” steps in the future”

In the exam questiorif you've observed all the injuries so far, infer whether my
friend will go climbingT" nights from now”
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Performing inference

Task 3:Smoothing

Deduce what state we might have been in at some point in thdpasmputing
Pr(St|€1:T) foro<t<T.

In the coin tossing questiorilf you've seen all the outcomes so far, infer which

coin was tossed at timein the past”.

In the exam questiortif you've observed all the injuries so far, infer whether my
friend climbed on night in the past”.
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Performing inference

Task 4:Find the most likely explanation
Deduce the most likely sequence of states so far by computing

argmax Pr(sy.¢|e.)
S1:t

In the coin tossing questiofitf you've seen all the outcomes so far, infer the most
probable sequence of coins used”

In the exam question:If you've observed all the injuries so far, infer the most
probable collection of nights on which my friend climbed”
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Filtering

We want to compute P§;|e;;). This is often called théorward messagand
denoted

fl:t = Pr(St|€1:t)
for reasons that are about to become clear.

Remember thab; is an RV and sqfy; is aprobability distributioncontaining a
probability for each possible value 6f.

It turns out that this can be done in a simple manner witbcarrsive estimation
Obtain the result at time+ 1:

1. using the result from timeand...

2. ...incorporating new evideneg, ;.

Jreer = glewyn, fia)
for a suitable functiory that we’ll now derive.
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Filtering

Step 1
Project the current state distribution forward
Pr(Sii1leris1) = Pr(Sisilers, err)
= cPres1]Sti1, €14)PH(Spi1
= CPl'(etH|St+1>Pr(St+1\€1:t)
Sensor model Needs more work

where as usual is a constant that normalises the distribution. Here,

elzt)

e The first line does nothing but spét.;. ; into e, ; andey.;.
e The second line is an application of Bayes’ theorem.

e The third line usesissumption 3egarding sensor models.
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Filtering
Step 2
To obtain P(S;,1]e1)
Pr(St+1|el;t) = Z Pr<St+1; 5t|€1:t)
St

= Z Pr(Sky1]st, e1.4)Pr(sile1.)

St
= Z Pr(5t+1|5t) Pr(s:|ei.)

St Transition model Available from previous step

Here,

e The first line uses marginalisation.
¢ The second line uses the basic equatiqiPB) = Pr(A|B)Pr(B).
e The third line usesissumption 2egarding transition models.
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Filtering

Pulling it all together

Pr(Sialeriin) = cPrer|Sia) Y Pr(Sials)  Prisilew) 9)

Sensor model St Transition model From previous step

This will be shortened to
fr441 = c(FORWARD €141, f1:4)

Here

e f1.+is a shorthand for R6;|e; ).
e f1,is often interpreted asrmessagbeing passed forward.

e The process is started using tbréor.
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Prediction

Prediction is somewhat simpler as

Pr(Seiriilen) | = Z Pr(Siiri1, Seerler)
—_—

Prediction at+7+1 St+T

= > PHSyralser, e Prserlen)

St+T

= ZPr(St+T+1|5t+T>Pr<3t+T|61:t)

St+7  Transition model Prediction at+7"

However we do not get to make accurate predictions arlitrani into the future!
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Smoothing

For smoothing, we want to calculate(Byle;.r) for 0 <t < T.

Again, we can do this in two steps.

Step 1:
Pr(Sile1.r) = Pr(Siler, er1r)
= cPr(Si|ey.+)Pries 17|t e1:4)
= cPr(Si|er.+)Priesy1:7]St)
= cfribeyrr
Here

e f1,is the forward message defined earlier.

e by, 1.7 is a shorthand for Re;, 1.7|.S;) to be regarded emmessage being passed

backward
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Step 2:

Smoothing

biiir | = Plerr]S) =Y Preriir, s41|S)

St+1

= Z Pres 17| St51)Pr(s¢41]5%)

St+1

= " Prerir, epvarlsi)Prsia|S))

St+1

= Z Pres1|se+1)Prerior|sei1) Pr(sii1]Se)

St

+1  Sensor model

byto. Transition model

BACKWARD (117, bit2.7)

This process is initialised with

bir14 = Prleriir|St) = (1, ..
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1)

(10)

The forward-backward algorithm

So:our original aim of computing P6;|e;.7) can be achieved using:

e Arecursive process working from timeo timet¢ (equation 9).

e A recursive process working from tin¥eto timet + 1 (equation 10).
This results in a process that@y7T") given the evidence;.r and smooths for a
singlepoint at timet.
To smooth atll points1 : T we can easily repeat the process obtairtiig?).

Alternatively a very simple example diynamic programmingllows us to smooth
at all points inO(T) time.
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The forward-backward algorithm

Recursively compute all values fgr.; and store results

N m@{)
Done

Recursively compute all valués, ;.- and combine with stored values fér;.
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Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain

argmax Pr(sy|e.)
S1:t

Earlier we derived the joint distribution for all relevardnables

t
Pr(S(), Sl: e St, El, EQ, e Et) = Pr(So) H Pr(SL|SI,1>Pr(Et|SZ)

i=1
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Computing the most likely sequence: the Viterbi algorithm

We therefore have

max Pr(si.¢, St1l€rs+1)
<1t

= cmax Priess1]S1)PH(Sit1|s:)Prisilers)
S1:t

= cPres41]Si41) max Pr(Sis1lse) ?llabfpr(slztfhsﬁel:t)
t 1t —

This looksa bit fierce despite the fact that:

e The second line is just Bayes’ theorem applied to the joistrithiution.

e The last line is just a re-arrangement of the second line.
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Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamuigramming algo-
rithm called theviterbi algorithm

Step 1:Simplify the notation.
e Assume there are statess;, . . ., s, andm possible observations, . .., e, at
any given time.
e Denote PQ'St = Sj|St,1 = 87) byp7]<t>
e Denote Pfe;|S; = s;) by ¢;(t).

It's important to remember in what follows that tbservations are knowbut
that we'remaximising over all possible state sequences
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Computing the most likely sequence: the Viterbi algorithm

The equation we're interested in is now of the form

T
P=1]ri®a)
t=1

(The prior P(Sy) has been dropped out for the sake of clarity, but is easy to put
back in in what follows.)

The equation? will be referred to in what follows.

It is in fact afunctionof any given sequence of states
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Computing the most likely sequence: the Viterbi algorithm

Step 2:Make a grid: columns denote time and rows denote state.

1 2 3 k k+1 t

S1 [ [ ] [ [ ] [ [
s2 [ J [ J [ J [ ] o o
s3 [ [ [ [ ] [ [ ]
Sno1 @ [ J [ J [ ] o o
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Computing the most likely sequence: the Viterbi algorithm

Step 3:Label the nodes:
e Say at timet the actual observation was. Then label the node fos; in
columnt with the valueg;(t).

¢ Any sequence of states through time is now a path throughritie$p for any
transition froms; at timet — 1 to s; at timet label the transition with the value
Pij(t)-

In the following diagrams we can often just writg; andg; because the time is
clear from the diagram.

So for instance...
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Computing the most likely sequence: the Viterbi algorithm

ke k41 t
° ° °
) ° °
° ° °
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Computing the most likely sequence: the Viterbi algorithm

e The value ofP = Hlepi,j(t)qi(t) for any path through the grid is just the
product of the corresponding labels that have been added.

e But we don’t want to find the maximum by looking at all the pbdsipaths
because this would be time-consuming.

e TheViterbi algorithmcomputes the maximum by moving from one column to
the next updating as it goes.

e Say you're at columrk andfor each noden in that column you know the
highest valudor the product to this point oveamy possible pathCall this:

k
Win(k) = max [ T pi(6)ai(t)
Tot=1
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Computing the most likely sequence: the Viterbi algorithm

1 2 3 s k k+1 s t
Wi (k)
s1 [ ] [ ] [ ]
Wa(k)
So [ J ®
Wi (k)
83 [ ] [ ] [ ]
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Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

e The valuesV;(k) fori =1,...,n attimek.
e The numberg; ;(k + 1).
e The numbersg;(k + 1).

to compute the valudd’;(k + 1) for the next columrk + 1.

