Artificial Intelligence |

Computer Laboratory, Room FC06
Telephone extension 63725
Email: sbhll@cl.cam.ac.uk

www.cl.cam.ac.ukitsbh11/

Copyright(© Sean Holden 2002-2013.

Introduction: what's Al for?

What is the purpose of Artificial Intelligence (Al)? If yoe'ra ora
then perhaps it’s:

e TO

e To understand

Philosophers have worked on this for at legst) years. They've also wondered
about:

° we do Al? we do Al?

e IS Al 2 (Note: | didn’t write here, for a good reason...)

Despite2000 years of work, there’s essentialiy in the way of results.

Introduction: what's Al for?

Luckily, we were sensible enough not to pursue degrees ilogphy—we're
scientists/engineers, so while we might haveneinterest in such pursuits, our
perspective is different:

e Brains are small (true) and apparently slow (not quite sareteit), but incred-
ibly good at some tasks—we want to understand a specific férmo

e It would be nice to be able to intelligent systems.
e Itis also nice ta

This view

Al is entering our lives almost without us being aware of it.

Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got ungay in 1956 with
the

ww- f or mal . st anf or d. edu/ j nc/ hi st ory/ dart mout h/ dar t nout h. ht m

e This means we can actuallyo things. It's as if we were physicists before
anyone thought about atoms, or gravity, or. ...

e Also, we know what we're trying to do is > (Unless we think humans
don't exist. before
Perhaps I'm being too hard on them; there was some good gnmrkd wanted an algorithm fof, s
leading to s Ramon Lull's and other attempts at mechanical calculators. Rene Destart
and the idea of mind as @& m Wilhelm Leibnitz's opposing position of 1 (The
intermediate position: mind is but ¢) The origin of] ¢Francis Bacon's } John
Locke: . David Hume: we obtain rules by repeated
exposure] | Further developed by Bertrand Russel and inGhe of Carnap and Hempel.
More recently: the connection between and ? How are actiong ? If to achieve the end you

need to achieve something intermediate, consider how tiewsthat, and so on. This approach was implemented in
Newell and Simon’s 1957

Is Al possible?

Many philosophers are particularly keen to argue that Airig 2 Why is
this? We have:

e Perception (vision, speech processing...)

e Logical reasoning (prolog, expert systems, CYC...)

e Playing games (chess, backgammon, go...)

e Diagnosis of illness (in various contexts...)

e Theorem proving (Robbin’s conjecture...)

e Literature and music (automated writing and compositipn..

e And many more...
What's made the difference? In a nutshelk

Jand that allows us tb

The simple ability ta has led to huge advances in a relatively short
time. don't believe the critics...

Further reading

Why do people dislike the idea that humanity might notpe
An excellent article on why this view is much more problemadtan it might
seem is:

Marvin Minsky. Al Magazine, volume 3
number 4, 1982.

Aside: when something is understood it stops being Al

To have Al, you need a meansiof the intelligence. Computers are (at
present) the only devices in the race. (Althougts is looking
interesting...)

Al has had a major effect on computer science:

e Time sharing

e Interactive interpreters

e Linked lists

e Storage management

e Some fundamental ideas in object-oriented programming

e and so on...

When Al has a success, the ideas in question terdto

Similarly: do you consider the fact thai to
be a form of AI?

The nature of the pursuit

This is not necessarily a straightforward question.
It depends on who you ask...

We can find many definitions and a rough categorisation candzerdepending
on whether we are interested in:

e The way in which a systemactsor the way in which it
e Whether we want it to do this infa way or a way.

Here, the word has a special meaning: it means

Acting like a human

proposed what is now known as the

e A human judge is allowed to interact with an Al program via @rtieal.

e This is the method of interaction.

e If the judge can’t decide whether the interaction is produog a machine or
another human then the program passes the test.

In the Turing test the Al program may also have a camera attached,
so that objects can be shown to it, and so on.

Acting like a human

The Turing test is informative, and (very!) hard to pass.

e It requires many abilities that seem necessary for Al, ssclearning.
a human child would probably not pass the test.

e Sometimes an Al system needs human-like acting abilities-etample
often have to produce explanations—»but

See the

www. | oebner. net/ Prizef/| oebner-prize. htm

10

Thinking like a human

There is always the possibility that a machinging like a human does not actu-
ally . The approach to Al has tried to:

e Deduce #for example by or

e Copy the process by mimicking it within a program.
An early example of this approach is the produced by
Newell and Simon in 1957. They were concerned with whetheobthe program
reasoned in the same manner that a human did.

Computer Science Psychology-=

11

Thinking rationally: the “laws of thought”

The idea that intelligence reducesrta is a very old one, going at
least as far back as Aristotle as we've already seen.

The general field of made major progress in the 19th and 20th centuries,
allowing it to be applied to Al.

e We can and about many different things.
e The approach to Al.

This is a very appealing ide&!

12

Thinking rationally: the “laws of thought”

Unfortunately there are obstacles to any naive applicaifdagic. It is hard to:

e Represent
e Deal with
e Reason without being tripped up by

These will be recurring themes in this course, and in Al 11

Logic alone also falls short because:

e Sometimes it's necessary to act when therne'togical course of action.

e Sometimes inference is (reflex actions).

13

Further reading

The project has most certainly earned the
badge of

Itis an example of how much harder the logicist approachds $fou might think:

Tohru Moto-oka. ACM
SIGARCH Computer Architecture News, volume 11, number 3319

14

Acting rationally

Basing Al on the idea of means attempting to design systems

that act to given their
Thinking about this in engineering terms, it seeais to lead us
towards the usual subfields of Al. What might be needed?

e To make in many we need to and

with

¢ We need to deal with

¢ We need to be able to

e We need

e We need

And so on, so all the usual Al bases seem to be covered.

15

Acting rationally
The idea of has several advantages:

e The concepts of ! and can be defined precisely making the
field suitable for scientific study.

This is important: if we try to model Al systems on humans, &e'teven propose
sensible definition of

In addition, humans are a system that is still changing aagbtad to a very spe-
cific environment.

does not have these limitations.

16

Acting rationally
also seems to two of the alternative approaches:

e All of the things needed to pass a Turing test seem necessargtional act-
ing, so this seems preferable to the approach.

e The logicist approach can clearly foymrt of what's required to act rationally,
so this seems preferable to thie approach alone.

As a result, we will focus on the idea of designing systemsdha

17

Other fields that have contributed to Al

Experimental Psychology Mathematics I: logic
Hermann von Helmholtz: visual system. Aristotle's material turned into mathematics by Boole BT LG [Ty
Wilhelm Wundt: introspection. (Experimentally dubious.) Frege: first order logic. Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.

‘Tarski: relationship between real and logical objects. Bernoulli: degree of belief.
Watson and Thorndike: Behaviourism al-Khowarazmi: concept of algorithm. Bayes: updating beliefs using evidence.
Hilbert: limits of algorithms. Modern representation of uncertainty.
Learned a lot about pigeons and rats.
Intractability and complexity. Von Neumann and Morgenstern: combine uncertainty with

Stimulus and response/objective measures. action: decision theory.

Godel: incompleteness theorem.

Brain as an information processing device. Neuroscience

Reasoning, beliefs, goals etc
easoning, beliefs, goals etc. \ Nasty bumps on the head - we know brains.
System has a model of how the world works. Artificial Intelligence Endlcos it

= Paul Broca: localised regions have different tasks.

Craik: "The Nature of Explanation”

Presence of neurons, although even storage of a memory
Linguistics not really understood.

Recently: EEG, MRI etc.
Skinner's "Verbal Behaviour".
Noam Chomsky: behaviourisn can't account for understanding or
production of things not previously heard.

A central Al concept: “Time flies like an arrow. Fruit flies like a banana". Economics

How should I act, in the presence of adversaries, to obtain nice

N a3

Cybernetics stuff in the future:

How do I measure the degree of niceness?

250BC: first machine able to modify its own behaviour. 8

Probability + Utility = Decision Theory.

James Watt: governor for steam engines.

‘Small economies: game theory - sometimes it's rational to act (apparently)
1\

Drebbel: thermostat. randomly.

Norbert Weiner and others: control theory as a mathematical subject. Belman: Operations research. Markov decision processes. Future gains

§ resulting from a series of actions.
Minimisation of difference between current situation and goal,

Rational action is intractable. Herbert Simon: Satisficing is a better description

Stochastic optimal control: minimisation over time of an objective function. B P ey

Al moves away from linear and continuous scenarios.

18

What's in this course?

This course introduces some of the fundamental areas tHat upaAl:

¢ An outline of the background to the subject.

e An introduction to the idea of an

e Solving problems in an intelligent way Ly

e Solving problems represented@s problems.

¢ Playing

°

.

° using
Strictly speaking, Al | covers what is often referred to“as

. (Although “Old-Fashioned” is a misleading term.)

The nature of the subject changed a great deal when the iamperbf
became fully appreciated. Al Il covers this more recent mate

19

What'snotin this course?

e The classical Al programming languages|ogand
e A great deal of all the areas on the last slide!

e Perception: \ and ; (force sensing, know-
ing where your limbs are, knowing when something is bad)ig

¢ Natural language processing.

e Acting on and in the world: (effectors, locomotion, manipulation),

L v

e Areas such as ; :
and > for reasons that | will expand upon during the
lectures.

° and much further probabilistic material. (You'll have toituantil
next year.)

20

Text book
The course is based on the relevant parts of:

;Third Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

This is also the main recommended text for Al2.

21

Interesting things on the web

A few interesting web starting points:

The Honda Asimo robotiwor | d. honda. cont ASI MO

Al at Nasa Ames:ww. nasa. gov/ cent er s/ anes/ r esear ch/ expl or i ngt heuni ver se/ spi ffy. ht m
DARPA Grand Challengeht t p: // www. dar pagr andchal | enge. conf

2007 DARPA Urban Challengess. st anf or d. edu/ gr oup/ r oadr unner

The Cyc project:ww. cyc. com

Human-like robots:ww:. ai . i t. edu/ pr oj ect s/ humanoi d- r obot i ¢s- gr oup

Sony robots:support . sony- eur ope. cont ai bo

NEC “PaPeR0":wmw. nec. co. j p/ product s/ r obot / en

22

Prerequisites

The prerequisites for the course are: first order logic, salgerithms and data
structures, discrete and continuous mathematics, basiputational complexity.

In the lectures on 1 will be talking about

This means you will need to be abledd and also handle

If you've forgotten how to do this

23

Prerequisites

1. Let

i=1

where the:; are constants. Can you computg/ox; wherel < j < n?

2. Let f(xy,...,: r,,) be a function. Now assume = ¢;(y1, ..., v,,) for eachuz;
and some collection of functions. Assuming all requirements for differentia-
bility and so on are met, can you write down an expressiow for)y; where
| <j3<m?

If the answer to either of these questions is “no” then itiseifor some revision.
(You have about three weeks notice, so I'll assume you knQw it

24

And finally. ..

There are some important points to be made regarding

First, you might well hear the terr being used a lot. What does it

mean?

For example: high-quality automatic translation from caeguage to another.

To produce a genuinely good translation\&d
is likely to be Al complete.

25

from English to Cantonese

And finally. ..

More practically, you will often hear me make the claim that

There are two ways to interpret this:

1. The wrong way: “It's all a waste of tim&.OK, so it's a partly understandable
interpretation. the fact that the travelling salesman problem is intraetabl
mean there’s no such thing as a satnav. . .

2. The right way: “It's an opportunity to design nice approgition algorithms.”
In reality, the algorithms that are are ones that try toftenfind
a but not necessarily solution, in a amount of time.

1In essence, a comment on a course assessment a couple digelats the effect of: “Why do you teach us this stuff if it's faitile?”

26

Artificial Intelligence |

An introduction to

Copyright(© Sean Holden 2002-2013.

27

Agents

There are many different definitions for the teagentwithin Al.
Allow me to introduce=VIL ROBOT.

MUST ENSLAVE EARTH!!
DR HOLDEN WILL BE OUR
GLORIOUS LEADER!!!!

We will use the following simple definitior:

28

Agents Measuring performance

This definition can be very widely applied: to humans, roppisces of software, How can we judge an agent’s performance? Any measure ofrpeafece is likely
and so on. to be
We are taking quite an perspective. We want to rather than For a chess playing agent, we might use its rating.

S0 to be scientific there are some issues to be addressed: For a mail-filtering agent, we might devise a measure of how ive

« How can we judge an agent’s performance? blocks spam, but allows interesting email to be read.

For a car driving agent the measure needs considerablessioption:

e How can an agent’s affect its design? , :
.) .) we need to take account of comfort, journey time, saégty
e Are there sensible ways in which to think about e of an agent?) o . .
the choice of a performance measure is itself worthy of chfsideration.
Recall that we are interested in devices that , where ‘rational’ means
doing the under

Russell and Norvig, chapter 2.

29 30
Measuring performance Environments
We’re usually interested ia) How can an agent’s affect its design? the environment for
a is vastly different to that for an
. performance because usually agents areonoi #—they don't . Some common attributes of an environment have a consiedrdluence on
know the outcome of their actions. agent design.
e ltis for you to enter this lecture theatre even if the roof fallsaday.
° do percepts tell you you need to know
An agent capable of detecting and protecting itself fromliéinfaroof might be about the world?
more than you, butiot more : . does the future depend on the
_ o present and your actions?
° because it tends to lead to better approximations to . L .
what we'd consider rational behaviour. ° is the agent run in independent episodes.
° can the world change while the agent is deciding what to do?

e We probably don't want our car driving agent to be outstaglgismooth and
safe for most of the time, but have episodesiof . an environment is discrete if the sets of allowable per-
cepts and actions are finite.

31 32

Environments

All of this assumes there is only one agent.

When multiple agents are involved we need to consider:

e Whether the situation is or
e Whether required?

An example of multiple agents:

news.bbc.co.uk/1/hi/technology/3486335.stm

33

Basic structures for intelligent agents

Are there sensible ways in which to think about the of an agent? Again,
this is likely to be calthough perhaps to a lesser extent.

So far, an agent is based on percepts, actions and goals.
Aircraft piloting agent.

sensor information regarding height, speed, engétgsudio and video
inputs, and so on.

manipulation of the aircraft's controls.
Also, perhaps talking to the passengetts

get to the necessary destination as quickly as possiblemiitimal use of
fuel, without crashingetc

34

Programming agents

A basic agent can be thought of as working on a straightfawaderlying pro-
cess:

.

e Update to take account of them.

e On the basis of what’s in the working memory, to perform.

. the working memory to take account of this action.

° the chosen action.

Obviously, this hides a great deal of complexity.

Also, it ignores subtleties such as the fact that a perceghtrrive while an
action is being chosen.

35

Programming agents

We'll initially look at two hopelessly limited approachdsgecause they do suggest
a couple of important points.

Use a table to map percept sequences to
actions. This can quickly be rejected.
e The table will be for any problem of interest. About;'" entries for a
chess player.
e We don't usually know how to fill the table.
e Even if we allow table entries to be it will take too long.
e The system would have r

We can attempt to overcome these problems by allowing agenis

is an interesting issue though...

36

Autonomy

If an agent’'s behaviour depends in some manner on\its
via its percept sequence, we say itig

e An agent using only built-in knowledge would seem not to becessful at Al
in any meaningful sense: its behaviour is predefined by ggder.

e On the other hand built-in knowledge seems essential, even to humans.

Not all animals are entirely autonomous.

dung beetles.