This is because

Wik + 1) = max W(k)pji(k + 1)qi(k + 1)
J
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Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for tinte

e The node with the largest value fii;(¢) tells you the largest possible value
of P.

e Provided you storethe path taken to get thergou canwork backwardgo
find the corresponding sequence of states

This is theViterbi algorithm

198

Computing the most likely sequence: the Viterbi algorithm

1 2 3 k k+1 t

Wi(t) maximum
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Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here aeehasingle
discretestate variable; taking valuess, so, . . ., s,. For example, withh = 3 we
might have

Pr(Si41|S; = 51)  Pr(S;1|Sy = 55)  Pr(S;14[S, = s3)
51 0.3 0.2 0.2

Sa 0.1 0.6 0.3

53 0.6 0.2 0.5

)
()
=
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Hidden Markov models

In this simplified case the conditional probabilities.®r|.S;) can be represented
using the matrix

Sij = Pr(Sii1 = 551S; = s4)
or for the example on the previous slide

0.3 0.1 0.6\ <« Pr(S|s))
S=1020602] « PrS|ss)
0.2 0.3 0.5/ « Pr(S|s3)

Pr(si[s1) Pr(sa|s1) -+ Pr(sy[s1)
Pr(S}’SQ) Pr(S.Q‘SQ) Pr(s?,\SQ)

Pr(si|s,) Pr(salsn) <+ Pr(sp|sy)
To save space, | am abbreviating 81, = s;/S; = s;) to P(s;|s;).
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Hidden Markov models

The computations we're making are always conditional onesagtual observa-
tionse;.7.

For eacht we can therefore use the sensor model to define a furthennigtri

e E; is square and diagonal (all off-diagonal elementsigre
e Theith element of the diagonal is Rf|S; = s;).

So in our present example wittstates, there will be a matrix

Pr(es|s1) 0 0
E = 0 Prlefss) 0
0 0 Pr(e:|ss)

foreacht =1,...,T.
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Hidden Markov models

In the general case the equation for filtering was
Pr(Sii1leris1) = cPress1|Sii1) Z Pr(Si11]s:)Pr(stlei)

St
and the messagg; was introduced as a representation af9ge;.;).
In the present case we can defifje to be the vector
Pr(s1|e1.)
fua = Pr(82:|61;t)
Pr(snle1r)
Key point: the filtering equation now reduces to nothing but matrix mplittation.
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What does matrix multiplication do?

What does matrix multiplication dof®? computes weighted summations

m

a1 G12 ¢ Aim by Doy arbi
m

a1 Ag2 - Q2 by 1 G2.ib;

Ab = 2 B2 jm : _ 27,71. Vi
m

Qp1 Ap2 *** Qpm bm Zizl an,ibi

So the point at the end of the last slide shouldn’t come as aubjgrise!
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Hidden Markov models

Now, note that if we have states

Pr(si|s1) -+ Pr(si[sn) Pr(s1er.)
STf . — Pr(sa|s1) -+ Pr(safsn) Pr(sser.)

jl:f - : .. : :

Pr(5n|81) T Pr(sn‘sn) Pr(sn|61:t)
Pr(‘sl'Sl)Pr(sl‘el:t) +ee Pr(51|317)Pr(3n|61:t)
Pr(52|51>Pr(81‘81:/,) +et Pr(52|3n)Pr(5n,|elzl)
Pr(5n|51)Pr(31‘el:t) + 4+ Pr(sn‘sn)Pr<5n|elzf)

> Prisi|s)Pr(s|ers)
> Pr((s’g\:.;)Pr(s\el:t)

> Pl’(s,,,|;)Pr(s\el:L)
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Hidden Markov models

And taking things one step further

Priesi1]s1) ) 0 > Pr(s|s)Pr(s|ey)

> Prisi|s)Pr(sler)
Et+ISTf1:t = ) :
> Pr(sa|s)Pr(s|er)

0 Pr<et+l Isn)
Priesa]s1) 2_, Prisi|s)Pris[ers)
Pr(ersils2) 3_, Prlsa|s)Pr(s|er)
Prer1]sn) D2, Prisals)Prislers)
Compare this with the equation for filtering

Pr(Sii1leris1) = cPres1|Si1) Z Pr(Si1|s:)Pr(si|ers)

St
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Hidden Markov models

Comparing the expression fdt, S’ f,.; with the equation for filtering we see
that

fravr = cEST fiy

and a similar equation can be found for

bri14 = SEp1briay

Exercise: derive this.

The fact that these can be expressed simply using only ricédtifpn of vectors
and matrices allows us to make an improvement to the forwaakward algo-

rithm.
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Hidden Markov models

Theforward-backwardalgorithm works by:

e Moving up the sequence froito 7', computing and storing values fgr

e Moving down the sequence froiito 1 computing values fob andcombining
them with the stored values fgrusing the equation

Pr(St|elzT) = Cfl:tbt+1:T

Now in our simplified HMM case we have
frnr = B ST fiy
or multiplying through by(E;,;S”)~! and re-arranging

fre= %(ST>_1(Et+1)_lf1:t+1
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Hidden Markov models

So as long as:

e We know thefinal value for f.
¢ ST has an inverse.

e Every observation has non-zero probability in every state.

Wedon't have to stord different values forf—we just work through, discarding
intermediate values, to obtain the last value and then wackward.
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Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. Tokea good start to
the coming week, he climbs on a Sunday with probabilifg. Being concerned
for his own safety, he is less likely to climb today if he cliethyesterday, so

Pr(cl i nb todaylclinb yesterday)=04
If he did not climb yesterday then he is very unlikely to clitoiolay, so
Pricl i nb today|—-clinb yesterday)=0.1

Unfortunately, he is not a very good climber, and is quitellikto injure himself
if he goes climbing, so

Pr(i njuryjclinb today)=0.8

whereas
Pr(i nj ury|—-clinb today)=0.1
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Example: 2008, paper 9, question 5

You learn that on Monday and Tuesday evening he obtains amyjnput on
Wednesday evening he does not. Use the filtering algorithoartgoute the prob-
ability that he climbed on Wednesday.

0.98
f1:0_<002>
0.4 0.6
o= <0109>
0.8 0
0 0.1

02 0
0 09

Initially

E
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Example: 2008, paper 9, question 5

The update equation is
freer = cE1 ST fia

O (SO (A1) (98 _ (083874
0000\ 01 )69 )\ 2 )7 \ 016126

Repeating this twice more usirig rather than¥ the final time gives
Frp = 0.81268
1271018732

e 0.10429
137\ 0.80571

SO

so the answer i8.1.
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Example: 2008, paper 9, question 5

Over the course of the week, you also learn that he does nairnoah injury on
Thursday or Friday. Use the smoothing algorithm to comphgeprobability that
he climbed on Thursday.

The S, E and E’ matrices are the same. The backward message starts as

and the update equation is
bz‘,:T = SEth—l:T

Then working backwards

b_i46 20 1\  [0.62
T 00\ 19 09 1) \083
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Example: 2008, paper 9, question 5

We also need one more forward step, which gives
Fra = 0.03249
B 0.96751

b — o 003249 X 0.62) _ (002447
€155 = C{ 0 96751 % 0.83 0.97553

giving the answe6.02447.

Finally
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Online smoothing

Say we want to smooth atfaed number of time stepdNe can also obtain a
simple algorithm for updating the result each time a rgw appears.

Smooth here

1 2 T — lag T
L] L] L] L]
Newer,
1 2 T —lagT —lag+ 1 T IRl
L] L] L] L] L] L]
\

Update to here
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Online smoothing

As usual we need to calculate
cfi.7—laghT—tagr1.7

to smooth at time7" — lag) if we've progressed to tim&. So: assumei.r_jag
andby_jagy 1.7 are known.

What can we now do whedy-,; arrives to obtairy,.;_jag.1 andbr_jagi2.7417

/ is easy to update because as usual

7
frr—iagr1 = cEr_jagr1S™| fir—lag

Known
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Online smoothing

b is more tricky.
We know that
br_iagi1.7 = SE7_lagi1b7 tagro.T
and continuing this recursion up to the end of the sequerntejates

1
T

1
browgrir =[] SEix | |
i=T—lag+1 )
1
Define ,
IBa:b = H SEl
o) B

br—agi1.T = Br_jagi1m X
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Online smoothing

Now whener. arrives we have

T+1 1

bT—Iag+2:T+1 = H SE; x .
i=T—lag+2 )

1

1

1

= ﬂT—Iag+2:T+1 X :

1

—1 -1
= ET—IanglS Br_tagi1:7SEr+1 X
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Online smoothing

This leads to an easy way to upd#te

ﬂa+1:b+l = Eglsilﬁa,:bSEbJrl

Using this gives the required update for
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Supervised learning II: the Bayesian approach

We now place supervised learning into a probabilistic settly examining:

e The application of Bayes’ theorem to thepervised learning problem
e Priors, the likelihood, and the posterior probabititya hypothesis

e The maximum likelihoodand maximum a posteriorhypotheses, and some
examples.

e Bayesian decision thearyninimising the error rate.

e Application of the approach taeural networksusing approximation tech-
nigues.
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Reading

There is some relevant material to be foundRimssell and Norvighapters 18 to
20 although the intersection between that material and iwhitcover is small.

Almost all of what | cover can be found in:

e Machine Learning Tom Mitchell, McGraw Hill 1997, chapter 6.

e Pattern Recognition and Machine Learninghristopher M. Bishop, Springer,
2006.
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Supervised learning: a quick reminder

We want to design alassifier denotedh(x)

Classifier
Attribute vector = h(x) [ Label

X

It should take an attribute vector

and label it.

What we mean byabel depends on whether we're doictassificationor regres-
sion
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Supervised learning: a quick reminder

In classificatiorwe’re assigning to one of a sefwy, . .., w.} of ¢ classes

For example, ik contains measurements taken from a patient then there beght
three classes:

wy = patient has disease
wy = patient doesn't have disease
ws = don’t ask me buddy, I'm just a computer!

We’'ll often specialise to the case of two classes, denGieandCs.
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Supervised learning: a quick reminder

In regressionwe’re assigning to areal numberh(x) € R.

For example, ifk contains measurements taken regarding today’s weathente
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refea situation somewhat
between the two, where
h(x) =Pr(xisinC})
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Supervised learning: a quick reminder

We don’'t want to desigh explicitly.

i Classifier
Attribute vector = h(x) [ Label

X

h=L(s)

Learner

Training sequence
S

So we use éearner L to infer it on the basis of a sequencef training examples
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Supervised learning: a quick reminder

Thetraining sequence is a sequence of: labelled examples
(X17 Z/l)
(X27 3/2)

(Xms Yrm)
That is, examples of attribute vectotsvith their correct label attached.

So a learner only gets to see the labels for a—most probaldil-sraubset of the
possible inputs.

Regardless, we aim that the hypothesis= L(s) will usually be successful at
predicting the label of an input it hasn't seen before.

This ability is calledgeneralization

226

Supervised learning: a quick reminder

There is generally a sé{ of hypotheses from which is allowed to seleck
Lis)y=heH
‘H is called thenypothesis space

The learner can output a hypothesis explicitly or—as in theecof a multilayer
perceptron—it can output a vector

W = (w1 wo - ’ww*)
of weightswhich in turn specifyr
h(x) = f(w;x)

wherew = L(s).
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Supervised learning: a quick reminder

In Al | you saw thebackpropagation algorithnfior training multilayer percep-
trons, in the case okgression

This worked by minimising a function of the weights representheerror cur-
rently being made:

Z (f(wix;) — yz)z

=1

The summation here is over the training examples. The esiores the summa-
tion grows asf’s prediction forx; diverges from the known labgj.

E(w)=

DO | —

Backpropagation tries to findw that minimisesE(w) by performinggradient
descent

Wil =W —
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Difficulties with classical neural networks

There are some well-known difficulties associated with akboetwork training of
this kind.

0.8

0.6 /

BEWARE!!

229

Sources of uncertainty

So we have to be careful. But let’s press on with this apprdach little while
longer...

The model used above suggests two sources of uncertairttyéhanight treat
with probabilities.
e Let'sassumave’ve selected af{ to useand it's the same one nature is using

o \We don’t know how nature choosgésfrom H. We therefore model our uncer-
tainty by introducing theprior distribution Pth) on .

e There is noise on the training examples.
It's worth emphasising at this point that in modelling noisethe training exam-

pleswe’ll only consider noise on the label§he input vectors are not modelled
using a probability distribution.
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The likelihood

We model our uncertainty in the training examples by spé&uifalikelihood
Pr(Y|h, x)
Translation the probability of seeing a given labgl, when the input vector is
and the underlying hypothesis/is
Example two-class classification. A common likelihood is
PrY = Cy|h,x) = o(h(x))

where
B 1
o(2) = 1+ exp(—2)
(Note strictly speakingk should not appear in these probabilities because it's not
a random variable. It is included for clarity.)
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The likelihood

- - . 1
The logistic function o(2) = g Logistic o(z) applied to the output of a linear function

Pr(x is in Cy)

10
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The likelihood

So: if we're given a training sequenaghat is the probability that it was generated
using somé?

For an exampléx, y), y can beC or Cs. It's helpful here to rename the classes
as justl and0 respectively because this leads to a nice simple expredsimm

o(h(x)) ifYy =1
Pr(Y[h, x) = { 1= o(h(x)) if Y = 0

Consequentlyvhen y has a known valwee can write
Pyl x) = [o(h(x))]" [1 — o (h(x))]" ™"

If we assume that the examples are independent then thehilitbaf seeing the
labels in a training sequensas straightforward.
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The likelihood

Collecting the inputs and outputs grtogether into separate matrices, so

}’T:(yl Yo v ym)

and
X:(x1 Xg -+ xm)

we have thdikelihood of the training sequence

Priy|h,X) = H Pr(yi|h, x;)
=1
m

=L lox))" [1 = o))
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The likelihood

Another exampleregression. A common likelihood in the regression casesvor
by assuming that examples are corrupted by Gaussian ndisenearn) and some
specified variance?

y = h(x) + ¢, wheree ~ N(0, 0?)
As usual, the density fok/ (u, o?) is

2) = o (<8 )2)

by addingh(x) to e we just shift its mean, so

plylh, x) = m;—a* <_<y }fjﬁx”g)
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The likelihood

Consequently if the examples are independent then thehdad of a training
sequence is

plylh, X) = Hp(yzlh, X;)

_ﬁ 1 - <_(yz- —QZng-)V)

1 1 m )
= WGXP (‘@ Z(% — h(x)) )
i=1

where we've used the fact that

exp(a) exp(b) = exp(a + b)
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Bayes’ theorem appears once more... Bayes’ theorem appears once more...

Right we've take care of the uncertainty by introducing gvér p(h) and the The boxed equation on the last slide has a very simple irgttion: what's the
likelihood of the training sequenggy|h, X). probability that this specifié was used to generate the training sequence I've
been given?

By this point you hopefully want to apply Bayes’ theorem aritev

Two natural learning algorithms now present themselves:

(hly) = pylh)p(h)
Py p(y) 1. Themaximum likelihood hypothesis
where hmL = argmax p(y|h)
(v) =Y _plhy) = plylh)p(h) o
p o ’ - - - - -
heH heH 2. Themaximum a posteriori hypothesis
gnd to simplify the ex.pression we hav<=T now d'ropped the merdfaX as the hamap = argmax p(hly)
inputs are fixedp(h|y) is called theposterior distribution heH
: : : _— = argmaxp(y|h)p(h)
The denominatoZ = p(y) is called theevidenceand leads on to fascinating heH

issues of its own. Unfortunately we won'’t have time to expldrem. ) S )
Obviouslyhy corresponds to the case where the ppi@r) is uniform.
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Example: maximum likelihood learning Example: maximum likelihood learning

We derived an exact expression for the likelihood in theessgjon case above: The proposition holds because:
1 1« hme = argmax p(y|h)
p(ylh) = omg2ymya XP <—ﬁ Z(yi - h(Xz'>)2> heH
(2mo?) iy = argmax log p(y|h)
Proposition under the assumptions usey learning algorithm that works by he m
minimising the sum of squared errors ofinds Ay . = argmax log [ﬁ exp (_% (i — h(x,-))Qﬂ
. . . . . heH 2mo?)m 207 4 ' '
This is clearly of interest: the notable example is Itlaekpropagation algorithm © . Lo =1
- — A P PR— . 2

We now prove the proposition... = argmmax log {7(%02),”/2] 552 Z(yz h(x;))

N 1 . 2
= argmax =g ;(yi — h(x;))

m

= argmin Z(?Jt - h<Xi))2

hen
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Example: maximum likelihood learning

Note:

e If the distribution of the noise isot Gaussiara different result is obtained.
e The use ofog above to simplify a maximisation problem is a standard trick

e The Gaussian assumption is sometimes, but not always a duoickc (Be-
ware the Central Limit Theorem!)
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The next step...
We have so far concentrated throughout our coverage of madharning on
choosing ssingle hypothesis
Are we asking the right question though?
Ultimately, we want to generalise.