37

Reflex agents
try pertinent information and
using based on this.
i f acertain is observed hen perform some:
Some points immediately present themselves regardingeflex agents are un-
satisfactory:
¢ We can't always decide what to do based ondhe

e However storing:!| past percepts might be undesirable (for example requiring
too much memory) or just unnecessary.

o Reflex agents don’t maintain a description of e

¢ ...however this seems necessary for any meaningful Al. ¢den automating
the task of driving.)

This is all the more important as usually percepts don'tytell

38

Keeping track of the environment

It seems reasonable that an agent should maintain:

o A
¢ Knowledge of how the environment

e Knowledge of how the agents

This requires us to do and

39

Goal-based agents

It seems reasonable that an agent should choose a ratiamakcof action de-
pending on its

e If an agent has knowledge of how its actions affect the envirent, then it
has a basis for choosing actions to achieve goals.

e To obtain & of actions we need to be ablede and to

This is from a reflex agent.

by changing the goal you can change the entire behaviour.

40

Goal-based agents

We now have a basic design that looks something like this:

Percept
Update
Update
‘ Description: current environment —
‘ Description: effect of actions }»—»

‘ Description: behaviour of environment }»—»

Description of Goal

Infer

Action/Action sequence

41

Utility-based agents

Introducing goals is still not the end of the story.

There may be sequences of actions that lead to a given goal,samd

A maps a state to a number representing the desirability of tha
state.

e We can trade-oft sfor example speed and safety.

e If an agent has several goals and is not certain of achieviggfthem, then
it can trade-off likelihood of reaching a goal against theigmility of getting
there.

over time forms a fundamental model for the design
of agents. However we don't get as far as that until Al II.

42

Learning agents

It seems reasonable that an agent shaidd

—

Percept
e I e ,
! Update
! Update
! ‘ Description: current environment Lti
I [
3 ‘ Description: effect of actions }»—»
Update . . .
Feedback—| Learner Description: behaviour of environment

Action/Action sequence

43

Learning agents
This requires two additions:

e The learner needs some form fef
can come in several different forms.

on the agent’s performance. This

¢ In general, we also need a meang)ef im order to find

out about the world.

This in turn implies a trade-off: should the agent spend time what it's
learned so far, ot the environment on the basis that it might learn some-
thing really useful?

44

What have we learned? (No pun intended...)

The things that should be taken away from this lecture are:

e The nature of an agent depends oreits and
e We're usually interested ia
e Autonomy requires that an agent in some way behdves

e Thereis a on which agent design can be based.

e Consideration of that structure leads naturally to thedxastas covered in this
course.

Those basic areas are:

4 Oh, and finally, we've learned NOT TO MESS WITHVIL ROBOT... he’'s a VERY BAD ROBOT!

45

Artificial Intelligence |

Notes on

Copyright(©) Sean Holden 2002-2013.

46

Problem solving by search

We begin with what is perhaps the simplest collection of &Ahtgiques: those al-

lowing an existing within an to fora
that
The algorithms can, crudely, be divided into two kinds: and

Not surprisingly, the latter are more effective and so wietlk at those in more
detail.

Russell and Norvig, chapters 3 and 4.

a7

Problem solving by search

As with any area of computer science, some degregbef is necessary
when designing Al algorithms.

apply to a particularly simple class of problems—we need to

identify:
. : what is the agent’s situation to start with?
. sthese are modelled by specifying what state will result on

performing any available action from any known state.
° i we can tell whether or not the state we're in correspondstmed

Note that the goal may be described by a property rather thaxgalicit state or
set of states, for exampte

48

Problem solving by search

A simple examplethe 8-puzzle

Start State
- Action
2 [E0] 1]

2 || Action

@ — 2 Goal State

=A==
E

Further actions

EEE
=

Eljs DEE

(A good way of keeping kids quiet...)

49

Problem solving by search

Start state:a randomly-selected configuration of the numblets & arranged on
a3 x 3 square grid, with one square empty.

Goal state:the numbers in ascending order with the bottom right squaigye

Actions: | eft, right, up, down. We can move any square adjacent to the
empty square into the empty square. (It's not always passththoose from all
four actions.)

Path cost:1 per move.

The 8-puzzle is very simple. However general sliding block pagzire a good
test case. The general problem is NP-complete. ;The version has about)”’
states, and a random instance is in fact quite a challenge.

50

Problem solving by basic search

EVIL ROBOT has found himself in an unfamiliar building:

Evil Robot /"O %

X Teleport

| T oonw

He wants théDDIN (Oblivion Device of Indescribable Nastiness)

51

Problem solving by search

Start state:EVIL ROBOT is in the top left corner.
Goal state:EVIL ROBOT is in the area containing the ODIN.

Actions: I ef t, ri ght, up, down. We can move as long as there’s no wall in
the way. (Again, it's not always possible to choose fromalirfactions.)

Path cost: 1 per move. If you step on a teleport then you move to the other on
with a cost off).

52

Problem solving by search

Problems of this kind are very simple, but a surprisinglgéanumber of applica-
tions have appeared:

¢ Route-finding/tour-finding.

e Layout of VLSI systems.

e Navigation systems for robots.

e Sequencing for automatic assembly.

e Searching the internet.

e Design of proteins.

and many others...

Problems of this kind continue to form an active research.are

53

Problem solving by search

It's worth emphasising that a lot of abstraction has takacehere:

e Can the agent know it's current state in full?
e Can the agent know the outcome of its actions in full?
the state is always known precisely, as is the effect of any
action. There is therefore a single outcome state.

The effects of actions are known, but the state can not
reliably be inferred, or the state is known but not the effexftthe actions.

Both single and multiple state problems can be handled ubiege search tech-
nigues. In the latter, we must reason about the set of steésgve could be in:

¢ In this case we have an initiattof states.

e Each action leads to a furtheetof states.

e The goal is a set of states of which are valid goals.

54

Problem solving by search

In some situations it is necessary to perform sensihge the actions are being
carried out in order to guarantee reaching a goal.

(I's good to keep your eyes open while you cross the road!)

This kind of problem requires and will be dealt with later.

55

Problem solving by search

Sometimes it is actively beneficial to act and see what happather than to try
to consider all possibilities in advance in order to obtapedect plan.

Sometimes you haveo knowledge of the effect that your actions have on the
environment.

Babies in particular have this experience.
This means you need to experiment to find out what happens ywheact.

This kind of problem requires for a solution. We will not
cover reinforcement learning in this course. (Althouglsiin Al 11.)

56

Search trees

The basic idea should be familiar from yo@irjorithms | course, and also from
Foundations of Computer Science

o We build atree with the start state as root node.

e A node isexpandecby applying actions to it to generate new states.

e A pathis asequence of actiorthat lead from state to state.

e The aim is to find ayoal statewithin the tree.

e A solutionis a path beginning with the initial state and ending in a gteate.
We may also be interested in theth cosias some solutions might be better than
others.

Path cost will be denoted by

57

N ——
T
DOW" 63|
D58 5@ w5
EEm &
Up
Start State f]—
_
Left
gE@)/,, [0 - 0En m@EE -
Hi—EHEE | EBEE EEe——
EEE\ EEE* —@Ek
e\ [E[EE@] oo B H——r0—"g
g o - BEnEnD
FEE\ DDE o5 @ }
Right (67|21 [
Up [AI{EN

58

Search trees versus search graphs

We need to make an important distinction betweearch treeandsearch graphs
For the time being we assume that it'Srae as opposed to graph that we're
dealing with.

as opposed to

(There is a good reason for this, which we’ll get to in a momeént

In atreeonly one pathcan lead to a given state. Injeaphastatecan be reached
via possiblymultiple paths

59

Search trees

Basic approach:

e Test the root to see if it is a goal.

o If not thenexpandit by generating all possible successor states according to
the available actions.

o If there is only one outcome state then move to it. Otherwiseose one of
the outcomes and expand it.

e The way in which this choice is made defines=airch strateqy

e Repeat until you find a goal.

The collection of states generated but not yet expandedllisdctne fringe or
frontier and is generally stored asjacue

60

The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch {
fringe = queue containing only the start state;
while() {
if (empty(fringe))
return fail;
node = head(fringe);
i f (goal (node))
return sol ution(node);

fringe = insert(expand(node), fringe);
}
}
The is set by using @
The definition of then sets the way in which the tree is searched.

61

The basic tree-search algorithm

. Expanded
O In the fringe, but not expande:

. Not yet investigated

62

The basic tree-search algorithm

We can immediately define some familiar tree search algosth

e New nodes are added to the JeThis is

e New nodes are added to the eThis is
We will not dwell on these, as they are bati in practice.
Why is that?

63

The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

e Whether a solution is found.
e Whether the solution found is a good one in terms of path cost.
e The cost of the search in terms of time and memory.

So
the total cost= path cost+ search cost

If a problem is highly complex it may be worth settling foral
obtained in &

We are also interested in:
does the strategy a solution is found?
does the strategy guarantee thatliketsolution is found?

Once we start to consider these, things get a lot more integes

64

Breadth-first search

Why is breadth-first search hopeless?

e The procedure is =it is guaranteed to find a solution if one exists.

e The procedure is if the path cost is a non-decreasing function of node-
depth.

e The procedure hes IrAdranch-

ing factorb requires

])«/ lfl

L+0+ 0+ 024+ b =
b—1

nodes if the shortest path has depth

In practice it is the requirement that is problematic.

65

Depth-first search

With depth-first search: for a given branching factand depth/ the memory
requirement is)(bd).

.

This is because we need to store and

The time complexity i) (b"). Despite this, if there are: we stand a
chance of finding one quickly, compared with breadth-firsrcle.

66

Backtracking search

We can sometimes improve on depth-first search by using

e If each node knows how to then memory is im-

proved toO(d).

e Even better, if we can work by toa then
the memory requirement is:

— One full state description, plus...
—... O(d) actions (in order to be able tondoactions).

How does this work?

67

No backtracking With backtracking
Trying: up, down, | ef t,ri ght: If we have:
&
(2] [61) [B|EE
_EE
up)/ we can undo this to obtain
[&]] [et
EEE &=
up Soun + \ and applydown to get
& &
, d
(87| [61) (1] | =) (61| () | [T]] s
~~

and s

o
o
=1

68

Depth-first, depth-limited, and iterative deepening dearc

Depth-first search is clearly dangerous if the treesis
simply imposes a limit on depth. For example if we're

searching for a route on a map withcities we know that the maximum depth
will be »n. However:

o We still risk finding a suboptimal solution.

e The procedure becomes problematic if we impose a depth thmit is too

small.

Usually we do not know a reasonable depth limit in advance.

fepeatedly runs depth-limited search for increasing
depth limits0, 1, 2, . ..

69

Iterative deepening search

¢ Essentially combines the advantages of depth-first andltirdast search.

e It is complete and optimal.

e It has a memory requirement similar to that of depth-firstaea
Importantly, the fact that you're repeating a search preseveral times is less
significant than it might seem.

It's not a good practical method, but it does point us in the dvaatf one...

70

Iterative deepening search

Iterative deepening depends on the fact that

e In a tree with branching factérand depth/ the number of nodes is
pr+t —
b—1
e A complete iterative deepening search of this tree geretaie final layer

once, the penultimate layer twice, and so on down to the vduth is gener-
atedd -+ 1 times. The total number of nodes generated is therefore

flb,d)=1+b+b b0+ b=

folbyd) = (d+1)+db+ (d— 1)+ (d —2)b°> + - - - + 20T L+ p?

71

Iterative deepening search

Example:

e Forb — 20 andd — 5 we have

f1(b,d) = 3,368, 421
fab,d) = 3,545,706
which represents apercent increase with iterative deepening search.
e The overhead gets ash increases. However the time complexity is still
exponential.

72

Iterative deepening search

Further insight can be gained if we note that
folb,d) = Fi(b,0) + fi(b,1) + -+ fi(b, d)

as we generate the root, then the tree to dep#md so on. Thus

d

(l
o R pitl — 1
v/gw.(l):z,/.m.uzz -

1=0 i=0

d d
l 1+1 o l 1+1 \
:{)71;() 717/)7,] [(Zﬂb >[‘(]+13

Noting that
d
bfi(b,d) =b+b*+ -+ b = Z bt
1=0

we have ; 14
) . a+

(b, d) = ——f1(b,d) —

fa(b, d) Z)*lfl\) a) b1

so /»(b, d) is about equal tg', (b, d) for largeb.

73

Bidirectional search

In some problems we can simultaneously search:
from the state
from the state
until the searches meet.

This is potentially a very good idea:

o If the search methods have complexityh?) then...

e ...we are converting this to(20"%) = O(b"/?).

(Here, we are assuming the branching factdrirsboth directions.)

74

Bidirectional search - beware!

e It is not always possible to generate efficierily as well as succes-
sors.

e If we only have the of a goal, not ar | then generating
predecessors can be hard. (For example, consider the ¢aricé 9

¢ We need a way of checking whether or not a node appears irilike

e ... and the figure of) (") hides the assumption that we canaio
checking for intersection of the frontiers. (This may begible using a hash
table).

¢ We need to decide what kind of search to use in each half. Fonpbe, would
be sensible? Possibly not...

e ...to guarantee that the searches meet, we need to stdne atbtles of at least
one of the searches. Consequently the memory requirementis’).

75

Uniform-cost search

Breadth-first search finds ths solution, but this is not necessarily the
one.

is a variant. It uses the p(n) as the priority for the
priority queue.

Thus, the paths that are apparently best are explored firdtihee best solution
will always be found if

Vn (¥n' € successols) . p(n') > p(n))

Although this is still not a good practical algorithm, it dogoint the way forward
to

76

Repeated states

With many problems it is easy to waste time by expanding nodiashave ap-
peared elsewhere in the tree. For example:

The sliding blocks puzzle for example suffers this way.

7

Repeated states

For example, in a problem such as finding a route in a map, waleref the
operators are > this is inevitable.
There are three basic ways to avoid this, depending on howtrgde off effec-
tiveness against overhead.

e Never return td

e Avoid cycles: never proceed to

e Do not expand

is a standard approach to dealing with the situation. It tree$ast
of these possibilities.

78

Graph search

In pseudocode:

function graphSearch() {
closed = {};
fringe = queue containing only the start state;

while () {
if (enpty(fringe))
return fail;
node = head(fringe);
i f goal (node)

return sol uti on(node);
if (node not a nenber of closed) {
closed = cl osed + node;
fringe = insert(expand(node), fringe); // See note...
}
}
}

if node is incl osed then it must already have been expanded.

79

Graph search

There are several points to note regarding graph search:

1. The contains all the expanded nodes.

2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional toitleecs the state
space.

4, depth first and iterative deepening search are no longearls@ace
as we need to store the closed list.

5. when a repeat is found we are discarding the new possibiléy e
if it is better than the first one.

e This never happens for uniform-cost or breadth-first seaiith constant
step costs, so these remain optimal.

o |terative deepening search needs to check which solutitwetier and if
necessary modify path costs and depths for descendante aépeated
state.

80

Search trees
Everything we've seen so far is an example.of or search—we
only distinguish goal states from non-goal states.
(Uniform cost search is a slight anomaly as it uses the pathaa guide.)
To perform well in practice we need to employ or search.

This involves exploiting knowledge of the

81

Problem solving by informed search

Basic search methods make limited use of any we
might have.
¢ We have already seen the conceppaof t(n)
p(n) = cost of path (sequence of actions) from the start state to

e We can now introduce an nThis is a function that attempts

to measure thé

The evaluation function will clearly not be perfect. (If & ithere is no need to
search.)

simply expands nodes using the ordering given by the evatuat
function.

82

Greedy search

We've already seen used for this purpose.
e This is misguided as path cost is not in generai in any sense
o A qusually denoted () is one that the cost of the

best path from any nodeto a goal.
e If nis a goal them.(n) = 0.

Using a heuristic function along with best-first search gius the
algorithm.

83

Example: route-finding

for route finding a reasonable heuristic function is

h(n) = straight line distance from to the nearest goal

1 h(ng) =1

h(ny) = NG s

® Goal

Accuracy here obviously depends on what the roads are féaly

84

Example: route-finding

Greedy search suffers from some problems:

e Its time complexity is) (7).
o Its space-complexity i§)(0").
e It is not optimal or complete.

greedy searchanbe effective, provided we have a gobd:).

Wouldn't it be nice if we could improve it to make it optimaldwomplete?

85

A* search

Well, we can.

combines the good points of:

e Greedy search—by making use/aof.).

e Uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path ¢ost and also the heuristic
function’.(n) by forming
f(n)=pn)+ hn)

where
p(n) = cost of pathto n

and
h(n) = estimated cost of best pafitom n

f(n) is the estimated cost of a pati n.

86

A* search

A* search:

e A best-first search using(n).
e It is both complete and optimal...
e ...provided that. obeys some simple conditions.
an h(n) is one that the cost
of the best path from to a goal. So ifi/(n) denotes the distance from. to

the goal we have
Vn.h(n) < h'(n).

If is admissible then A* is optimal.

87

A* tree-search is optimal for admissililén)

To see thatd* search is optimal we reason as follows.
Let Goal,,; be an optimal goal state with
f(Goaby) = p(Goabp) = fopt
(becausé.(Goal,y) = 0). Let Goal, be a suboptimal goal state with
f(Goak) = p(Goab) = fo > fopt

We need to demonstrate that the search can never s&lect

88

A* tree-search is optimal for admissibilén)

At some point Goalis in the fringe.

Goabh Can it be selected before?

@ @ Goaby

89

A* tree-search is optimal for admissibilén)

Let» be a leaf node in the fringe on an optimal patfitoal,. So
fopt = p(n) + h(n) = f(n)
because: is admissible.
Now sayGoal, is chosen for expansianzforen. This means that
f(n) = fo
so we've established that
Jopt = fo = p(Goab).

But this means thaboal,, is not optimal: a contradiction.

90

A* graph search

Of course, we will generally be dealing witfiaph search
Unfortunately the proof breaks in this case.
e Graph search cadiscard an optimakoute if that route is not the first one
generated.

e We could keepnly the least expensive pathis means updating, which is
extra work, not to mention messy, but sufficient to insuréroality.

o Alternatively, we can impose a further condition oh:) which forces the best
path to a repeated state to be generated first

The required condition is calledonotonicity As
monotonicity— admissibility

this is an important property.

91

Assume’ is admissible. Remember thatn) = p(n) + h(n) so if n’ follows n

p(n’) > p(n)

and we expect that(n') < h(n) although this does not have to be the case.

Heref(n)=9andf(n/)

92

Monotonicity

e Ifitis always the case that(n') > f(n) thenh(n) is called
e /1(n) is monotonic if and only if it obeys the

h(n) < costn —= n/) + h(n/)

If 2(n) is not monotonic we can make a simple alteration and use
fn')y =max{f(n),p(n’) + h(n)}

This is called the: equation.

93

The pathmax equation

Why does the pathmax equation make sense?

The fact thatf(n) = 9 tells us the cost of a path throughis 9 (because
h(n) is admissible).
But ' is n. Soto say that (n') = 7 makes no sense.

94

A* graph search is optimal for monotonic heuristics

A* graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that if(.) is monotonic then
the values off (n) along any path are non-decreasing.

Assume we move from to »’ using action:. Then
Va . p(n') = p(n) + costn — n')
and using the triangle inequality

h(n) < costn —= n') + h(n)) 1)

Thus
f(n') =p(n') + hin)
= p(n) 4 costn —% n') + h(n/)
> p(n)+ h(n)
= f(n)
where the inequality follows from equation 1.

95

A* graph search is optimal for monotonic heuristics

We therefore have the following situation:

You can't deal withn” until everything with
f(n") < f(n') has been dealt with.

Consequently everything withi(n”) < fo. gets explored. Then one or more
things with f: get found (not necessarily all goals).

96

A* search is complete

A* search is complete provided:

1. The graph has finite branching factor.
2. There is a finite, positive constansuch that each operator has cost at least

Why is this? The search expands nodes according to incgeasin. So: the
only way it can fail to find a goal is if there are infinitely mangdes withf (n) <
f(Goal).

There are two ways this can happen:

1. There is a node with an infinite number of descendants.
2. There is a path with an infinite number of nodes but a finita past.

97

Complexity

e A* search has a further desirable property: iiji$

e This means that no other optimal algorithm that works by troeting paths
from the root can guarantee to examine fewer nodes.

e BUT: despite its good properties we're not done yet...

¢ ... A* search unfortunately still has exponential time compjekitmost cases
unlessh(n) satisfies a very stringent condition that is generally uisget

|h(n) — B'(n)] < O(log k' (n))
where//(n) denotes thecal cost fromn to the goal.
e As A* search also stores all the nodes it generates, once agaigdaherally

98

IDA™ - iterative deepeningl* search

How might we improve the way in whicd* search uses memory?

o lterative deepening search used depth-first search withiadn depth that is
gradually increased.

. does the same thing f

Acti onSequence ida() {
root = root node for problem
float fLimt = f(root);
while() {
(sequence, fLimt) = contour(root,fLimt, enptySequence);
if (sequence != enptySequence)
return sequence;
if (fLimt == infinity)
return enptySequence,;

99

IDA™ - iterative deepeningl* search

The functioncont our searches from a given nodse; f]
It returns either a solution, or the value of / to try.

(ActionSequence, fl oat) contour(Node node, float fLimt, ActionSequence s) {
float nextF = infinity;
if (f(node) > fLimit)
return (enptySequence, f (node));
ActionSequence s’ = addToSequence(node, s);
if (goal Test(node))
return (s’ ,fLimt);
for (each successor n’ of node) {
(sequence, newrF) = contour(n’,fLimt,s");
if (sequence != enptySequence)
return (sequence,fLimt);
next F = m ni mun(next F, newF) ;
}

return (enptySequence, nextF);

100

IDA* - iterative deepeningl* search

This is a little tricky to unravel, so here is an example:

® @ @ [3
1 bt bt bt
N N N N
SN SN
I I I

SN S SN AN S

\ / ! \ / ! \ / ! \ / ! \ / ! \ / ! \ / | \
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ° ° ° °

Initially, the algorithm looks ahead and finds theallesif cost that isyreater
thanits current/ cost limit. The new limit is..

101

IDA* - iterative deepeningl* search

It now does the same again:

r/ ! \\ . \ .
I I I

SN A .
I I I

/ \
I I I

Anything with / costat mostequal to the current limit gets explored, and the
algorithm keeps track of themallestf cost that isyreater thanits current limit.

The new limit isb.

102

IDA™ - iterative deepeningl* search

And again:

8 7/ N SN SN S SN
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 9o ° O °

The new limitis7, so at the next iteration the three arrowed nodes will becerpl

103

IDA™ - iterative deepeningl* search

Properties of IDA:

e It is complete and optimal under the same conditiond as

e It is often good if we have step costs equal to

e |t does not require us to maintain a sorted queue of nodes.
e It only requiresspace proportional to the longest path

e The time taken depends on the number of valuean take.

If /» takes enough values to be problematic we can incrédmsea fixede at each
stage, guaranteeing a solution at mostorse than the optimum.

104

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memorigdtians is the

try to do a best-first search, but only Use

by doing a depth-first
search with a few modifications:

1. We remember the (') for the best alternative nod€ we've seen so far on
the way to the node we're currently considering.

2. Ifnhasf(n) > f(n'):
e We go back and explore the best alternative...

e ...and as we retrace our steps we replace/tlvest of every node we've
seen in the current path with).

The replacement of values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we caryeasirn to it later.

105

Recursive best-first search (RBFS)

for simplicity a parameter for the path has been omitted.

functi on RBFS(Node n,
if (goaltest(n))
return n;

Float fLimt) {

if (n has no successors)
return (fail, infinity);
for (each successor n’ of n)

f(n) = maximum(f(n’), f(n));
while() {

best = successor of n that has the smallest f(n');
if (f(best) > fLinit)

return (fail, f(best));

next Best = second smallest f(n') value for successors of n;
(result, f') = RBFS(best, mininmun(fLinmt, nextBest));
f(best) =f";

if (result !'=fail)

return result;

f (best) is whenRBFS produces a result.

106

Recursive best-first search (RBFS): an example

This function is called usinBFS(start State, infinity) tobeginthe
process.

Function call numbet:

fLimit, = oo

5 -
~. nextBest = 5

T
|
|
i
|
|
[]
bl

Now perform the recursive function cdlesult, /') = RBFSbest, 5)
so f(best) takes the returned valué

107

Recursive best-first search (RBFS): an example

Function call numbet:

3 fLimit, = oo
fLimit, = 5

Now perform the recursive function cdliesult;, /') = RBFSbest, 5)

so f(best) takes the returned valuyg

108

Recursive best-first search (RBFS): an example

Function call numbet:

fLimit, = oo
fLimit, =5
imit; = 5

nextBesf = 11 best

Now f(best) > fLimit ; so the function call returngail, 10) into (result, /) and
f(best) = 10.

109

Recursive best-first search (RBFS): an example

The while loop for function calb now repeats:

fLimit, = oo
fLimit, = 5

4 replaced by

5 replaced byl(

Now f(best) > fLimit, so the function call returngail, 9) into (result, /) and
f(best) =0.

110

Recursive best-first search (RBFS): an example

The while loop for function call now repeats:

fLimit, = oo

4 replaced by

7
e \QextBesiz 7
. S 5

We do a further function call to expand the new best node, amhs.

111

Recursive best-first search (RBFS)

Some nice properties:
o If /1 is admissible then RBFS is optimal.
e Memory requirement is)(bd)
e Generally more efficient than IDA

And some less nice ones:

e Time complexity is hard to analyse, but can be exponential.

e Can spend a lot of time=-generating nodes

112

Other methods for getting around the memory problem

To some extent IDAand RBFS throw the baby out with the bathwater.

e They limit memory too harshly, so...

e ...we can try to use

MA* and SMA will not be covered in this course...

113

Local search

Sometimes, it's only thgoalthat we're interested in. Theathneeded to get there
is irrelevant.

e For example: VLSI layout, factory design, vehicle routirsgitomatic pro-
gramming...

e We are now simply searching for a node that is in some sgénse

e This is also known as

This leads to the remarkably simple conceptcof

114

Local search

Instead of trying to find a path from start state to goal, wdaepthe
of the graph, meaning those nodes one edge away from the dreeatve

We assume that we have a functiom) such that/(n’) > f(n) indicatesn’ is
preferable to..

115

Then-queens problem

You may be familiar with the:

M

Find an arrangement of queens on an by »n board such that no queen is attack-
ing another.

In the Prolog course you may have been tempted to generateifaions of row
numbers and test for attacks.

Thisis a for largen. (Imaginen ~ 1,000, 000.)

116

Then-queens problem

We might however consider the following:
¢ A state (node) for anm by m board is a sequence of numbers drawn from
the set{1,...,m}, possibly including repeats.

¢ \We move from one node to another by moving & to alternative
row.

e We definef(n) to be the number of pairs of queens attacking one-another in
the new positiof (Regardless of whether or not the attack is direct.)

2Note that we actually want to / here. This is equivalent to maximizing/, and | will generally use whichever seems more appropriate.

117

Then-queens problem

Here,n = {4.3.72.8.6,2,4, 1} and the/ values for the undecided queen are
shown.

7™M

7 M
5 M

As we can choose which queen to move, each node in factthasighbours in
the graph.

118

Hill-climbing search

is remarkably simple:

Generate a start state n.

while () {
Generate the N neighbours {n_1,..., n_N} of n;
if (max(f(n_i)) <= f(n)) return n;
n =n_i maximzing f(n_i);

}

In fact, that looks so simple that it's amazing the algoritisrat all useful.

In this version we stop when we %et to a node with no betterhieigr. We might
alternatively allow y changing the stopping condition:

if (max(f(n_i)) < f(n)) return n;

Why would we consider doing this?

119

Hill-climbing search: the reality

In reality, nature has a number of ways of shapjn¢gp complicate the search
process.

fn) Global maximum Local maxima

\ Shoulder

Plateau

moves allow us to move acrosé and

However, should we ever find la then we’ll return it: we won't

keep searching to find@

120

Hill-climbing search: the reality

Of course, the fact that we're dealing withya means we need to think
of something like the preceding figure, but ina)
and this makes the problem

There is a body of techniques for trying to overcome suchlprob. For example:
. Choose a neighbour at random, perhaps with a prob-

ability depending on its' value. For example: lev(») denote the neighbours
of n. Define

N*(n)={n"€ N(n)|f(n) > f(n)}
N=(n)={n" e N(n)|f(n') < f(n)}.

Pr(n)) — 0 if n € N~ (n)
e +(f(n') = f(n)) otherwise

Then

121

Hill-climbing search: the reality

° Generate neighbours at random. Select the first one thattés be
than the current one. (Particularly good if nodes havs 3

° Run a proceduré times with a limit on the time allowed for
each run.
generating a start state at random may itself not be stfaigvard.
. Similar to stochastic hill-climbing, but start with lots of
random variation and f
in some cases this s an effective procedure, although the time
taken may be excessive if we want the proof to hold.
. Maintain & nodes at any given time. At each search step, find
the successors of each, and retain the bdisim all the successors.
this isnot the same as random restarts.

122

Gradient ascent and related methods

For some problenis—we do not have a search graph, buia

Typically, we have a functiori(x) : R” — R and we want to find

Xopt = argmax f(x)
X

3For the purposes of this course, the is a notable example.

123

Gradient ascent and related methods

In a single dimension we can clearly try to solve

df (x)
=0
dx
to find the sand use
4’ f(x)
dx?
to find a global alllg] the equivalent is to solve
o Of(x)
Vi) = 2% _
ox
where R
(),f‘«xj o af(x) If(x) df(x)
o { [okia) Jxo T o, } :

ox
and the equivalent of the second derivative ishtie matrix

of3(x) 0f3%(x) 0f%(x)

/),vf Ox10x9 Jx10xy
4)v/*)\x\ (‘)v/’)\Xl 4)v/*)wxb |
|

H=

0x901 02 Jz90xy

drpdry O0xp0xs (')J;’,

[
[
\‘ufﬁxw If%(x) Af2(x

124

Gradient ascent and related methods

However this approach is usualiyt analytically tractableregardless of dimen-
sionality.

The simplest way around this is to employadient ascent

e Start with a randomly chosen point.
e Using a smalktep size, iterate using the equation

Xip1 = X; + eV f(x5).
This can be understood as follows:

e At the current poink; the gradient/ f(x;) tells us thelirectionandmagnitude
of the slope ak;.

e Adding ¢V f(x;) therefore moves ussmall distance upward

This is perhaps more easily seen graphically. . .

125

Gradient ascent and related methods

Here we have a simplearabolic surface

e=0.1

50

2000

% —2000
=
-4000

v
—-6000(. "
50

-50
-50

£ -50 -50

xy

With ¢ = 0.1 the procedure is clearly effective at finding the maximum.