That means being presented with a newand asking the questiorwhat is the
most probable classification af?

Is it reasonable to expect a single hypothesis to provideptienal answer?

We need to look at what the optimal solution to this kind obfgm might be...
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Bayesian decision theory

What is theoptimalapproach to this problem?

Put another way: how should we make decisions in such a wayhtbautcome
obtained is, on average, the best possible? Say we have:

e Attribute vectorsx € R?.
e A set ofclasses{wy, ..., w.}.

e Several possiblactions{ay, ..., a,}.

The actions can be thought of as sayfagsign the vector to class 1and so on.
There is also $0ss\(«;, w;) associated with taking actian when the class is;.

The loss will sometimes be abbreviated\tey;, w;) = A;;.
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Bayesian decision theory

Say we can alsmodelthe world as follows:

¢ Classes have probabilities(Ry of occurring.
e The probability of seeing when the class is has density(x|w).
Think of nature choosing classes at random (although natatag them) and
showing us a vector selected at random usifidw).
As usual Bayes rule tells us that
p(x|w)Priw)

P ="

and now the denominator is
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Bayesian decision theory

Say nature shows usand we take action;.

If we alwaystake actiony; when we see then theaverageloss on seeing is
R(c|%) = Eoppapo g [X] = D M, w))Prlw;[x).
j=1

The quantityR(«;|x) is called theconditional risk

Note that this particulax is fixed
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Bayesian decision theory

Now say we have decision rulea : R? — {ay, ..., «,} telling us what action to
take on seeingnyx € R”.

The average loss, oisk, is
R = Egxw)mpxw) Aa(x),w)]
- (

[Rla(o]x) (11)

where we have used the standard result from probabilityryhibat
E[E[X]Y]] = E[X].

(See the supplementary notes for a proof.)
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Bayesian decision theory

Clearly the risk is minimised for the decision rule definedad®ws:
o outputs the actioy; that minimisesR(a;|x), for all x € R%.

The provides us with the minimum possible risk Bayes riskR*.

The rule specified is called thigayes decision rule
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Example: minimum error rate classification

In supervised learning our aim is often to work in such a wat the minimise
the probability of error

What loss should we consider in these circumstances? Fraim peobability
theory

where
1 if A happens

I(4) = { 0 otherwise
(See the supplementary notes for a proof.)
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Example: minimum error rate classification

So if we are addressing a supervised learning problemanthsseqw, . .., w.}
and we interpret action; as meaning ‘the input is in class’, then a loss

/\U_{llfl#j

0 otherwise
means that the risk is
R =E [\ = Prla(x) is in error

and the Bayes decision rule minimises the probability adrerr

249

Example: minimum error rate classification

Now, what is the Bayes decision rule?
R(aj|x) = Z)\ a;, wj)Pr(w;|x)
= Z Pr(w;[x)

i
= 1 —Prwilx)

soa(x) should behe class that maximisé¥(w;|x).

THE IMPORTANT SUMMARYGiven a newk to classify, choosing the class that
maximises Ri;|x) is the best strategy if your aim is to obtain the minimum error
rate!
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Bayesian learning Il

Bayes decision theory tells us that in this context we shoaltsider the quantity
Pr(w;|s, x) where the involvement of the training sequence has been exadieit.

Pr(w;|s, x) ZP”’%MS X
heH

= Z Pr(w;|h, s, x)Pr(h|s, x)
heH

= Y Pr{wi|h,x)Pr(h]s).
heH

Here we have re-introduceld using marginalisation. In moving from line 2 to
line 3 we are assuming some independence properties.
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Bayesian learning Il

So our classification should be
w = argmax Z Pr(w|h, x)Pr(h|s)

vue{wl AAAAA W(} heH
If H is infinite the sum becomes an integral. So for example foruaat@etwork
w = argmax / Priw|w, x)Pr(w|s) dw
we{wy,...we} JRW

wherelV is the number of weights iw.

252




Bayesian learning I

Why might this make any difference? (Aside from the fact thatnow know it's
optimal!)

Example 1 Say|#| = 3 andh(x) = Pr(x is in classC}) for a2 class problem.

Pr(h1|s) =04
Pr{hs|s) = Pr(hs|s) = 0.3

Now, say we have ar for which

SO hmap Says thak is in classCy.
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Bayesian learning

However,

Priclass 1s,x) = 1 x 0.4+ 0 x 0.3+ 0 x 0.3
=04

Pr(class 2s,x) =0 x 044+ 1x0.3+1x 0.3
=0.6

so clasg’, is the more probable!

In this casehe Bayes optimal approach in fact leads to a different answe
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A more in-depth example

Let’s take this a step further and work through somethingtla inore complex in

detail. For a two-class classification problem wittx) denoting P{C|h, z) and
r eR:

HypothesesWe have three hypotheses

hi(z) = exp(—(z —1)°)
ha(z) = exp(—(2x — 2)%)
hs(x) = exp(—(1/10)(z — 3)*)

Prior. The prior is Pth;) = 0.1, Pr(hy) = 0.05 and Pfhs) = 0.85.
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A more in-depth example

We see the exampl€s.5, C), (0.9, C)), (3.1, Cy) and(3.4, Cy).

Likelihood: For the individual hypotheses the likelihoods are given by
Pr(s|h) = h(x1)h(x9)[1 — h(xs)]h(z4)

Which in this case tells us

Pr(s|h1) = 0.0024001365
Pr(s|hy) = 0.0031069836
Pr(s|hs) = 0.0003387476

Posterior Multiplying by the priors and normalising gives

Pr(hy|s) = 0.3512575000
Pr(hy|s) = 0.2273519164
Pr(hs|s) = 0.4213905836
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A more in-depth example

Now let’s classify the point’ = 2.5.

We need
Pr(Cils, z') = Pr(C4|hy)Pr(hi|s) + Pr(Ch|he)Pr(hsls) + Pr(Cy|hs)Pr(hs|s)
= 0.6250705317

So: it’'s most likely to be in clas€’, but not with great certainty.
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The Bayesian approach to neural networks

Let's now see how this can be appliedrteural networksWe have:

e A neural network computing a functiof{w; x).
e Atraining sequence = ((x1,41), - - - » (Xm, Ym)), Splitinto
y=(y1 v Yn)

and
X:<X1 Xyt Xm)

Theprior distribution p(w) is now on the weight vectors and Bayes' theorem tells

us that (ylw. X)p(w[X)
— ol _ plylw, X)p(w

Nothing new so far...
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The Bayesian approach to neural networks

As usual, we don't consider uncertaintyznand soX will be omitted. Conse-

quently
p(y|w)p(w)

pwly) = o)

where
ply) = /R | Dly[w)p(w)dw

p(y|w) is a model of the noise corrupting the labels and as prewasshelike-
lihood function
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The Bayesian approach to neural networks

p(w) is typically abroad distributionto reflect the fact that in the absence of any
data we have little idea of what might be.

When we see some data the above equation tells us how to gitaig). This
will typically be more localised

To put this into practice we need expressionspiar) andp(y|w).
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Reminder: the general Gaussian density

Reminder we're going to be making a lot of use of the genésalussian density
N(p, X) in d dimensions

p(z) = (2m) S| exp | = (2~ )" S5~ )

wherep is themean vectoandX is thecovariance matrix

261

The Gaussian prior

A common choice fop(w) is theGaussian priowith zero mean and
S =01

SO
T

p(w) = (277)_1’17/20_W exp _ww
202

Note thato controls the distribution of other parameters.

e Such parameters are callegperparameters
e Assume for now that they are both fixed and known.