Note however thathe steps are smgland in a more realistic problerh might
take some time. ..

126

Gradient ascent and related methods

Simply increasing the step sizean lead to a different problem:

We can easily jump too far. ..

127

Gradient ascent and related methods

There is a large collection of more sophisticated methodsekample:

e Line searchincrease until / increaseand minimise in the resulting interval.
Then choose a new direction to move inonjugate gradientsthe Fletcher-
ReeveandPolak-Ribieremethods etc.

e UseH to exploit knowledge of the local shape jof For example thélewton-
RaphsorandBroyden-Fletcher-Goldfarb-Shanno (BFGhgethods etc.

128

Artificial Intelligence |

Notes on

Copyright(© Sean Holden 2002-2013.

129

Solving problems by search: playing games

How might an agent act when because
an 2

e This is essentially a more realistic kind of search problevoanse we do not
know the exact outcome of an action.

e This is a common situation whem sin chess, draughts, and so on

an opponent to our moves.
¢ We don't know what their response will be, and so the outcohmiomoves
is not clear.
Game playing has been of interest in Al because it provides of a
world in which two agents act ta each other’s well-being.

130

Playing games: search against an adversary

Despite the fact that games are an idealisation, game glagin be an excellent
source of hard problems. For instance with chess:

e The average branching factor is roughly

e Games can reach) moves per player.

¢ S0 a rough calculation gives the search tre€’ nodes.

e Even if only different, legal positions are consideredatmout! 0",

to the uncertainty due to the opponent:

e We can't make a complete search to find the best move...
e ... SO We have to act even though we're not sure about theliegtto do.

131

Playing games: search against an adversary

And chess isn't even very hard:

° is harder than chess.
e The branching factor is abouf(.

Until very recently it has resisted all attempts to produgead Al player.

See:
senseis.xmp.net/?MoGo

and others.

132

Playing games: search against an adversary

It seems that games are a step closer to the complexitieseimthia the world
around us than are the standard search problems considefad s

The study of games has led to some of the most celebratedtatptis and tech-
niques in Al.

We now look at:

e How game-playing can be modelled &=
e The for game-playing.
e Some problems inherent in the use of minimax.

e The concept of

Russell and Norvig chapter 6.

133

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are calléaik and for reasons
that will become clear.

e We'll use as an initial example.

e Max moves first.

e The players alternate until the game ends.

e At the end of the game, prizes are awarded. (Or punishmenigadered—
EVIL ROBOT is starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughtoam.

134

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows

e Thereis an

Max to move

e There is a set of s Here, Max can place a cross in any empty square,
or Min a nought.

e There is a I Here, the game ends when three noughts or three
crosses are in a row, or there are no unused spaces.

e There is a or function. This tells us, numerically, what the out-

come of the game is.

This is enough to model the entire game.

135

Perfect decisions in a two-person game

We can to represent a game. From the initial state Max can make
nine possible moves:

Then it's Min’s turn...

136

Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

And so on...

This can be continued to represetitpossibilities for the game.

137

Perfect decisions in a two-person game

X
@)
X|X|O
|

Z

At the leaves a player has won or there are no spaces. Leavehaledusing
the utility function.

+1

><><></\/-
X

O|0|X
X|0|O

O|X|X

X|0|0O

X|O|X
[=1

138

Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a mondiesitree:

Labels on the leaves denote utility.
High values are preferred by Max.
Low values are preferred by Min.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

If Max is rational he will play to reach a position with the

But if Min is rational she will play to the utility available to Max.

139

The minimax algorithm

There are two moves: Max then Min. Game theorists would bal dne move,
or two ply deep.

The allows us to infer the best move that the current player
can make, given the utility function, by working backwardrfr the leaves.

4 5 20 20 15 7 4 10 9 5 8 5

As Min plays the last move, she the utility available to Max.

140

The minimax algorithm

Min takes the final move:
e If Min is in game positionl, her best choice is move So from Max’s point
of view this node has a utility of.

¢ If Min is in game positior2, her best choice is move So from Max’s point
of view this node has a utility of.

e If Min is in game positiors, her best choice is move So from Max’s point
of view this node has a utility of.

e If Min is in game position!, her best choice is move So from Max’s point
of view this node has a utility of.

141

The minimax algorithm

Moving one further step up the tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5

We can see that Max’s best opening move is mg\as this leads to the node with
highest utility.

142

The minimax algorithm

e Generate the complete tree and label the leaves accordihg tdility func-
tion.

e Working from the leaves of the tree upward, label the nodg®dging on
whether Max or Min is to move.

olf is to move label the current node with the utility of any de-
scendant.

o If is to move label the current node with the utility of any
descendant.

If the game i ply and at each point there arevailable moves then this process
has (surprise, surprisé)(¢’) time complexity and space complexity linear;in
andg.

143

Making imperfect decisions

We need to avoid searching all the way to the end of the &ee.

e We generate only part of the tree: instead of testing whetheyde is a leaf
we introduce & test telling us when to stop.

e Instead of a utility function we introduce an for the evalu-
ation of positions for an incomplete game.

The evaluation function attempts to measure the expeciéty of the current
game position.

144

Making imperfect decisions

How can this be justified?

e This is a strategy that humans clearly sometimes make use of.
e For example, when using the concepted in chess.

e The effectiveness of the evaluation functiorcig

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be undtgt—it is probably
the most important part of the design.

145

The evaluation function

Designing a good evaluation function can be extremely yrick

e Let’'s say we want to design one for chess by giving each pisceaterial
value: pawn =I, knight/bishop =3, rook =5 and so on.

¢ Define the evaluation of a position to be the difference betwihe material
value of black’s and white’s pieces

evalpositon = valueofp; — > value ofg,

black’s pieceg); white’s pieces;

This seems like a reasonable first attempt. Why might it gagPo

146

The evaluation function

Consider what happens at the start of a game:

e Until the first capture the evaluation function giveso in fact we have &
containing many different game positions with equal estédautility.
e For example, all positions where white is one pawn ahead.
e The evaluation function for such a category should perhap®sent the prob-
ability that a position chosen at random from it leads to a win

So in fact this seems highly naive...

147

The evaluation function

Ideally, we should considen

If on the basis of past experience a position &%t chance of winning10%
chance of losing and0% chance of reaching a draw, we might give it an evalua-
tion of

evalposition = (0.5 x 1) 4+ (0.1 x —1) + (0.4 x 0) = 0.4.

Extending this to the evaluation of categories, we showdd theight the positions
in the category according to their likelihood of occurring.

Of course, we what any of these likelihoods are...

148

The evaluation function

Using material value can be thought of as giving usca

n

evalposition = Z w; fi

i=1

The evaluation function

Evaluation functions of this type are very common in gamegipta
There is no systematic method for their design.

Weights can be chosen by allowing the game to play itself asidgu
techniques to adjust the weights to improve performance.

where thew; are and thej; represent of the position. In this
example By using more carefully crafted features we can givié to
f; = value of theith piece
w; = humber ofith pieces on the board
where black and white pieces are regarded as different and #re positive for
one and negative for the other.
149 150
a — [pruning

« — [pruning

Even with a good evaluation function and cut-off test, theeticomplexity of the
minimax algorithm makes it impossible to write a good chesgy@m without
some further improvement.

e Assuming we have 150 seconds to make each move, for chess uié b
limited to a search of aboutto 4 ply whereas...

e ...even an average human player can mandge.

Luckily, it is possible to prune the search treé and

151

Returning for a moment to the earlier, simplified example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5

The search is depth-first and left to right.

152

« — [pruning

The search continues as previously for the firlgaves.

4 5 2 20 20 15 6 7 1'_-4° 10\\9: 5 8 5

Then we note: ifViax plays move3 thenMin can reach a leaf with utility at most
1.

So: we don't need to search any further under Max’s opening nfovehis is
because the search haseady establishedhat Max can do better by making
opening move.

153

« — B pruning in general

Remember that this searchdspth-first We're only going to use knowledge of
nodes on the current path

o = m tells us that the /\ =Player

value of this node is> m. |
value>
=m v = Opponent

The value of is updated as

the search progresses.

While searching under this node

value> m/ we find that the opponent can force
- a score ofa.

If n < m we can stop. There is a

/ better choice earlier in the game.

If n < m’ we can stop. The player
Searching here establishes that maximises and will never move here.

the opponent can force a score
of m'.

So:once you've established thatis sufficiently small, you don't need to explore
any more of the corresponding node’s children.

154

a — /3 pruning in general

The situation is exactly analogous if wevap player and opponeirt the previous
diagram.

The search is depth-first, so we’re only ever lookingat path through the tree
We need to keep track of the valuesind 7 where
« = thehighestutility seen so far on the path féfax

5 = thelowestutility seen so far on the path fédin
AssumeMax begins Initial values fora and/; are

a = —00

and
B = +4o0.

155

« — f pruning in general

So: we start with the function call
player(—oo, +00,root)

The following function implements the procedure suggestethe previous dia-
gram:

playera, 3,m){
if (n is at the cut-off poiny return evaluatiom);
value= —oo;
for(each successar of n){
value= maxvalue opponenic, 3,n'));
if (value> () return value;
if(value> «) o = value;

}

return value

}

156

« — (B pruning in general

The functionopponent is exactly analogous:

opponenta, 3, m){
if (n is at the cut-off poiny return evaluatiom);
value= +o0;
for(each successer of n){
value= min(value playera, 5,n'));
if(value< «) return value;
if (value<) 8 = value;

}

return value

the semantics here is that parameters are passed to fugiction

157

« — B pruning in general

Applying this to the earlier example and keeping track of\takies foro and 5
you should obtain:

Return2

Returnl

4 5 2 20 20 15 6 7 1

158

How effective isa. — 5 pruning?

(Warning: the theoretical results that follow are somewti@alised.)

A quick inspection should convince you that theler in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:
e If you were to have a perfect move-ordering technique then 3 pruning
would beO(¢"*) as opposed to)(¢").
e so the branching factor would effectively be; instead of;.
e We would therefore expect to be able to search ahead

However, this is not realistic: if you had such an orderirghtéque you'd be able
to play perfect games!

159

How effective isac — 8 pruning?

If moves are arranged at random then- pruning is:

e O((q/log q)7) asymptotically whery > 1000 or...

e ...aboutO)(¢*/") for reasonable values of
In practice simple ordering techniques can get close togsedase. For example,
if we try captures, then threats, then moves forwetal

Alternatively, we can implement an iterative deepening-apph and use the order
obtained at one iteration to drive the next.

160

A further optimisation: the transposition table

Finally, note that many games correspondtaphsrather thari because the
same state can be arrived at in different ways.

e This is essentially the same effect we saw in heuristic searecall
versus
e |t can be addressed in a similar way: store a state with itiiatian in a hash
table—generally called & ethe first time it is seen.
The transposition table is essentially equivalent to dlie introduced as
part of graph search.

This can vastly increase the effectiveness of the searaepspbecause we don't
have to evaluate a single state multiple times.

161

Artificial Intelligence |

Notes on

Copyright(©) Sean Holden 2002-2013.

162

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some waysstarsatiy.

e States were represented usingan and data structure.
e Heuristics were also

e |t would be nice to be able to general search problems intcs&

CSPs the manner in which states and goal tests are represented...

163

Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

e \We can devise algorithms and heuristics.

¢ We can look at general methods for exploring ¢he of the problem.

e Consequently itis possible to introduce techniquesifar problems.

e We can try to understand the relationship betweersthe of a problem
and the

another method of interest in Al that allows us to do simitangs involves
transforming to & problem. We’ll see an example of
thisin Al 11

164

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and e&ihfrom this
new perspective.

e To introduce the idea of a constraint satisfaction probl&@8F) as a general
means of representing and solving problems by search.

e To look at a for solving CSPs.

e To look at some for solving CSPs.

e To look at

Russell and Norvig, chapter 5.

Constraint satisfaction problems

We have:
e A setofn Vi, Vo, ..., V,.
e Foreach/; a D; specifying the values that can take.
e Asetofm C1,Cy, ..., C.

Each constraint’; involves a set of variables and specifiesaén

e A is an assignment of specific values to some or all of the Vimsab

e An assignment is if it violates no constraints.

e An assignment is if it gives a value to every variable.
A is a consistent and complete assignment.
165 166
Example Example

We will use the problem of as a running example.

Each node corresponds tova . We have three colours and directly con-
nected nodes should have different colours.

167

This translates easily to a CSP formulation:

e The variables are the nodes
V; = nodei
e The domain for each variable contains the values black, mddcgan
D, = {B,R,C}
e The constraints enforce the idea that directly connectegsionust have dif-
ferent colours. For example, for variablesand |, the constraints specify
(B,R),(B,C),(R,B),(R,C),(C,B),(C,R)

e Variable % is unconstrained.

168

Different kinds of CSP

This is an example of the simplest kind of CSP: itlis with

We will concentrate on these.
We will also concentrate on sthat is, constraints between

e Constraints on single variables+ s-can be handled by ad-
justing the variable’s domain. For example, if we don’t wanto bered, then
we just remove that possibility from,.

. applying to three or more variables can certainly be
considered, but...

¢ ...when dealing with finite domains they can always be cdedeto sets of
binary constraints by introducing extra

How does that work?

169

Auxiliary variables

three variables each with domaiw. 2. C'}.
A single constraint
(c,c,C),(R,B,B),(B,R,B),(B,B,R)

New, binary constraints:

Vi
‘ i (A=1LVi=0C),(A=1,V)
— 4-3 v (A= Vi— R (A=21,
(A=3.Vi=B),(A=3,V,
Vi (A=4.Vi=B),(A=4,V,

The original constraint connects all
three variables.

(Rl
IR

5358

BN
o

=L =
[
5833
TEER
o

Introducing auxiliary variable! with domain{1. 2, 3. 4} allows us to convert this
to a set of binary constraints.

170

Backtracking search

Consider what happens if we try to solve a CSP using a simplsitgue such as

The branching factor isd at the first step, for. variables each withl possible
values.

Step2: (n—1)d
Step 3: (n—2)d Number of leaves= nd x (n — 1)d x --- x 1
i =nld"

Stepn: d
only d" assignments are possible.

The order of assignment doesn’t matter, and we should assigme variable at a
time.

171

Backtracking search

Using the graph colouring example:

The search now looks something like this...

[1=8 1=R 1=C |

d

N =
1111
o W
N
by
E |
bign
owm

o
-

1
@

0w

WN
[IRINT]
W W
W
wlI\IJ"

I}
07X

...and new possibilities appear.

172

Backtracking search

Backtracking search searches depth-first, assigning kesiagable at a time, and
backtracking if no valid assignment is available.

QR WN P
[T T VR 1}
WO 0w

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to maprsearching, we can
now explore heuristics applicable i@ CSPs.

173

Backtracking search

Resul t backTrack(problen {
return bt ([], problem;

}

Resul t bt (assignnmentLi st, problen) {
if (assignmentList is conplete)
return assignnmentList;
next Var = get Next Var (assi gnment Li st, problem;
for (all v in orderVariabl es(nextVar, assignmentList,
if (vis consistent with assignmentlList) {
add "nextVar = v" to assignnentlList;
sol ution = bt (assignnmentList, problem;
if (solutionis not "fail")
return sol ution;
renove "nextVar = v" from assignnentList;
}
}

return "fail";

174

problem) {

Backtracking search: possible heuristics

There are several points we can examine in an attempt tonogeaieral CSP-
based heuristics:

¢ In what order should we try ta ?
¢ In what order should we try ta to a variable?

Or being a little more subtle:

e What effect might the values assigned so far have on latematied assign-
ments?

e When forced to backtrack, is it possible to avoid the samerfaiater on?

175

Heuristics I: Choosing the order of variable assignments\atues

Say we have = B and2 = R

Assigning such variablegrst is called the
heuristic.

(Alternatively, the or

176

At this point there ionly one possible assignment
for 3, whereas the others have more flexibility.

heuristic.)

Heuristics I: Choosing the order of variable assignmentsvatues

How do we choose a variable to begin with?

The chooses the variable involved in the most constraints on as

yet unassigned variables.

T

8
: 2
1

MRYV is usually better but the degree heuristic is a good tgaker.

177

Heuristics I: Choosing the order of variable assignments\atues

Once a variable is chosen,\iri ?

L4
(3 Choosingl = C'is bad as it removes
\ 5 thefinal possibily fos.

P S
[«—— The heuristic prefers 1=B

The heuristic chooses first the value that leaves the max-
imum possible freedom in choosing assignments for the bia'@neighbours.

178

Heuristics II: forward checking and constraint propagatio

Continuing the previous slide’s progress, now add ',

Cis ruled out as an assignment
2 and 3.

Each time we assign a value to a variable, it makes sensedtedbht value from

the collection of

This is called g It works nicely in conjunction with MRV.

179

Heuristics II: forward checking and constraint propagatio

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start | BRC' | BRC' | BRC' | BRC' | BRC | BRC | BRC' | BRC
2=B| RC | =B | RC | RC |BRC|BRC|BRC|BRC

3=R| C =B | =R | RC | BC |BRC| BC |BRC
6=B| C = = RC C = C | BRC
5=C| C = = R =C | = ! BRC

At the fourth step’ has

However, we could have detected a problem a little eatlier..

180

Heuristics II: forward checking and constraint propagatio

...by looking at step three.

1 2 3 4 5 6 7 8
Start | BRC | BRC' | BRC | BRC | BRC' | BRC | BRC | BRC
2=B| RC | =B | RC | RC |BRC|BRC|BRC|BRC

3=R| C =B | =R | RC | BC |BRC| BC | BRC
6=B| C =B | =R | RC C =B C | BRC
5=C| C =B | =R R =C | =B ! BRC

e At step three; can beC' only and7 can beC' only.
e But 5 and7 are connected.
e SO we can't progress, but this hasn’t been detected.

e |deally we want to da

time to do the search, against time to explore constraints.

181

Constraint propagation

Consider a constraint as beirg | For examplel — 5.

In general, say we have a constraint- j and currently the domain ofis D, and
the domain ofj is D;.

i — jis if
Vd € D;,3d’ € D; such that — j is valid

182

Constraint propagation

In step three of the tabl€), = {2, C'} andD; = {C'}.

e 5 — 4in step three of the table
e | — 5 in step three of the table

I — 5 can be made consistent by deletindgrom D..

Or in other words, regardless of what you assignyou’ll be able to find some-
thing valid to assign tg.

183

Enforcing arc consistency

We can enforce arc consistency each time a varialsl@ssigned.

¢ We need to maintain &
e Each time we alter a domain, we may have to include furthes iarthe col-
lection.
This is because if — ; is inconsistent resulting in a deletion from we may as
a consequence make some are; ; inconsistent.

Why is this?

184

Enforcing arc consistency

ky i — j is not consistent so
delete from the domain

ko O\ of i.
. >—>O
H 3 2

J
{R. B} {B
kx O . . kx O . .
{R} ki — i is consistent but {R} kx — iis no longer consistent
ki = R can only be paired becauséx = R can not be paired

withi = B. withi = R.

e | — j inconsistent means removing a value from
e Jd € D, such that there is no valid € D, 1l € D

However some!” < D, may only have been pairable with

We need to continue until all consequences are taken care of.

185

The AC-3 algorithm

NewDormai ns AC-3 (problem {
Queue toCheck = all arcs i->j;
while (toCheck is not enpty) {
i-> = next(toCheck);
if (renmovel nconsistencies(Di,Dj)) {
for (each k that is a neighbour of i)
add k->i to toCheck;
}
}
}

Bool renpvel nconsi stencies (donainl, domain2) {
Bool result = fal se;
for (each d in domainl) {
if (nod in donmain2 valid with d) {
renove d from donmi ni;
result = true;
}
}

return result;

186

Enforcing arc consistency

e A binary CSP with. variables can have(n”) directional constraints — ;.

e Any ; — j can be considered at mostimes where/ = max, |D,| because
only d things can be removed from;.

e Checking any single arc for consistency can be dori(iry).

So the complexity i€)(n’d?).
this setup includes 3SAT.

we can't check for consistency in polynomial time, which gessts
this doesn’t guarantee to find all inconsistencies.

187

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

. any/ — 1 variables and any consistent assignment to these.
. We can find a consistent assignment to attyvariable.

This is known as:

k requires the we bé-consistent/: — 1-consistenetcas far
down asl-consistent.

If we can demonstrate strongconsistency (where as usualis the number of
variables) then an assignment can be found(nd).

Unfortunately, demonstrating strongconsistency will be

188

Backjumping

The basic backtracking algorithm backtracks toiiine

2rThis
is known as gltis not always the best policy:
7 ey
20?7
4
1
Say we've assigned = 5,3 = R, 5 = ('and4 = B and now we want to

assign something to. This isn’t possible so we backtrack, however re-assigning
| clearly doesn't help.

189

Backjumping
With some careful bookkeeping it is often possibleito
without sacrificing the ability to find a solution.
We need some definitions:
e When we set a variablg to some valuel € D, we refer to this as the
A; = (V; + d).

.A [/, — {rllui_)

...... A} is a set of assign-
ments to the first variables...

e ... Where means that no constraints are violated.

Henceforth we shall assume that variables are assigned order);, 15, . . .,
when formally presenting algorithms.

190

Gaschnig’s algorithm

works as follows. Say we have a partial instantiation

e When choosing a value fdr,.,; we need to check that any candidate value
d € D, is consistent with',.

e When testing potential values far we will generally discard one or more
possibilities, because they conflict with some member. of

e We keep track of the At for which this has happened.

Finally, if novalue forV.. ; is consistent with';. then we backtrack to’,.

If there are no possible values left to try forthen we backtrack

191

Gaschnig’s algorithm

7=0 T7-=@

Backtrack to 5

If there’s no value left to try for then backtrack té and so on.

192

Graph-based backjumping

This allows us to jump back multiple levelg
Can we do better than chronological backtracking ?

Some more definitions:

e We assume an orderirig, 5, . . ., V/, for the variables.

e Givenl" = (V. V,, ... V.. } wherek < n the of 1., are the mem-
bers ofl”’ connected td/,. | by a constraint.

e The P(V) of V., is its most recent ancestor.

The ancestors for each variable can be accumulated as mesighare made.
backtracks to the of V...

Gaschnig’s algorithm uses whereas graph-based backjumping
uses

193

Graph-based backjumping

4¢ {5}

59 {3} 5 {3}/(

3D{1}3 (1} 3¢ {1}

At this point, backjump to the for 7, which isb.

194

{1,3,5}
{1,3,4,8}

{4}

Backjumping and forward checking

If we use gsay we're assigning to). ., by makingV;.. | = d:
e Forward checking removes from the D; of all ; connected to/,.. | by a
constraint.
e When doing graph-based backjumping, we'd also &dd to the ancestors of
Vi.
In fact, use of forward checking can make some forms of bawgjng

there are in fact many ways of combining with
; and we will not explore them in further detail here.

195

Backjumping and forward checking

L 272

Ancestors
1-8
2-{13,4}
3-{1}
4-{}
5-{3}
6-{}
7-{1,3;

1=B| = RC | RC |BRC |BRC|BRC| RC
3=R| = C = BRC| BC |BRC| C
5=C|=B| C =R | BR | =C | BR !
4=B| = C = BR | = BR !

Start | BRC'| BRC' | BRC' | BRC | BRC | BRC | BRC' | BRC

Forward checking finds the problem

196

Graph-based backjumping

We're not quite done yet though. What happens wiieri
?

Vi Vi

Vi Vi

Va Va

i |4

Backjumping from\~ to V; is fine. However we shouldn’t then just backjump to
V5, because changing; could fix the problem at~.

197

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variable;
Ve
Vs

Vi
Leaf dead-end
Is.

Given an instantiatior, andV/. , , if there is no consistent ¢ 1), we call/; a
andV,..; a

198

Graph-based backjumping

Also

Internal dead-end

L. 2?7 Internal dead-end variablg
Leaf dead-end '

Is.

If V. was backtracked to from a later leaf dead-end and there ameon® values
to try for I; then we refer to it as am and call/;, | an

199

Graph-based backjumping

To keep track of exactly where to jump to we also need the diefirs:

e The of a variablel” begins when the search algorithm visits it and ends
when it backtracks through it to an earlier variable.

e The of a variablel is the set of all variables visiting during its
session.

e In particular, the current session for anycontains)’.
e The [91V') for a variablel” are:

1. R(V)is initialized to{V'} whenV is first visited.
2. If V is a leaf dead-end variable thén) = {17}.
3. If V was backtracked to from a dead-endthen2(V') = R(V) U R(V').

And we're not done yet...

200

Graph-based backjumping

Example:

Session of/; = {V7}. -
R(V) = (V1) AN
Session start:
\! Session oV = {Vy, V5, Vs, V7).
Session start R(Vy) = {Vi, V7}

As expected, the relevant dead-endsifoare{V,} and{V%}.

201

Graph-based backjumping

One more bunch of definitions before the pain stops. 1Say a dead-end:
e Theinduced ancestormd(V},) of V, are defined as
ind(Vy,) = {V1, V2, ..., Vi N U ancestor§/)
VeR(V;)
e Theculprit for 1/, is the most recent” € ind(V},).

Note that these definitions depend Gn,).
FINALLY: graph-based backjumpirigackjumps to the culprit

202

Graph-based backjumping

Example:

Backjump fromV;
toVi.

. Session oV, = {Vi, Vi, Vi, V5 }.
Nothing left to try! R(V,) = {V4, vz}

ind(V,) = {Va, Va}

As expected, we back jump 19 instead ofl,. Hooray!

Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping carobeéinecto produce
conflict-directed backjumping

We will not explore conflict-directed backjumping in thisuzee.

For considerable further detail on algorithms for CSPs see:

“Constraint Processing,” Rina Dechter. Morgan Kaufman©(3.

204

Varieties of CSP

We have only looked at CSPs with
We could also consider:

sThese are the simplest.

1. Discrete CSPs with
e We need a cFor example
Vs < Vig+5
¢ Algorithms are available for integer variables and lineamstraints.
e Thereis for integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints definimyewregions we have
2 This is solvable in polynomial time in.

3. We can introduce in addition to i
and in some cases aii

205

Artificial Intelligence |

Notes on

Copyright(©) Sean Holden 2002-2013.

206

Knowledge representation and reasoning using FOL

We now look at how an agent migh knowledge about its environment
using first order logic (FOL), and with this knowledge to achieve its goals.

e To show how FOL can be usedita about an environment in

the form of both and

e To show how this knowledge can be usedito
about the environment usingla

e To introduce the: and demonstrate its application in a simple
environment as a means by which an agent can work out whatnexto

207

Interesting reading

Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subjectamt be covered in
full in the lectures.

In particular:

e Techniques for representirig

e Techniques for moving beyond the idea cfia
e Reasoning systems basedari

e Reasoning systems using

Happy reading :-)

208

Knowledge representation and reasoning

Earlier in the course we looked at what anenishould be able to do.

It seems that all of us—and all intelligent agents—shoulellug
to help us interact successfully with the world.

Any intelligent agent should:

e Possess about the and about

e Use some form of to its knowledge as
arrive.

e Use some form of to to perform in order to
achieve

209

Knowledge representation and reasoning

This raises some important questions:

¢ How do we describe the current state of the world?

e How do we infer from our percepts, knowledge of unseen pditiseoworld?
e How does the world change as time passes?

e How does the world stay the same as time passes?f(dimne 0)

e How do we know the effects of our actions? (Tine and

)

We'll now look at one way of answering some of these questions

210

Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to reqethe required
kinds of knowledge:

oltis =anything you can program can be expressed.

o ltis

e ltis

e It can be adapted to

e It has an ;ealthough a semidecidable one.

In addition is has a well-definex! and

211

Logic for knowledge representation

it's quite easy to talk about things like using FOL. For exam-
ple, we can easily write axioms like
VS .VS . (Vx. (zeSexels)=S5=9)

But how would we go about representing the propositionithat
?

More importantly, how could this be represented within aevittamework for
reasoning about the world?

It's time to introduce my friend]

212

Wumpus world

As a simple test scenario for a knowledge-based agent wenaille use of the

g O
QO

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out again un-

scathed.

213

Wumpus world

The rules of

o Unfortunately the cave contains a number of pits, whigliL ROBOT can
fall into. Eventually his batteries will fail, and that'setend of him.
e The cave also contains the Wumpus, who is armed with statieeoft

e The Wumpus itself knows where the pits are and never falisdnge.

214

Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the follgwin

¢ In a position adjacent to the Wumpus, a stench is perceivdimpuses are

famed for their 1)
¢ In a position adjacent to a pit,la is perceived.
e In the position where the gold is, a ' is perceived.

e On trying to move into a wall, a is perceived.
¢ On killing the Wumpus a is perceived.

In addition,EVIL ROBOT has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following doesiotinclude diagonals.

215

Wumpus world

So we have:
stench, breeze,glitter,bunp,scream
forward,turnLeft,turnRi ght,grab,rel ease,shoot,clinb.

Of course, our aim now isot just to design an agent that can perform well in a
single cave layout.

We want to design an agent that can perform well of the layout
of the cave.

216

Some nomenclature

The choice of knowledge representation language tendstbtéetwo important
commitments:

. twhat does the world consist of?

° 1iwhat are the allowable states of knowledge?
Propositional logic is useful for introducing some fundauad ideas, but its on-

tological commitment—that the world consists of facts—stimes makes it too
limited for further use.

FOL has a different ontological commitment—the world cstsbf 3
and

217

Logic for knowledge representation

The fundamental aim is to construcka KB containing &
about the world—expressed in FOL—such that
from it.
Our central aim is to generate sentences thatrarg if KB

This process is based on concepts familiar from your intctahy logic courses:

¢ Entailment:kB = « means that theB entailsa.

e Proof: KB -, « means that is derived from thexB usingi. If 7 is then
we have g

eiis if it can generate only entailed.
e s if it can find a proof foranyentailedq.

218

Example: Prolog

You have by now learned a little about programminginlog. For example:

concat ([],L,L).
concat ([H T],L,[H L2]) :- concat(T,L,L2).

is a program to concatenate two lists. The query
concat([1,2,3],[4,5],X).
results in

X=1[1, 2, 3, 4, 5].

What's happening here? Well, Prolog is justia S0...

219

Example: Prolog
... we are in fact doing inference fronka:

e The Prolog programme itself is thes. It expresses some

e The query is expressed in such a way asda

How does this relate to full FOL? First of all the list notatiis nothing but
. It can be removed: we define a constant catleght y and a function
calledcons.

Now|[1, 2, 3] justmeanscons(1, cons(2, cons(3, enpty)))) which
is atermin FOL.