Hyperparameters can be learnt usi#ndprough the application of more advanced
techniques.
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The Bayesian approach to neural networks

Physicists like to express quantities suctpés) in terms of a measure dén-
ergy”. The expression is therefore usually re-written as

piw) = e (~5IwIF)

where

1
Eur(w) = lwl

zute) = (%)

1
oa=—
o2

This is simply a re-arranged version of the more usual equmati
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The Gaussian noise model for regression

We've already seen that for a regression problem with zeramn@&aussian noise
having variancer

yi = f(xi) + €

(€)= o (%)
€)= ——exp | —
P /2ol P 202

where f corresponds to some unknown network, the likelihood fumcis

plylw) = Wem <—$ > wi— f(Wl,Xi)>2>

moi=1

Note that there are now two variances? for the prior ando? for the noise.

264




The Bayesian approach to neural networks

This expression can also be rewritten in physicist-frigridtm

plyiw) = 75 0 (BB (w)
where
-z
2o ()"
Byfw) = 23— i)

i=1
Here, 5 is a secondhyperparameter Again, we assume it is fixed and known,
although it can be learnt usirgusing more advanced techniques.
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The Bayesian approach to neural networks

Combining the two boxed equations gives

p(wly) = moxm—sm)

where

S(w) = aBy(w) + BEy(w)

The quantity
Zs(a, B) = /RW exp(—=S(w))dw

normalises the density. Recall that this is calleddhielence
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Example I: gradient descent revisited...

To find huap (in this scenario by findingvyap) we therefore maximise

pwly) = exp(—(abw(w) + SEy(w)))

b
ZS<a7 6)

or equivalently find
) a /8 m
WMap = arg;rvnl1'1§||w||2 + 5 ;(yl — f(w;x;))?

This algorithm has also been used a lot in the neural netwtatature and is
called theweight decayechnique.
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Example II: two-class classification in two dimensions

Examples Prior density p(w)

-3 -2 -1 0 1 2 3 w2 -10 -10 wy

Likelihood p(y|w) Posterior density p(wly)
s

w2 -10 -10 wy
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The Bayesian approach to neural networks

What happens as the numberof examples increases?

e The first termcorresponding to the prioremains fixed.
e The second termorresponding to the likelihoomhcreases.

So for small training sequences the prior dominates, bulafgie onesiy is a
good approximation thmap.
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The Bayesian approach to neural networks

Where have we got to..W¥e have obtained
1
= —(aBEwy E
p(wly) 7o) exp(—(aEw(w) + BEy(w)))

Zs(a,B) = [ | expl=(aBi(w) + BBy (w))aw

Translating the expression for tiBayes optimabkolution given earlier into the
current scenario, we need to compute

Pl = [ plolwxoplwly) de

Easy huh?Unfortunately not...

270

The Bayesian approach to neural networks

In order to make further progress it's necessary to perfotegrals of the general
form

[, PO ptwly)aw
RIV
for various functiong” and this is generally not possible.

There are two ways to get around this:

1. We can use aapproximate fornfor p(wly).

2. We can us®onte Carlomethods.
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Method 1: approximation tp(w|y)

The first approach introduces@aussian approximatioto p(w|y) by using a
Taylor expansiorf
S(w) = aEw(w)+ fEy(w)

atwyap.
This allows us to use standard integral
The result will beapproximatebut we hope it's good!

Let’s recall how Taylor series work...
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Reminder: Taylor expansion

In one dimension the Taylor expansion about a peinEe R for a function f :
R —Ris

1 1 1 e ok
flz) = flxo) + F(»”U — x0) f'(20) + g(x — x0)* f"(wo) + -+ + E(x — 20)" ¥ ()
What does this look like for the kinds of function we're irgsted in? We can try
to approximate

exp (—f(x))

where

1 )
f(x) :m4f§x377x2 - §x+22

This has a form similar t&(w), but in one dimension.
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Reminder: Taylor expansion

The functions of interest look like this:

By replacing— f(z) with its Taylor expansion about its maximum, which is at
Tmax = 2.1437

we can see what the approximationetp(— f(z)) looks like. Note that thexp
hugely emphasises peaks.
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Reminder: Taylor expansion

Here are the approximations for= 1, k = 2 andk = 3.

Taylor expansion for k= 1 Taylor expansion for k =2 Taylor expansion for k=3
AN
0 0 o 0 ————
-200 200 / 200 A\
-400 -400 /,/ —400
/
/
-600 -600 —* -600
-5 0 5 -5 0 -5 0 5
z z z
exp((z)) exact exp(f(z)) using Taylor expansion for k = 2
0.8 0.8
0.6 0.6
A
0.4 0.4 “\‘
|
I
0.2 0.2 I
I\
o o A
-5 0 5 -5 0 5

The use of = 2 looks promising...
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Reminder: Taylor expansion

In multiple dimensionthe Taylor expansion fot = 2 is

F06) & Fxa) + 330x — x0)" VIR, + oy = x0)” V20, (x — 0)

whereV denotegyradient
_ [ U® UE /(%)
vf(x)_(ﬁml Org a—zn>
andV? f(x) is the matrix with elements
0 f(x)
M;; =
J 6$7‘,an

(Although this looks complicated, it's just the obviougeasion of the 1-dimensional
case.)
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Method 1: approximation tp(w|y)

Applying this toS(w) and expanding arounayap

S(W) ~ S(WMAP) + (W — WMAP)T VS(W)’

WMAP

+ E(W — wwap) A (W — Wyap)

notice the following:

e As wyap Minimisesthe function the first derivatives are zero and the corre-
sponding term in the Taylor expansidisappears

e The quantityA = VVS(w)|, .. can be simplified.

WMA

This is because
A = VV(aEw(w)+ BEy(w))|

=aol+ ﬁVVEy<WMAp)

WMAP
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Method 1: approximation tp(w|y)

Defining
AW = W — Wyap

we now have 1

S(w) = S(wmap) + EAWTAAW
The vectorwyap can be obtained using any standard optimisation methodh (suc
asbackpropagatioh

The quantityVV Ey(w) can be evaluated using axtended form of backpropa-
gation
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A useful integral

Droppingfor this slide onlythe special meanings usually given to vecterand
y, here is a useful standard integral:

If A € R"™"is symmetric then fob € R" andc € R
1
/ exp <§ (XTAX +x'b+ c)> dx
1 TA-!
_ (27T)n/2|A|—1/2 exp (_5 (C . b : b))

At the beginning of the course, two exercises were set inglthe evaluation of
this integral.

To make this easy to refer to, let’s call it tBéG INTEGRAL
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Method 1: approximation tp(w|y)

We now have
1 1
p(wly) = Z@5) exp <—S(WMAP) - EAWTAAW>
whereAw = w — wyap and using thélG INTEGRAL
Z(a, B) = (2m)"*|A| 7 exp(— S (wmap))
Our earlier discussion tells us that given a new inpute should calculate
pYlyx) = [ plalwxlptwly)ivs
RV

p(y|w, x) is just thelikelihood so...
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Method 1: approximation tp(w|y)

The likelihood we're using is

plylw, x) = V;r_ap (‘W)

o exp <—§(y - flw; X))2>

and plugging it into the integral gives

plocy) x [ e (<50 - ftwi)? ) exp (-~ awT Adw) dw

RV 2
which has no solution!

We needanother approximation...
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Method 1: approximation tp(w|y)

If we assumehatp(w|y) is narrow (this depends o) then we can introduce a
linear approximatiorof f(w;x) atwwap:

f(w;x) = f(wwap;X) + g Aw
whereg = V f(w;X) |y, .00

By linear approximation we just mean the Taylor expansiorkfe- 1.

This leads to
1
p(Yly,x) o< / exp <—§ (y — f(wwmap; x) — gTAw)2 — §AWTAAW> dw
RW

and this integral can be evaluated using Bi& INTEGRALto give THE AN-
SWER...
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Method 1: approximation tp(w|y)

Finally

1
p(Yy,x) =
1/2770:3

1 _
0'; = E—I—gTA lg.

where

Hooray! But what does it mean?
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Method 1: approximation tp(w|y)

This is aGaussian densifyso we can now see thatY'|y, x) peaksat f (wwap; X).
That is, theMAP solution

Thevariancea§ can be interpreted as a measureeftainty.

e The first term ofz; is 1/ and corresponds to the noise.

e The second term af; is g” A~'g and corresponds to the width pfw]y).

Or interpreted graphically...
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Method 1: approximation tp(w|y)
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Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

1= / F(w)p(wly)dw

is to useMonte Carlomethods. The basic approach is to make the approximation

1
I =~ — F i
N; (wi)

where thew; have distributiorp(w|y). Unfortunately, generating; with agiven
distributioncan be non-trivial.
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MCMC methods

A simple technique is to introduce a random walk, so
W11 = W; + €
wheree is zero mean spherical Gaussian and has small varianceo@iyithe
sequencew; does not have the required distribution. However, we canthise
Metropolis algorithm which doesot accept all the steps in the random walk:
1. If p(wis1]y) > p(w;]y) then accept the step.
; SIAYi1lY)
2. Else accept the step with probabll%.

In practice, the Metropolis algorithm has several shoriogs) and a great deal
of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Mor@arlo methods,”

University of Toronto, Department of Computer Science fiieeth Report
CRG-TR-93-1, 1993.
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Approximate inference for Bayesian networks

MCMC methods also provide a method for performaggproximate inferencin
Bayesian networks

Say a system can be in a stat@nd moves from state to state in discrete time steps
according to a probabilistic transition

Pr(s — ')
Let m,(s) be the probability distribution for the state aftesteps, so
(') = Z Pr(s — s')m(s)

If at some point we obtaim;1(s) = m(s) for all s then we have reached a
stationary distributionr. In this case

Vs'm(s') = > Pr(s — ')m(s)

There is exactly one stationary distribution for a give(sP# s') provided the
latter obeys some simple conditions.

288




Approximate inference for Bayesian networks

The condition ofdetailed balance
Vs, s'm(s)Pr(s — §') = w(s')Pr(s’ — s)

is sufficient to provide a that is a stationary distribution. To see this simply sum:

> w(s)Pris = s') =Y w(s)Pr(s’ — s)
S/)Z Pr(s’ — s)

=1

=m(s')

If all this is looking a little familiar, it's because we novate an excellent ap-
plication for the material ilfMathematical Methods for Computer Sciendéhat
course used the alternative teloeal balance
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Approximate inference for Bayesian networks

Recalling once again the basic equation for performing aldistic inference
Pr(Q|e):—PrQ/\e ZPrQ,ue
where

e () is the query variable.
e ¢ is the evidence.
e 1, are the unobserved variables.

e 1/7 normalises the distribution.

We are going to consider obtaining samples from the digiobPr(Q, Ule).
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Approximate inference for Bayesian networks

The evidence is fixed. Let the&tateof our system be a specific set of values for
thequery variable and the unobserved variables

5= (q,Uh’U/Q, e 7“’71) = (817 82y vy $7L+1>

and defines; to be the state vectavith s; removed

S; = (817 cee s Sie1y Sidly e ey Sn+1>

To move froms to s’ we replace one of its elements, saywith a new values/
sampled according to
This has detailed balance, and ha§F|e) as its stationary distribution.
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Approximate inference for Bayesian networks

To see that Rr), Ule) is the stationary distribution
m(s)Pr(s — s) = Pr(sle)Pr(s}[s;, e)

= Pr(s;,5;|e)Pr(sl|s;, e)

= Pr(si[s;, e)Pr(si|e)Pr(si[s;, €)

= Pr(s;[s;, €)Pr(s, sile)

=Pr(s’ — s)r(s)
As a further simplification, sampling from §;|s;, e) is equivalent to sampling
S; conditional on its parents, children and children’s pasent
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Approximate inference for Bayesian networks

Sa

e We successively sample the query variable and the unolibeavmbles, con-
ditional on their parents, children and children’s parents

e This gives us a sequensg s,, . . . which has been sampled according t&R |e).

Finally, note that as

Pr(Qle) = Y " PrQ, ule)

we can just ignore the values obtained for the unobservedhlas. This gives
usq, go, . . . With

qi ~ Pr(Qle)
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Approximate inference for Bayesian networks

To see that the final step works, consider what happens wheestireate the
expected value of some function Qf

E[f(Q)] = _ fla)Prqle)
= fl9)>_Prig,ule)
=> "> fa)Prig,ule)

so sampling using Pg, u|e) and ignoring the values far obtained works exactly
as required.
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A (very) brief introduction into how to learn hyperparanrste

So far in our coverage of the Bayesian approach to neuralank$ywthehyperpa-
rametersa and 5 were assumed to be known and fixed.

e But this is not a good assumption because...

e ... corresponds to the width of the prior addo the noise variance.
e So we really want to learn these from the data as well.

e How can this be done?

We now take a look at one of several ways of addressing thisd¢mm
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The Bayesian approach to neural networks

Earlier we looked at the Bayesian approachéaral networksising the following
notation. We have:

¢ A neural network computing a functigfiw; x).

e Atraining sequence = ((x1,41), - - -, (Xm, Ym)), Split into

y:<y1 Y2 - ym)

and
X:(Xl Xyt X'm)

Theprior distribution p(w) is now on the weight vectors and Bayes’ theorem tells
us that
p(y|w)p(w)
p(y)
In addition we have &aussian priorand a likelihood assumin@aussian noise

pwly) =
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The Bayesian approach to neural networks

The prior and likelihood depend am and 5 respectively so we now make this
clear and write
ply|w, B)p(w]a)

p(yla, B)
(Don’t worry about recalling the@ctual expressionfor the prior and likelihood
just yet, they appear in a few slides time.)

p(wly, o, B) =

In the earlier slides we found that the Bayes classifier shiulact compute

pYlyoxa8) = [ plulex, Spwly. ., 0) dv

and we found an approximation to this integral. (Again, teeessary parts of the
result are repeated later.)
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Hierarchical Bayes and the evidence

Let's write down directly something that might be useful teolw:

plyla, B)pla, B)
p(y)

If we know p(«, Bly) then a straightforward approach isuee the values fot
andf that maximise it

pla, Bly) =

Here is a standard trickassume that the prigp(«a, ) is flat, so that we can just
maximise

p(yle, B)
This is calledtype Il maximum likelihoo@nd is one common way of doing the
job.

As usual there are other ways of handliagnd, some of which are regarded as
more “correct”.
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Hierarchical Bayes and the evidence

The quantity
p(yla, 5)

is called theevidence

When we re-wrote our earlier equation for the posterior ierd the weights,
makinga andg explicit, we found

p(y|w,a, B)p(w|a, B)
p(yla, B)

Sothe evidence is the denominator in this equation

p(wly, o, B) =

This is thecommon patterrand leads to the idea diierarchical Bayes the ev-
idence for the hyperparameteeg one level is thelenominator in the relevant
application of Bayes theorem
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An expression for the evidence

We have alreaddglerived everything necessarywrite anexplicit equation for the
evidencdor the case of regression that we've been following.

First, as we know about a lot of expressions involvingve can introduce it by
the standard trick afharginalising

p(yler B) = / ply, wley, B)dw
- / p(ylw, o, B)p(wla, B)dw
:/p(y\w”é’)p(wm)dw

where we've made the obvious independence simplifications.

The two densities in this integrake just the likelihood and prior we've already
studied

We've just conditioned o and 3, which previously were constants but are now
being treated as random variables.
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An expression for the evidence

Here are the actual expression for the prior and likelihood.
The prior is
1
w|a) = ——exp (—aFEy(w
p(wla) Zoa) 0 (—aEw(w))
where ,
T wy/2 1
zvle) = () andE(w) = 5wl

and the likelihood is

plylw,8) =

where ,
2209) = (22)"" andiy o) = 130~ hiwe )
y - /8 y W)= 9 — Yi Wi X
Both of these equations have been copied directly fromegaslides: there is
nothing to add
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An expression for the evidence

That gives us

i = (Z) " (Z) " e sty aw

S(w) = aEw(w)+ fEy(w)
This isexactly the integral we first derived an approximation. for

where

Specifically
/exp (—=S(w)) dw ~ 212 A| 72 exp(— S (wWmap))

where
A=aol+ ﬁVVEy<WMAp)

andwyap is themaximum a posteriori solution
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An expression for the evidence

Putting all that together we get @axpression for the logarithm of the evidence

%log%r—i-%logﬁ

1
- 5108;\A\

1474
log p(y|a, 3) 27105-{& -

— aByw(wwvap) — BEy(Wwvap)

Again, we're using the fact that we want toaximise the evidenand this is
equivalent tanaximising its logarithmwvhich turns a product into a more friendly
sum.
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Maximising the evidence

We want to maximise this, so let’s differentiate it with resptoa ands.