220

Prolog and FOL

The program when expressed in FOL, says

Vx.concat (enpty,z,x)A
Vh,t,ly,ls.concat (t,l1,ls) = concat (cons(h,t),l;,cons(h,ls))

The rule is simple—given a Prolog program:

e Universally quantify all the unbound variables in each lofeéhe progranand

e ... form the conjunction of the results

If the universally quantified lines are,, .., . . ., L, then the Prolog programme
corresponds to thieB
KB=LiALyA---NL,

Now, what does the query mean?

221

Prolog and FOL

When you give the query

concat([1,2,3],[4,5],X).

to Prolog it responds biyying to provethe following statement
KB =— Jx.concat ([1,2,3],[4,5], z)

So: it tries to prove that th&B implies the queryand variables in the query are
existentially quantified.

When a proof is found, it supplies\alue forz thatmakes the inference true

222

Prolog and FOL
Prolog differs from FOL in that, amongst other things:

e It restricts you to usinglorn clauses
e Its inference procedure is nofial-blown proof procedure

e |t does not deal witthegationcorrectly.

Howeverthe central idea also works for full-blown theorem provers

If you want to experiment, you can obtaiiover9from
http://ww. cs. unm edu/ ~nccune/ mace4/

We'll see a brief example now, and a more extensive examjits oée later, time
permitting...

223

Prolog and FOL

Expressed in Prover9, the above Prolog program and quekyilaothis:

set (prol og_styl e_vari abl es) .

% This is the translated Prolog programfor |ist concatenation.
% Prover9 has its own syntactic sugar for lists.

f ornul as(assunptions).
concat ([], L, L).
concat (T, L, L2) -> concat([H T], L, [HL2]).
end_of _|ist.
% This is the query.
formul as(goal s).

exists X concat([1, 2, 3], [4, 5], X).
end_of _|ist.

Note:itis assumed thatnbound variables are universally quantified

224

Prolog and FOL

You can try to infer a proof using

prover9 -f file.in
and the result is (in addition to a lot of other information):
concat (T, L,L2) -> concat([H: T],L,[H L2]) # |abel (non_clause). [assunption].

concat([],A A). [assunption].

-concat (A, B, C) | concat([D:A,B [DC). [clausify(1)].
-concat([1,2,3],[4,5],A). [deny(2)].

concat ([A],B,[A'B]). [ur(4,a3,a)].
-concat([2,3],[4,5],A). [resolve(5,a,4,b)].
concat([A B],C [A B:C]). [ur(4,a6,a)].

$F. [resolve(8,a,7,a)].

©0O~NOOODWNPR

This shows that a proof is found but doesn’t explicitly giveadue for X—we’ll
see how to extract that later...

225

(exists X concat([1,2,3],[4,5],X)) # |abel (non_clause) # |abel (goal). [goal].

The fundamental idea

So the is: build akB that encodes Jthe
and so on.

TheKB is a conjunction of pieces of knowledge, such that:

e A query regarding what our agent should cto

dJactionList .Goal (... actionList ...)

e Proving that
KB = dJactionList .Goal (... actionList ...)

instantiatesact i onLi st to an that will achieve a goal

represented by th€oal predicate.

We sometimes use the notatieak andtell to refer to and
KB.

226

Using FOL in Al: the triumphant return of the Wumpus

We want to be able te about the past and aboui .sS0:

O O
s
QO

Evil Robot @

e We include in the logical language used by ous.
e We include in our KB that relate to situations.

This gives rise tc

227

Situation calculus
In

e The world consists of sequencessof
e Over time, an agent moves from one situation to another.
e Situations are changed as a resultof

In Wumpus World the actions aréor war d, shoot ,gr ab, cl i nb, rel ease,
turnRi ght,turnLeft.

o A is added to items that can change over time. For example
At(location s)
Items that can change over time are called

e A situation argument is not needed for things that don't geanThese are
sometimes referred to as or

228

Representing change as a result of actions

Situation calculus uses a function
resulfacti on,s)

to denote the@ewsituation arising as a result of performing the specifietbadh
the specified situation.

resul{grab, sy) = s;
resulfturnlLeft, s;) = s9
resultshoot, s9) = s3
resul{forward, s3) = s4

229

Axioms |: possibility axioms

The first kind of axiom we need in & specifieswhen particular actions are
possible

We introduce a predicate
Possact i on,s)

denoting that an action can be performed in situation
We then need agossibility axionfor each action. For example:
At(l, s) A Availablegol d, [, s) = Possgrab, s)

Remember thatnbound variables are universally quantified

230

Axioms |l: effect axioms

Given that an action results in a new situation, we can intce@¢fect axiomto
specify the properties of the new situation.

For example, to keep track of whetheYIL ROBOT has the gold we needfect
axiomsto describe the effect of picking it up:

Possggrab, s) = Havegol d, resultgrab, s))
Effect axioms describe the way in which the worlthnges
We would probably also include
—Havegol d, sg)
in thekB, wheres is thestarting state

Important we are describingvhat is truein the situation that resultérom per-
forming an actiorin agiven situation

231

Axioms lll: frame axioms

We needrame axiomdo describehe way in which the world stays the same
Example:

Haveo, s) A
—(a = release ANo=gol d) A —(a = shoot Ao =arrow)
= Havgo, resulia, s))

describes the effect ¢faving something and not discarding it
In a more general setting such an axiom might well look d#ffer For example

—Haveo, s) A
(a # grab(o) vV —(Availablelo, s) A Portabléo)))
= —Have(o,resulia, s))

describes the effect ofot having something and not picking it.up

232

The frame problem

Theframe problerhas historically been a major issue.

Representational frame problera large number of frame axioms are required to
represent the many things in the world which will not changéhe result of an
action.

We will see how to solve this in a moment.

Inferential frame problemwhen reasoning about a sequence of situations, all the
unchanged properties still need to be carried through alstaps.

This can be alleviated usinganning systemthat allow us to reason efficiently
when actions change only a small part of the world. Therelaceagher remedies,
which we will not cover.

233

Successor-state axioms

Effect axioms and frame axioms can be combined intocessor-state axioms
One is needed for each predicate that can change over time.

Action a is possible=
(true in new situation<—=-
(you did something to make it true
it was already true and you didn’t make it false

For example

Possa, s) =
(Havgo, resulfa, s)) <= ((a = grab A Available(o,s) Vv
(Havgo,s) A —(a =release A o=gol d) A

—(a = shoot A o=arrow))))

234

Knowing where you are

If sy is the initial situation we know that
At((1,1), s0)

I am assumindghat we've added axioms allowing us to deal with the numbéos
5 and pairs of such numberg:xercise: do this.)

We need to keep track of what way we’re facing. Say north suth is2, east is
I and west is}.
facinq,m =0

We need to know how motion affects location
forwardResult(x, y),nort h) = (z,y + 1)

forwardResulf(z,y),east) = (z + 1,y)

and
At(l, s) = goForwards) = forwardResul, facing s))

235

Knowing where you are

The concept of adjacency is very important in the Wumpusadvorl
Adjacently, ls) <= 3d forwardResultl,,d) = I,
We also know that the cave isby 1 and surrounded by walls

WallHerg(z,y)) <= (x=0Vy=0Vz=5Vy=25)

It is only possible to change location by moving, and thigyambrks if you're not
facing awall. So...

...we need a successor-state axiom:
Possa, s) =
At(l, resul{a, s)) < (I = goForwards)
A a = forward
A —WallHergl))
V (At(l,s) A a # forward)

236

Knowing where you are

It is only possible to change orientation by turning. Agaim, need a successor-
state axiom
Possa, s) —
facingresulta, s)) = d <
(a = turnRight A d = modfacing(s) + 1,4))
V (a = turnleft A d = modfacings) — 1,4))

V (facing(s) = d A a # turnRight A a # turnLeft)

and so on...

237

The qualification and ramification problems

Qualification problernwe are in general never completely certain what conditions
are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are oradtfrom axioms.

Ramification problemactions tend to have implicit consequences that are large i
number.

For example, if | pick up a sandwich in a dodgy sandwich shopilllalso be
picking up all the bugs that live in it. | don’t want to modeldtexplicitly.

238

Solving the ramification problem

The ramification problem can be solved iy difying successor-state axioms
For example:
Poséa, s) =
(At(o,l, resulta, s)) <~
(a=go(l',]) A
[o =robot Vv Hagrobot ,o,s)])V
(At(o,1,s) A
(31" a=go(l,I") A L#I"A
{o =robot vV Hagrobot o, s)}]))

describes the fact that anythifgy|L ROBOT is carrying moves around with him.

239

Deducing properties of the world: causal rules

If you know where you are, then you can think abplitcesrather than justitu-
ations

Synchronic ruleselate properties shared by a single state of the world.

There are two kindszausalanddiagnostic

Causal rules some properties of the world will produce percepts.
WumpusAti,) A Adjacently, ;) = StenchAtl,)

PitAt(l,) A Adjacently, l,) = BreezeAtl,)
Systems reasoning with such rules are knowmasel-basetdeasoning systems.

240

Deducing properties of the world: diagnostic rules

Diagnostic rulesinfer properties of the world from percepts.
For example:
At(l, s) N Breezeés) —> BreezeAtl)
At(l,s) A St ench(s) = St enchAt (/)
These may not be very strong.
The difference between model-based and diagnostic reasoan be important.

For example, medical diagnosis can be done based on sympiobased on a
model of disease.

241

General axioms for situations and objects

Note in FOL, if we have two constantsobot andgol d then an interpretation
is free to assign them to be the same thing.

This is not something we want to allow.

Unique names axiorrstate that each pair of distinct items in our model of the

world must be different
robot #gol d

robot #arrow
robot # wunpus

wunpus # gol d

242

General axioms for situations and objects

Unigque actions axiomstate that actions must share this property, so for each pair

of actions
go(l,1") # grab
go(l,1") # dr op(o)

dr op(o) # shoot
and in addition we need to define equality for actions, so &mheaction

go(l,I'y =go(I"l") = 1=1"ANI'"=1"
drop(o) =drop(d) < o=0

243

General axioms for situations and objects

The situations arerderedso
so # resulta, s)
and situations areistinctso
resulfa, s) =resulfd’,s') <= a=d Ns=5
Strictly speaking we should be usingraany-sortedrersion of FOL.

In such a system variables can be divided imioiswhich are implicitly separate
from one another.

244

The start state

Finally, we're going to need to specifyhat’s true in the start state

For example
At(r obot . [1, 1], so)
At(wurpus, [3, 4], so)
Hagr obot ,arr ow, sg)
and so on.

245

Sequences of situations

We know that the functiomesulttells us about the situation resulting from per-
forming an action in an earlier situation.

How can this help us findequences of actions to get things d@ne

Define
Sequencg], s,s’) = s = s
Sequencgal, s, s') = Possa, s) A s’ = resulta, s)
Sequencg :: as, s, s') = 3t . Sequencgal, s,t) A Sequencgis, t, s)

To obtain asequence of actions that achiev@eal s) we can use the query

Ja ds . Sequencg, sy, s) A Goal s)

246

Knowledge representation and reasoning

It should be clear that generating sequences of actionsfbyeimce in FOL is
highly non-trivial.

Ideally we'd like to maintain amxpressivdanguage whileestrictingit enough to
be able to do inferencefficiently

Further aims
e To give a brief introduction tesemantic networkandframesfor knowledge
representation.
e To see hownheritancecan be applied as a reasoning method.
e To look at the use ofulesfor knowledge representation, along witivward
chainingandbackward chainindor reasoning.

Further reading The Essence of Artificial IntelligencAlison Cawsey. Prentice
Hall, 1998.

247

Frames and semantic networks

Frames and semantic networks represent knowledge in thredbclasses of ob-
jectsandrelationships between them

e Thesubclasandinstancerelationships are emphasised.

e We formclass hierarchiein which inheritanceis supported and provides the
maininference mechanism

As aresult inference is quite limited.
We also need to be extremely careful absainantics

The only major difference between the two ideasdsational

248

Example of a semantic network

Frames

Frames once again support inheritance througts the

Rock musician .
Musician

subclass: Musician subclass: Person
has: ear problems has: instrument
hairlength: long
volume: loud

has, hai r| engt h, vol une etcare

| ong, | oud,i nstrunent etcare

These are a direct predecessopbf

249 250
Defaults Multiple inheritance
Both approaches to knowledge representation are abledgpoate Both approaches can incorporate ¢at a cost:

Rock musician . .
Dementia Evilperson

subf:lass: Musician subclass: Rock musiciar)
has: ear problems hairlength: short
* hairlength: long image: gothic

*volume: loud

Starred slots are associated with subclasses and instances;dut

251

Rock musician Classical musician

instance instance

Cornelius Cleverchap,

e What ishai r | engt h for Cor nel i us if we're trying to use inheritance to
establish it?

e This can be overcome initially by specifying which classnkérited from
when there’s a conflict.

e But the problem is still not entirely solved—what if we waatgrefer inheri-
tance of some things from one class, but inheritance of stinem a different
one?

252

Other issues

e Slots and slot values can themselves be frames. For exampient i a may
have an instrument slot with the valG& ect ri ¢ har p, which itself may
have properties described in a frame.

e Slots can have :sFor example, we might specify thatst r ument
can have multiple values, that each value can only be amiosttl nst r unent ,
that each value has a slot calledned by and so on.

e Slots may contain arbitrary pieces of program. This is knasn

it The fragment might be executed to return the slot’s value, o
update the values in other sl

253

Rule-based systems

A rule-based system requires three things:

1. Asetof . These denote specific pieces of knowledge about the
world.

They should be interpreted similarly to logical implicatio

Such rules denote or
stances.

under given circum-
2. A collection of denoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the ligihthe current facts.

254

Forward chaining

The first of two basic kinds of interpretér

Thisis a process. Itis appropriate if we know the but not
the required conclusion.

Example: XCON—used for configuring VAX computers.
In addition:

¢ We maintain & ytypically of what has been inferred so far.

¢ Rules are often swhere the right-hand side specifies an
action such as adding or removing something from working orgnprinting
a messagetc

e In some cases actions might be entire program fragments.

255

Forward chaining
The basic algorithm is:

1. Find all the rules that can fire, based on the current wgrkiemory.
2. Select a rule to fire. This requiresa

3. Carry out the action specified, possibly updating the wagrknemory.

Repeat this process until either or a appears in the work-
ing memory.

256

Example

Condition—action rules

dry_mouth —> ADD thirsty
thirsty => ADD get_drink
get_drink AND no_work —> ADD go_bar

working —> ADD no_work
no_work —> DELETE working

Working memory Interpreter

dry_mouth
working

257

Example
Progress is as follows:

1. Therule
dry nouth = ADD thirsty

fires adding hi r st y to working memory.

2. Therule
thirsty = ADD get dri nk

fires addingyet dri nk to working memory.

3. The rule
wor ki ng = ADD no wor k

fires addingho wor k to working memory.

4. The rule
get dri nk AND no wor k = ADD go bar

fires, and we establish that it's time to go to the bar.

258

Conflict resolution

Clearly in any more realistic system we expect to have to déthl a scenario
wheretwo or more rules can be fired at any one time

e Which rule we choose can clearly affect the outcome.

e We might also want to attempt to avoid inferring an abundafagseless in-
formation.

We therefore need a meansrefolving such conflicis

259

Conflict resolution

Commonconflict resolution strategicare:

e Prefer rules involving more recently added facts.
e Prefer rules that areiore specificFor example
pati ent _coughi ng = ADD | ung_pr obl em
is more general than
pati ent coughi ng AND pati ent snmoker = ADD | ung _cancer .
This allows us to define exceptions to general rules.
o Allow the designer of the rules to specify priorities.

e Fire all rulessimultaneousk~this essentially involves following all chains of
inference at once.

260

Reason maintenance

Some systems will allow information to be removed from thekireg memory if
it is no longerjustified

For example, we might find that
pati ent _coughi ng

and
pati ent snoker

are in working memory, and hence fire
pati ent coughi ng AND pati ent snmoker —> ADD | ung cancer

but later infer something that causest | ent _coughi ng to bewithdrawnfrom
working memory.

The justification forl ung cancer has been removed, and so it should perhaps
be removed also.

261

Pattern matching
In general rules may be expressed in a slightly more flexie finvolving vari-
ableswhich can work in conjunction withattern matching
For example the rule
coughs(X) AND snoker (X) = ADD | ung cancer (X)
contains the variable’.
If the working memory containsoughs (neddy) andsnoker (neddy) then
X = neddy

provides a match and
| ung cancer (neddy)

is added to the working memaory.

262

Backward chaining

The second basic kind of interpreter begins witival and finds a rule that would
achieve it.

It then worksbackwards trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of ditions.

This is agoal-drivenprocess. If you want teest a hypothesier you have some
idea of a likely conclusion it can be more efficient than fordvehaining.

263

Example

Working memory

¢

Goal
To establistgo_bar we have to

dry_mout h
907bar
ggt dri establistget _dr i nk andno_wor k.
_ These are the new goals.

Try first to establistget _dr i nk. This
can be done by establishitdi rsty.

59:
—=
>
=

thi
no.\

53
-
T<

t hi r sty can be established by establishing

g:)y‘gn"““‘ har y_nout h. This is in the working memory
_ so we're done.

=~

Finally, we can establisho_wor k by
establishingvor ki ng. This is in the working
memory so the process has finished.

:

wor ki ng

264

If at some point more than one rule has the required coneiubien we cari

Example:

Example with backtracking

backtracks, and incorporates pattern matching. It orders a
tempts according to the order in which rules appear in thgrara.

Example: having added

and

up early =— ADDtired

tired AND | azy = ADD go bar

to the rules, andp ear | y to the working memory:

265

Example with backtracking

Working memory Goal

dry_nout h
wor ki ng
upearly

Attempt to establisiyo_bar
by establishing i r ed and
| azy.

get _dri nk
no_wor k

This can be done by establishing

up-early |up_earlyandl azy. thirsty
I'azy up_ear | y is in the working memory | N0-work Process proceeds as before

so we're done.

We can not establisgazy

dry_nmout h|
and so we backtrack and try a
different approach.

wor ki ng

H

266

Artificial Intelligence |

Notes on

Copyright(© Sean Holden 2002-2013.

267

Problem solving is different to planning

In we:

° cand a state representation contains that's relevant
about the environment.

° 19y describing a new state obtained from a current state.

° isall we know is how to test a state either to see if it's a goal,
or using a heuristic.

. 1rbut we only consides

Search algorithms are good for solving problems that fitftaimework. However
for more complex problems they may fail completely...

268

Problem solving is different to planning

Representing a problem such &g is hopeless:

e There are at each step.

e A heuristic can only help you rank states. In particular iesimot help you
useless actions.

e We are forced to start at the initial state, but you have tokveot
s—that is, go to town and buy them, get online and find a web kée t
sells piesetc—

Knowledge representation and reasoning might not helgeitdthough we end
up with a sequence of actions—a plan—there is so much fléyitilat complex-
ity might well become an issue.

269

Introduction to planning

We now look at how an agent migni enabling it to achieve a goal.

e To look at how we might update our conceptof
to apply more specifically to planning tasks.

e To look in detail at the basic

) Russell and Norvig, chapter 11.

270

Planning algorithms work differently

¢ Planning algorithms uses geoften based on FOL or
a subset— to represent states, goals, and actions.

e States and goals are described by sentences, as might loeesk dmit...
e ...actions are described by stating their and their

So if you know the goal includes (maybe among other things)
Havepi e)

and actiorBuy(x) has an effectiave) then you know that a plam
Buy(pi e)

might be reasonable.

271

Planning algorithms work differently

e Planners can add actionszt
, not just at the end of a sequence starting at the start state.

e This makes sense: | may determine that/g car Keys) is a good state to be
in without worrying about what happens before or after figdimem.

e By making an important decision like requirifigave car Keys) early on we
may reduce branching and backtracking.

e State descriptions are not completetavgcar Keys) describes a
s—and this adds flexibility.

1 you have the potential to search ba@ih and within the same
problem.

272

Planning algorithms work differently

It is assumed that most elements of the environmentaks

e A goal including several requirements can be attacked wditiide-and-conquer
approach.

e Each individual requirement can be fulfilled using a subplan

e ...and the subplans then combined.

This works provided there is not significant interactionvzsn the subplans.

Remember: thé

273

Running example: gorilla-based mischief

We will use the following simple example problem, which asdxhon a similar
one due to Russell and Norvig.

The intrepid little scamps in the
wish to attach an to the spire of & 2To do this
they need to leave home and obtain:

. 1 these can be purchased from all good joke shops.
° ravailable from a hardware store.
° . also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning their ?

274

The STRIPS language

STRIPS: (1970).

s are of ; They must not includé

At(home) A —Haveggori | | a)
A ~Haver ope)
A —Haveki t)
; are of where variables are assumed

At(xz) A Sell§z,gorill a)

A planner finds a sequence of actions that when performed srtakegoal true.
We are no longer employing a full theorem-prover.

275

The STRIPS language

STRIPS represents actions using s For example
At(z), Pathz, y)
Go(y)
At(y), ~At(z)

Op(Action: Galy), Pre: Atz) A Pathz, y), Effect: At(y) A —At(z))
All variables are implicitly universally quantified. An ogor has:

e An nwhat the action does.
o A 1 what must be true before the operator can be usedorA

e An t what is true after the operator has been usedcoA

276

The space of plans

We now make a change in perspective—we sear¢hisn

e Start with an

. to obtain new plans. Incomplete plans are calied
add constraints to a partial plan. All other operators are
called

e Continue until we obtain a plan that solves the problem.
Operations on plans can be:

.
.

° that places a step in front of another.
e and so on...

277

Representing a plan: partial order planners

When putting on your shoes and socks:

olt whether you deal with your left or right foot first.

olt that you place a sock dn a shoe, for any given foot.
It makes sense in constructing a plam to make any to which side
is done first

nido not commit to any specific choices until you
have to. This can be applied both to ordering and to instéotiaf variables. A
allows plans to specify that some steps must come before
others but others have no ordering. /A of such a plan imposes a
specific sequence on the actions therein.

278

Representing a plan: partial order planners

A plan consists of:

1. Aset{5), 5, ..., S, } of s Each of these is one of the available

2. Aset of sAn ordering constraint; < 5; denotes the fact
that stepS; must happen before step. S, < S; < S, and so on has the
obvious meaning.5; < S; doesnot mean thatS, must precede
S

-
3. A set of variable bindings = = whereuv is a variable and is either a variable
or a constant.

4. A set of or S, -+ 5. This denotes the fact
that the purpose of; is to achieve the preconditionfor 5.

A causal link is paired with an equivalent ordering constraint.

279

Representing a plan: partial order planners

The has:

e Two steps, calledtartandFinish

¢ a single ordering constraiftiart< Finish
e NoO

e NoO

In addition to this:

e The stepStart has no preconditions, and its effect is the start state fer th
problem.

e The step-inishhas no effect, and its precondition is the goal.

e NeitherStartor Finishhas an associated action.

We now need to consider what constitutesa

280

Solutions to planning problems

A solution to a planning problem is any and partially ordered
plan.

= each precondition of each stepsis by another step in the solu-
tion.

A preconditionc for S is achieved by a step' if:

1. The precondition is an effect of the step
S’ < S andc € Effectd.S’)
and...

2. ... there is step that cancel the precondition. That is, rid
exists where:

e The existing ordering constraints allow to occur S" but S.
e —¢ € Effecty5”) .

281

Solutions to planning problems

it no contradictions exist in the binding constraints or ia gfroposed
ordering. That is:

1. For binding constraints, we never have X andv = Y for distinct constants
X andY'.

2. For the ordering, we never have< 5" andS’ < 5.
Returning to the roof-climber’s shopping expedition, hierthe basic approach:

e Begin with only theSt ar t andFi ni sh steps in the plan.
e At each stage add a new step.
e Always add a new step such thatca

e Backtrack when necessary.

282

An example of partial-order planning

Here is the

Start

At (Home) A Sel | s(JS, Q|ASel I s(HS, R) A Sel | s(HS, FA)

At (Home) A Have(G A Have(R) AHave(FA)

Fi ni sh

Thin arrows denote ordering.

283

An example of partial-order planning

There are
At (x) At (x),Sel | s(z,y)
Go(y) Buy (y)
At (y), oAt (z) Have(y)

A planner might begin, for example, by addingay(G) action in order to achieve
theHave G) precondition of~inish

: the following order of events is by no means the only onelalbe to a
planner.

It has been chosen for illustrative purposes.

284

An example of partial-order planning

Incorporating the suggested step into the plan:

Start

At (Home) , Sel 1 s(JS, @ ,Sel | s(HS, R) . Sel | s(HS, FA)
At (z).Sel I s(z,0)

Buy(Q

At (Hone) ,Have(G ,Have(R),Have(FA)

Fi ni sh

Thick arrows denote causal links. They always have a thmwatmderneath.

Here the nevBuy step achieves theave G) precondition of-inish

285

An example of partial-order planning

The planner can now introduce a second causal link fegartto achieve the
Selldx, G) precondition ofBuy(G).

Start

At (Home) , Sel 1's(JS, O\Sel | s(HS, R) . Sel | s(HS, FA)

At (JS),Sel 1s(JS,

Buy(Q

At (Hone) ,Have(G),Have(R),Have(FA)

Fini sh

286

An example of partial-order planning

The planner’s next obvious move is to introduc&astep to achieve that(JS)
precondition ofBuy(G).

Start

At (2) At (Home) , Sel 1 s(JS, §,Sel | s(HS, R). Sel | s(HS, FA)

Go(J9)

At (JS).Sel1s(JS, 0

Buy(Q

!

At (Horne) ,Have(G ,Have(R),Have(FA)

Fi ni sh

And we continue...

287

An example of partial-order planning

Initially the planner can continue quite easily in this mann

e Add a causal link fron©tartto Go(J S) to achieve thé\t() precondition.

e Add the stepBuy(R) with an associated causal link to thiewve R) precondi-
tion of Finish

e Add a causal link fronStartto Buy(R) to achieve thesellSHS, R) precondi-
tion.

But then things get more interesting...

288

An example of partial-order planning

Start

At (Horre) At (Horre) ,Sel | s(JS\G , Se

Go(J9)

At (JS).Sel1s(3S, G

Buy(Q

, R).Sel | s(HS, FA)

At (HS),Sel Ts(HS, R)

Buy(R)

At (Horre) .Havge) ,MVW

Fi ni sh

At this point it starts to get tricky...
TheAt(HS) precondition inBuy(R) is not achieved.

289

An example of partial-order planning

Start
l At (z)
At (Horre) At (Hone) , Sel 1's(JS, §), Se . R),Sel | s(HS, FA)
Go(HS)
Go(JS)
—At (z)
At (JS),Sel 1s(JS, G Sel I s(HS, R) , At (HS)
Buy (G Buy(R)

=

At (Horre) ,Have(G) ,Have(R) ,Have(FA)

Fi ni sh

TheAt(HS) precondition is easy to achievel
Startto Go(HS) Go(JS).

290

An example of partial-order planning

A step that might invalidate (sometimes the waid
ously achieved precondition is calledia

- o) —C
. Demotiol

. / ¢

/ Threat

~/ ~

is employed) a previ-

\Iiromotio
e

A planner can try to fix a threat by introducing an orderingstosmint.

291

An example of partial-order planning

The planner could backtrack and try to achieve Alier) precondition using the
existingGo(JS) step.

Start

At (JS)

At (Hore At (Hore) , Sel | 5(JS,KSEWI s(HS, FA)
| CGO(HS)

-l

Go(J9) -
\ — / —At (JS)

AL(39).Sel 1SS, 6 gel|s(HS, R),At(HS)

Buy(Q [Buy(R)

/

At (Horre) ,Have(G) ,Have(R) ,Have(FA)

Fi ni sh

This involves a threat, but one that can be fixed using pramoti

292

The algorithm

Simplifying slightly to the case where there are
Say we have a partially completed plan and a set of the prétmmsithat have
yet to be achieved.
e Select a precondition that has not yet been achieved and is associated with
an action/’s.

e At each stage

The algorithm
This works as follows:

e For i

—Add Start< A, A < Finish, A < 1 and the causal linkl > B to the plan.
— If the resulting plan is consistent we're done, otherwjse
by promotion or demotion ankd

) .) At this stage:
e To expand a plan, we can try to achieve by using an action that'’s

already in the plan or by adding a new action to the plan. Imegitase, call e If you have then

the actionA.
We then try to construct consistent plans wherachieves.

293 294
The algorithm Possible threats

But how do we try ta 2 What about dealing with ?

When you attempt to achieveusing A:

e Find all the existing causal links’ — 3’ that are by A.

e For each of those you can try adding< A’ or B’ < A to the plan.

e Find all existing actions’ in the plan that clobber the=wcausal link4 > 7.
e For each of those you can try adding< A or B < (' to the plan.

e Generate in this way and retain any consistent
plans that result.

295

If at any stage an effectAt(x) appears, is it a threat toi(JS)?
Such an occurrence is callega and we can deal with it by introduc-
ing sin this caser # JS.
e Each partially complete plan now has a seif inequality constraints associ-
ated with it.

¢ An inequality constraint has the form-# X wherev is a variable and(is a
variable or a constant.

e Whenever we try to make a substitution we chédo make sure we won't
introduce a conflict.

If we introduce a conflict then we discard the partially complgitth as
inconsistent.

296

Artificial Intelligence |

Notes on

Copyright(© Sean Holden 2002-2013.

297

Did you heed the DIRE WARNING?

lesuggested making sure you can answer the fol-
lowing two questions:

1. Let

i=1
where the:; are constants. Computg /0 ; wherel < j < n?
As
flxy, ... r,) = (11.I‘f + e+ (zv/'.z'jf R (1,,.1",’)/
only one term in the sum depends op so all the other terms differentiate to
give 0 and
af .

2a;x
Ox; '

298

Did you heed the DIRE WARNING?

2. Letf(xy,...,: r,) be a function. Now assume = ¢;(y1, ..., y,,) for eachuz;
and some collection of functions. Assuming all requirements for differentia-
bility and so on are met, can you write down an expressionfoly, where
1<j5<m?

this is just the for partial differentiation
af "\ Of g
Ay ZT‘ dg; y;

299

Supervised learning with neural networks

We now look at how an agent miglgarn to solve a general problem by seeing

e To present an outline cf as part of Al.
e To introduce much of the notation and terminology used.
¢ To introduce the classical

e To introduce and the for
training them.

) Russell and Norvig chapter 20.

300

An example

A common source of problems in Al is

Imagine that we want to automate the diagnosis ofarbarrassing Diseageall
it) by constructing a machine:

Measurementgaken from the) 1 if the patient suffers fronD
patient: heart rate, blood pressure, ———=={ Machine " 0 otherwise
presence of green spatc

Could we do this by that examines the measurements

and outputs a diagnosis?

Experience suggests that this is unlikely.

301

An example, continued...