Fora dlogp(yla, ) W 10log|A|
og p(y|e, 0g

= = By(w -

Oa 20y w(Whaap) 2 Oa

How do we handle the final term? This is straightforward if vaa compute the
eigenvaluesf A.

Recall that the: eigenvalues\; andn eigenvectors/; of ann x n matrix M are
defined such that
My, = )\iVijorZ‘ =1,...,n

and the eigenvectors are orthonormal

r. flifi=j
Vi V]_{O otherwise.

One standard result is theéte determinant of a matrix is the product of its eigen-

values .
M| =]\
i=1
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Maximising the evidence

We have
A=aol+ BVVE},(WMAP)

Say the eigenvalues gfVV Ey(wyap) are ;. (These can be computed using
standard numerical algorithms.)

Then the eigenvalues & area + A; and

dlog|A| 0 O |
P 1%

_ilm

a+)  Oa

This remains tricky becaugbe elgenvalues might be functionsnof

305

Maximising the evidence

To make further progress, assuf@emetimes correct, sometimes notiat the),
do notdepend orn.

In that case
w

dlog |[A| 1
oa ; a+ N\
= Tracd A1)

becauséM ! has eigenvaluel/\; and the trace of a matrix is equal to the sum of
its eigenvalues.

Finally, equating the derivative to zero gives:
w

5 — En (WMAP) — —Trace{A )

w
1 «Q
o= | W~ E —_—
2E1,V(W|\/|Ap) ( 1 o+ /\7>

which can be used to update the valuedor

or
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Maximising the evidence

We can now repeat the process to obtain an updatg:for

dlogp(yle, B)  m 10log |A|
— 5 5 Ey(wmap)

Odlog |A 0
sl _ o (Zlogam)
w

1 0
:Za_‘_)\.%(&ﬁ*)\i)

1
7§:a+Aaﬂ

and again we havepotentially tricky derivative

2 0B

In this case
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Maximising the evidence

As the )\, are the eigenvalues gfVV Ey (wyap) We have
oN N

(can you see why&o

Equating the derivative to zero gives

1 LRDY
ﬁ B 2Ey(WMAp) (m B zz:: o+ Az)

which can be used to update the valuefor
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Maximising the evidence

Here’s why the derivative works.
Say
M = VVEy(WMAp>
so we're interested if)\; /05 when the); are the eigenvalues ¢fM. Thus
(BM)v; = \pv;
and using the fact that the eigenvectors are orthonormal
IBV,TMV7 = AjViTVl‘ = )\7

So )
viMv; = -

B

and oA A
L= vIMv,; = 2

op B
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Maximising the evidence

Summary

Define
W

Ai
et:;aﬂr)\i

where the subscript denotes the fact that we're using thewislg equations to
periodically update our estimates@fandg.

Collecting the two update equations together we have

0,
Qg = — 8
s 2Ew (Wwmap)
and
m — 975
Bii1 = 2B, (Wanp)
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Maximising the evidence

This suggests method for the overall learning process

1. Choose the initial values, and 3, at random.
2. Choose an initial weight vectev according to the prior.
3. Use a standard optimisation algorithm to iterativelyneate wyap.
4. While the optimisation progresses, periodically usestigations above to re-
estimater andg.
Step 4 requires that we compute an eigendecomposition,hwhight well be
time-consuming. If necessary we can make a simplification.

Whenm >> W it is reasonable to expect thgt~ W an so we can use

W
tH 2By (Wwmap)
and
m
Bis1 =

2Ey(WMAp)
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An alternative: integrate the hyperparameters out

While choosingy and g by maximising the evidence leads to an effective algo-
rithm, it might be argued that a more correct way to deal wise parameters
would be tointegrate them out

piwly) = [ [ plw.a Bly)dads.

(Recall thegeneral equation for probabilistic inferenaghere we integrate out
unobserved random variables.)

Re-arranging this we have

[ wamydadﬁ—(l// yIw, &, Bp(w, ., B)dadf

—(—1y [ [ o5t pipiwla. St 5)dads
1// (ylw, 8)p(wla)p(a)p(8)dads

where we're assuming and; are independent.
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An alternative: integrate the hyperparameters out

In order to continue we need to specify priorscoand .

On this occasion we have a good reason to choose particides, sq and are
scale parameters

In general, a scale parameters one that appears in a density of the form

1 T
plalo) = ~f (%)
The standard deviation of a Gaussian density is an example.

What happens to this density if végalex such that’ = cz?

313

Standard result number 1

We need to recall how to deal withansformations of continuous random vari-
ables

Say we have a random variahtevith probability densityp, (x).
We then transforme to y = f(x) wheref is strictly increasing.

What is the probability density function g There is a standard method for
computing this. (See NST maths, or the 1A Probability cajirse

. pr(f_l<y))
PY) = F )
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An alternative: integrate the hyperparameters out

Applying this whenr’ = cx we have

flx) =cx
) =
fllo)=c

and so

po(a’) = if <£> = i,f (%)
Cco CcCoO g ag

Thus the transformation leaves the density essentiallpamged, and in particular
we want the densities(o) andp(o’) to be identical.

It turns out that this forces the choice

This is animproper priorand it is conventional to také = 1.
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Standard result number 2

Returning to the integral of interest

]ﬁ / / ply|w, B)p(w|a)p(a)p(B)dads

Taking the integral for. first we have

/p(w|a)p(a)da: /mexp(—aEW(w))da

1 W/2
= /— <i> exp (—g||w||2> da
a \27 2

and to evaluate this we use the followisgndard resutt
- ['(n+1)
/0 2" exp(—ax)dx = P
wheren > —1 anda > 0. So the integral becomes

_w L(W/2
<27‘r) W/QW/)W?/Q
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An alternative: integrate the hyperparameters out

Repeating the process férand using the same standard result we have

[ristw.smeas = [ (L) et eas

2 L(m/2)
_ m/2
<2ﬂ-) Ey(w)m/Q
Combining the two expression we obtain
R PO _ L -W/2 F(W/2) —m/2 F(m/2>
osptwly) =~ o (3 0m) " e g

W
=5 log By (w) + % log Ey(w) + constant

andwe want to minimise thiso we need

w1 BEW(W)+m 1 OEy(w)
2 By(w) oOw 2 Ey(w) Ow
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An alternative: integrate the hyperparameters out

Theactual value for the evidends
1 1

~logp(wly) = — log (mm exp(— (e (w) + ﬁEy(W)))>

= aFy(w) + SEy(w) + constant
andwe want to minimise thiso we need

(J(@EW(W) 8Ey(w)
ow ow

This should make u¥ERY VERY HAPPYecause if we equate the two boxed
equations we get

=0

+5

w

2E11(W)

and
m

= 2Ey(w)
and so the result fantegrating out the hyperparameteagrees with the result for
optimising the evidence

Reinforcement Learning

We now examine:
e Some potential shortcomings of hidden Markov models, anduplervised
learning.
e An extension know as thilarkov Decision Process (MDP)

e The way in which we mightearn from rewardggained as a result @icting
within an environment

e Specific, simple algorithms for performing such learningd @heir conver-
gence properties.

Reading:Russell and Norvig, chapter 21. Mitchell chapter 13.
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Reinforcement learning and HMMs

Hidden Markov Models (HMMs) are appropriate when our ageodets the
world as follows

Pr(Si|Si-1)

Pr(sw@— s O m

PrElS) Ty

and only wants to infer information about te&ateof the world on the basis of
observing the availablevidence

This might be criticised as un-necessarily restrictedhaalgh it is very effective
for the right kind of problem.

320




Reinforcement learning and supervised learning

Supervised learners learn frapecifically labelled chunks of information

Oo

This might also be criticised as un-necessarily restrictedre are other ways to
learn.
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Reinforcement learning: the basic case

We now begin to model the world in a more realistic way as fedip

In any state:

Perform an action to move to a new state. (There may be many possibilities.)
Receive a reward depending on the start state and action.

The agent caperform actionsn order tochange the world's state

If the agent performs an action in a particular state, thgaiits a corresponding
reward
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Deterministic Markov Decision Processes

Formally, we have a set of states

S ={s1,%2,...,8.}
and in each state we can perform one of a set of actions
A=Aay,a,...,an}.
We also have a function
S:SxA—>S

such thatS(s, a) is the new state resulting from performing actioin states,
and a function

R:SxA—-R
such thatR (s, a) is thereward obtained by executing actionin states.
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Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of cagrsiblle importance:

The agent does not have access to the functtbasdR |.

It therefore has téearn apolicy, which is a function
p:S—A
such that(s) provides the action that should be executed in state

What might the agent use as its criterion for learning a p@lic
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Measuring the quality of a policy

Say we start in a state at tintedenoteds;, and we follow a policyp. At each
future step in time we get a reward. Denote the rewayds, 1, ... and so on.

A common measure of the quality of a polipyis thediscounted cumulative re-
ward

o0
Vp(St) = Z €Tty
=0
=T+ €ry + eerg 4
where( < ¢ < 1is a constant, which defines a trade-off for how much we value
immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we stidike our agent to
prefer rewards gained quickly.
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Measuring the quality of a policy

Other common measures are thesrage reward
1 T
lim — Tiig
T—oo T ZO i
i—

and thefinite horizon reward
T

E Ttt+i

1=0
In these notes we will only address the discounted cumelagiward.
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Two important issues

Note that in this kind of problem we need to address two paleity relevant
issues:

e The temporal credit assignmemgroblem: that is, how do we decide which
specific actions are important in obtaining a reward?

e Theexploration/exploitatiorproblem. How do we decide betweerploiting
the knowledge we already have, aexploringthe environment in order to
possibly obtain new (and more useful) knowledge?

We will see later how to deal with these.
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The optimal policy

Ultimately, our learner’s aim is to learn tlogtimal policy

Popt = argmax V?(s)
P

for all s. We will denote the optimal discounted cumulative reward as
Vopt(s) = Vp()pl(S).

How might we go about learning the optimal policy?
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Learning the optimal policy

The only information we have during learning is the indivaditewards obtained
from the environment.

We could try to learri/n(s) directly, so that states can be compared:
Considers as better thar' if Vopi(s) > Vopr(s').

However we actually want to compaaetions notstates LearningVop(s) might
help as
Popi(s) = argmax [R(s, a) + eVop(S(s, a))]

butonly if we knowsS andR.

As we are interested in the case where these functioneaidenown, we need
something slightly different.
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The Q function

The trick is to define the following function:
Q(s,a) = R(s,a) + eVopS(s,a))

This function specifies the discounted cumulative rewardiakd if you do ac-
tion a in states and then follow the optimal policy

As
Popt(s) = argmax Q(s, a)

then provided one can lea@ it is not necessary to have knowledgeand R
to obtain the optimal policy
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The Q function

Note also that
Vopt(s) = max Q(s, a)
(e}
and so

Q(s,a) =R(s,a) + € max Q(S(s,a),®)

which suggests a simple learning algorithm.
Let Q' be our learner’s estimate of what the ex@ctunction is.

That is, in the current scenari@’ is a table containing the estimated values of
(s, a) for all pairs(s, a).
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Q-learning

Start with all entries iQ’ set to0. (In fact we will see in a moment that random
entries will do.)

Repeat the following:

1. Look at the current stateand choose an actian (We will see how to do this

in a moment.)

2. Do the actioru and obtain some rewaf® (s, a).

3. Observe the new stafs, a).

4. Perform the update

Q'(s,a) = R(s,a) + € max Q'(S(s,a),a)

Note that this can be done &pisodes For example, in learning to play games,
we can play multiple games, each being a single episode.
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Convergence o-learning

This looks as though it might converge!
Note that, if the rewards are at ledsind we initialise)’ to 0 then,

V?’l, S,a Q;z+1<87 (l) Z Q;,(Sv CL)
and

Vn,s,a Q(s,a) > Q' (s,a) >0
However, we need to be a bit more rigorous than this...
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Convergence oP-learning

If:

1. The agent is operating in an environment that is a detéstiaiMDP.
2. Rewards are bounded in the sense that there is a constatisuch that
Vs,a |R(s,a)| <0
3. All possible pairs anda are visited infinitely often.
Then theQ-learning algorithm converges, in the sense that

Va,s Q! (s,a) = Q(s,a)
asn — oo.

334

Convergence of-learning

This is straightforward to demonstrate.

Using condition3, take two stretches of time in which allanda pairs occur:

All s,a occur All s, a occur
\

Define
S(TL) = max |an(sa a) - Q<S7 a)'
the maximum error i)’ atn.

What happens whef’, (s, a) is updated ta@,, , (s, a)?
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Convergence of-learning

We have,
|Qui1(s,a) — Qs, a)
= |(R(s,a) + emax @, (S(s,a),a)) — (R(s,a) + emax Q(S(s,a), a))|
= €| max Q;(S(sfa), a) — max Q(S(s,a), o) a
< emax |Q;,(8(s, a), @) — Q(S(s,a), )]
< emi[Q) (s, a) — Qs a)
= e&(n).

Convergence as described follows.
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Choosing actions to perform

We have not yet answered the question of how to choose attigresform during
learning.

One approach is to choose actions based on our current &stihd-or instance

action chosen in current state= argmax Q'(s, a).
a

However we have already noted the trade-off between exforand exploita-
tion. It makes more sense to:

e Exploreduring the early stages of training.
¢ Exploitduring the later stages of training.

This seems particularly important in the light of conditidmf the convergence
proof.
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Choosing actions to perform

One way in which to choose actions that incorporates thegpgirements is to
introduce a constant and choose actionwobabilisticallyaccording to

- 2\@(s.)
Pr(actiona|states) = W
Note that:

o If )\ is smallthis promotegxploration

o If )\ islarge this promotegxploitation

We can vary\ as training progresses.
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Improving the training process

There are two simple ways in which the process can be improved

1. If training is episodic, we can store the rewards obtaitiedng an episode
and updatdackwardsat the end.

This allows better updating at the expense of requiring mazenory.

2. We can remember information about rewards and occasjorebliseit by
re-training.
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Nondeterministic MDPs

The Q-learning algorithm generalises easily to a more realistigation, where
the outcomes of actions apeobabilistic

Instead of the function§ and’R we haveprobability distributions
Pr(new statgcurrent stateaction

and
Pr(rewardcurrent statgaction).

and we now us&(s,a) andR(s,a) to denote the corresponding random vari-
ables.

We now have
VP =E (Z e"r-m)
i=0

and the best policyo, maximises/?.
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Q-learning for nondeterministic MDPs

We now have
Qs,a) = E(R(s,a)) + ¢ Y _ Prols,a)V (o)

=E(R(s,a)) +¢€ Z Pr(ols, a) max 9o, a)

and the rule for learning becomes

Q;Hrl = (1 - enJrl)Q;z(S? a) + 07z+1 |:R<S’ CL) + m(ilX Q;l(8(87 a)7 a>j|

with

1

Opi) = ———MM—
T Un11(8, @)

wherev,,,1(s, a) is the number of times the pairanda has been visited so far.
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Convergence of-learning for nondeterministic MDPs

If:

1. The agent is operating in an environment that is a nonuétestic MDP.
2. Rewards are bounded in the sense that there is a constatisuch that
Vs,a |R(s,a)| <o

3. All possible pairs anda are visited infinitely often.
4.n,(s, a) is theith time that we do action in states.

and also...
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Convergence 0®-learning for nondeterministic MDPs

...we have
0<6,<1

Z 077,,-(5,@) = 00
i=1

2
D O <
i=1
then with probabilityl the Q-learning algorithm converges, in the sense that
Va,s Q! (s,a) = Q(s,a)

asn — oo.
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Alternative representation for thg' table

But there’s always a catch...
We have to store the table f@':
¢ Even for quite straightforward problems it is HUGE!!! - cairtly big enough
that it can’t be stored.

¢ A standard approach to this problem is, for example, to sepreit as aneural
network

e One way might be to make anda the inputs to the network and train it to
produce?)’(s, a) as its output.
This, of course, introduces its own problems, although étleen used very suc-
cessfully in practice.

It might be covered irrtificial Intelligence lll, which unfortunately does not yet
exist.
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