An alternative approach: each collection of measuremestsbe written as a

vector,
Xl = (Tl Ty ++ Iy)
where,

r1 = heart rate

x9 = blood pressure

x3 = 1if the patient has green spots
0 otherwise

and so on

(! it's a common convention that vectors are by default. This
is why the above is written asta 9

302

An example, continued...

A vector of this kind contains all the measurements for alsipgtient and is
called a or

The measurements axné or

Attributes or features generally appear as one of three bgses:

° Sz; € [Tmin, Tmay WHErezmin, Tmax € R.
. ra; € {0,1} orz; € {—1,+1}.
° 2 1; can take one of a finite number of values, say { X, X,}.

303

An example, continued...

Now imagine that we have a large collection of patient histo(in total) and
for each of these we know whether or not the patient suffenad).

e Theth patient history gives us an instance

e This can be paired with a single bit>-er I—denoting whether or not thih
patient suffers from>). The resulting pair is called an or a

e Collecting all the examples together we obtairza

s = ((x1,0), (x2,1),..., (x,,,0))

304

An example, continued...

In supervised machine learning we aim to desigreaning algorithimwhich takes
s and produces gypothesid.

8 —————| Learning Algorithm f— h

Intuitively, a hypothesis is something that lets us diagriasvpatients.
This isIMPORTANT. we want to diagnose patients thiat system has never seen

The ability to do this successfully is callegneralisation

305

An example, continued...

In fact, a hypothesis is justfanctionthat mapsnstancedo labels

Classifier
Attribute vector ————— h(x) [Label

X

As his afunctionit assigns a label tanyx andnot just the ones that were in the
training sequence

What we mean by &bel here depends on whether we're doirigssificationor
regression

306

Supervised learning: classification

In classificatiorwe’re assigningz to one of a sefw;, ..., w.} of ¢ classes

For example, ifc contains measurements taken from a patient then there beght
three classes:

wy = patient has disease
wy = patient doesn’t have disease
w3 = don't ask me buddy, I'm just a computer!

Thebinary case above also fits into this framework, and we’ll often sdise to
the case of two classes, denotedand .

307

Supervised learning: regression

In regressiorwe’re assigning: to areal numberh(x) € R.

For example, ifc contains measurements taken regarding today’s weathenie
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also reea situation somewhat
between the two, where

h(x) = Pr(xisinC)
and so we would typically assignto class”; if 1(x) > 1/2.

308

Summary

We don’t want to design explicitly.

Attribute vector h(x) Label
X

Training sequence
S

Sowe use & L to infer it on the basis of a sequencef

309

Neural networks

There is generally a sét of hypotheses from which is allowed to select
Lis)=heH
H is called the

The learner can output a hypothesis explicitly or—as in tmeof a
—it can output a vector

WI = ((/‘| Wy - - (I'H')
of which in turn specifyn
h(x) = f(w;x)

wherew = L(s).

310

Types of learning

The form of machine learning described is calted

This introduction will concentrate on this kind of learnirlg particular, the liter-
ature also discusses:

1.
2. Learning using and
3.

Some of this further material will be covered in Al 2.

311

Some further examples

.
e Deciding
e Detecting
e Deciding whether td
e Deciding whether a

° 1 extracting interesting but hidden knowledge from exigtiarge
databases. For example, databases contaiting or

e Deciding whether

°) (See Pomerleau, 1989, in which a car is driven for 90
miles at 70 miles per hour, on a public road with other carsgme but with
no assistance from humans.)

312

This is very similar to curve fitting

This process is in fact very similar to

Think of the process as follows:

e Nature picks ar’ € 7/ but doesn’t reveal it to us.
e Nature then shows us a training sequenatere each;; is labelled as/(x;)+
¢; wheree; is noise of some kind.
Our job is to try to infer what)' is 3

This is easy to visualise in one dimensiors

Curve fitting

2 if 7 is the set of all polynomials of degreehen nature might pick
1 , 3 1

!/ . “ 2
V=g 22 00 2
h'(x) :)).1 2.1 + 2 5
/
0.5 /
0.4 /
0.3 // N /
0.2 ~ _ 7
0.1 /
/
0.5 1 1.5 2 2.5 3
/

The line is dashed to emphasise the fact that

313 314
Curve fitting Curve fitting
We can now usé’ to obtain a training sequeneén the manner suggested.. We'll use a L that operates in a reasonable-looking way: it

/

0.5 .
0.4 . '. NA
0.3 ‘/'/ o - /
0.2 L. ~ </
0.1} / .

/

0.5 1 [2 2.5 3
!
Here we have,

ST - ((1l Y1), (x2, (/ﬂ ----- (:'1'///- .{////,,);]

where eachy; andy; is a real number.

315

picks an/ € H minimising the following quantity,

m

FE = Z(/}(\.z’,] — _z//)2
i=1

m

h = L(s) = argmin E (h(x;) — yi)?
heH]

1=

In other words

Why is this sensible?

1. Each term in the sum isif /1(x;) is Vi
2. Each term as the difference betweén,;) andy; increases.

3. We add the terms for all examples.

316

Curve fitting

If we pick /» using this method then we get:

The choseri is close to the targét, even though it was chosering only a small
number of noisy examples

It is not quite identical to the target concept.

However if we were given a new poirt and asked to guess the valuéx’) then
guessing:(x’) might be expected to do quite well.

317

Curve fitting
Problem we don't knowwhat # nature is using What if the one we choose
doesn’t match? We can maker 7 ‘bigger’ by defining it as
‘H = {h : his a polynomial of degree at mas}

If we use the same learning algorithm then we get:

The result in this case is similar to the previous ohés again quite close to’,
but not quite identical.

318

Curve fitting

So what's the problemRepeating the process with,
H = {h : his a polynomial of degree at moks}

gives the following:

In effect, we have madeur 74 too ‘small’. It does not in fact contain any hypoth-
esis similar ta"'.

319

Curve fitting

So we have to mak¥ huge, right? WRONG!'With
H = {h : his a polynomial of degree at mozi}

we get:

0.8

0.6 /

0.4 °

= .

0.2 e o
N . . .

BEWARE!!IThis is known asverfitting

320

Curve fitting

An experiment to gain some further insighsing

l’/('(‘) l 10 LI\{ l .0 1 3)) 2 Y l
‘ 107 12 15" 3 2" A
as the unknown underlying function.

We can look at hovihe degree of the polynomial the training algorithm can omtp
affects the generalisation ability of the resultihg

We use the same training algorithm, and we train using
H = {h : his a polynomial of degree at mog}

for values ofd ranging froml to 30

321

Curve fitting

e Each time we obtain an of a given degree—call it ,—we assess its quality
using a furtherl00 inputsx’ generated at randorand calculating

(N L (B (1 (< \\2
q(d) = 100 ;(}1 (x;) — ha(x3))

e As the values)(d) are found using inputs that are not necessarily included in

the training sequendéey measure generalisation

e To smooth out the effects of the random selection of exampierepeat this
processl (0 times and average the valugs).

322

Curve fitting
Here is the result:

Log of average q

30

25
20 .
15 ’
10
5

d

5 10 15 20 25 30

Clearly: we need to choosé sensibly if we want to obtainood generalisation
performance

323

The perceptron
The example just given illustrates much of what we want to dtowever in
practice we deal withnore than a single dimension

The simplest form of hypothesis used is thezar discriminan; also known as
theperceptron Here

m
h(w;x) =0 <u'(> + E uy;z’:,) =0 (W + w1 + Wakg + -+ - + W,Ty)
=1

So: we have anear functionmodified by theactivation functioro.

The perceptron’s influence continues to be felt in the reaadtongoing develop-
ment ofsupport vector machines

324

The perceptron activation function |

There are three standard forms for the activation function:

1. Linear: for regression problemwe often use

2. Step for two-class classification problernwe often use

0(/‘:){(1 if 2>0

C5 otherwise.

3. Sigmoid/Logisticfor probabilistic classificatioiwe often use
o 1
PrixisinCy) =o(z) = TS om—2) e

Thestep functioris important but the algorithms involved are somewhat ciifé
to those we’'ll be seeing. We won't consider it further.

Thesigmoid/logistic functioplays a major role in what follows.

325

The sigmoid/logistic function

The logistic function o(2) = frega— Logistic o(z) applied to the output of a linear function

0.9
0.8
0.7
0.6

Zos
B

Pr(x is in ()

0.4

0.3

10

326

Gradient descent

A method fortraining a basic perceptroworks as follows. Assume we're dealing
with aregression problerand usingr(z) = =.

We define a measure efror for a given collection of weights. For example
E(w) = (y: — h(w;x:))?
i=1
Modifying our notation slightly so that
x! = (1 2y 29 -+ x,)
wl = (wo wy wy -+ wy)

lets us write

BE(w) = (4 — w'xi)’

i=1

327

Gradient descent

We want tominimisef(w).

One way to approach this is to start with a randemand update it as follows:

OE(w)
Wil = Wy — 1) ———
Wy
where) :
OE(W) [oBw) oBw) 0BEw) \'
ow o dwy Jwq dwp,
andy is some small positive number.
The vector .
OE(w)
ow

tells us thedirection of the steepest decreaselifw).

328

Gradient descent Gradient descent

With N The method therefore gives the algorithm
E(w) =Y (5 —w'x)’

. T
p— Wi =W+ 2n g (;z// — W, X,') X;
we have

i=1
DE(w) P ’ L Some things to note:
ey Z(!]/*W ;)"

e In this casel’(w) is parabolicand has anique global minimurandno local
minimaso this works well.

e Gradient descenin some form is a very common approach to this kind of

m - problem.
_ Yot — wl) 0 (,WTX.) - . L .
Z 204 — WX ow, i e We can perform a similar calculation farther activation functionand for
. other definitions fol(w).

e Such calculations lead tofferent algorithms
i=1

wherex'’ is the jth element ofx .

329 330

Perceptrons aren’t very powerful: the parity problem

The multilayer perceptron

There are many problems a perceptron can't solve. Eachnodein the network is itself a perceptron:

a; z,

o(a;)

) e \\eightsw, connect nodes together.
e ¢ is the weighted sum crctivationfor node;.
e o is theactivation function

e Theoutputis z; = o(a;).
We need a network that computesire interesting functions

331 332

The multilayer perceptron

Reminder
We’'ll continue to use the notation

=(1z1 20 -+ 2,)

7! 9
T (0 o)y
wo=(wy wy wy - Wy)

So that

1=0

n n
E W;z; = Wy + E W; Z;
i=1

1

The multilayer perceptron

In the general case we haveanpletely unrestricted feedforward structure

Feature vectox Nodei

Outputy = h(w;x)

=W Z
Each nodds a perceptronio specific layerings assumed.
w,,; connects nodeto node;. w for node; is denotedu_., ;.
333 334
Backpropagation Backpropagation: the general case
As usual we have: Thecentral taskis therefore to calculate
o i 0E(w)
e Instances<” = (z.....1,).
~ ow
e Atraining sequence = ((x1,41), .-, (X, Yn))- To do that we need to calculate the individual quantities
We also define a measure of training error (?)E(~W>
Ow;

E(w) = measure of the error of the network sn
wherew is the vector ofill the weights in the network

Our aim is to find a set of weights thatinimisesF(w) usinggradient descent

335

for every weightv;_,; in the network

Often I/(w) is the sum of separate components, one for each example in
E(w)= Z E,(w)
p=1
in which case
OE(W) = 0E,(w)

ow 1 ow
p=
We can therefore consider examples individually.

336

Backpropagation: the general case

Place example at the input and calculate; and z; for all nodesincluding the
outputy. This isforward propagation
We have , U

OE,(w) OE,(w) da,

w;_ N Odaj; Ow;,;

wherea; = >, wy ;2.
Here the sum is overll the nodes connected to nogleAs

O(l/' () Z
= Wg—j2k | = Zi
owisj Owiy; -

we can write o
0FE,(w) §
- — = sz/
Ow;_sj
where we've defined o
OE,(w)
0 = —(—
! Oa;
337

Backpropagation: the general case

So we now need to calculate the valuesdor.

Whenj is theoutput node—that is, the one producing the output- /(w: x,) of
the network—this is easy as = y and

OE,(w)

Oa;

OE,(w) Oy

dy Oaj
OE,(w)

using the fact that = o(a;,).

338

Backpropagation: the general case

The first term is in general easy to calculfor a given/ as the error is generally
just a measure of the distance betweemnd the label in the training sequence.

Example:when
E/)(W) - ([/ o .(//))2

we have o
OE,(w)

dy

DO

('.U -]/p)

=2(h(w;x,) —)

339

Backpropagation: the general case

Whenj is not an output nodwe need something different:

\ k
Ay

J k

a; / [0

7

We're interested in

. O0E,(w)
0j = —;
' da;j
Altering «; can affectseveral other nodek, ko, . . ., k, each of which can in turn
affectE,(w).
340

Backpropagation: the general case

Backpropagation: the general case

\ ky \ ky
J s J 2
—_ a; / ‘ ay, - 5 — a;
/. o o /. o
/ /
kq
/’
We have Because we know how to computefor the output nodwe canwork backwards
5 OB, (w) z 0E,(w)day, Z 5 Oay. computing furthep values.
0j = —(F = a4 O
! da; ke (s g} dap da, ke {ky e i) da; We will always know all the values for nodes ahead of where we are
TELRT R, Ry VELRT,R2,. -5 R
wherel;, ko, ..., k, are the nodes to which nodesends a connection. Hence the termackpropagation
341 342
Backpropagation: the general case Backpropagation: the general case
\ by Summaryto calculate‘”fj’% for the pth pattern:
; Eké 1. Forward propagation apply x, and calculate outputstcfor all the nodes in
—_ a; /-QGLEZ% the network
- 2. Backpropagation 1for theoutputnode
/ . .
0E,(w) . ;0L (w)
Ky - = 2i0; = 2,0 (aj)——=
) % [w;_ ‘ Oy
~t wherey = h(w:;x,).
3. Backpropagation 2For other nodes
()(1/, () p) 7 (")F 'W‘Vi
W — m <Z w; »m(u,)) = Wwjr0 (aj) Ou/:() = 2i0'(ay) Zd/““'-/ .
: g 1 =] k
and) .
where the), were calculated at an earlier step.

- . P PR .
0j = E w0 (aj) = o'(a;) E OpWj—p;

ke {kp kg, kg } ke{ky k,...kq}

343

344

Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
R inputs from all hidden

\ nodes
T2

= v =h(w;x)

1

For the outputz () — «. For the hidden nodes(a) — .

345

Backpropagation: a specific example

For the outputo(a) = a soo’(a) = 1.

For the hidden nodes: |

ola) = 1+ exp(—a)
SO
d'(a) =c(a) [l —o(a)]

We'll continue using the same definition for the error

m

E<W) - Z([//) - }I,<WIX/;>)2
p=1
E,(w) = (y, — h(w; x/)))'z

346

Backpropagation: a specific example

For the output the equation is

OE,(w) ; | t)()E (W)
70“"Houtput = ZiOoutput = Z;0 (Goutput 7()!/
wherey = i(w;x,). So as
OE,(w) 0 ,
0[/ () ((/1) J))
2<1/ o I/p)

=2[h(w;x,) — 1y,
ando’(a) = 1 so
6output: 2 UL(W: Xp) - !//J
and
OE,(w)

A - 22/(11<W X/)) o !//')
()“f'/aoutput

347

Backpropagation: a specific example

For the hidden nodeghe equation is

OF,(
‘ (1 Z()/lll sk

Ou -

Howeverthere is only one outplso
OE,(w)
Ow;_j
and we know that

= zio(a 1) [l - (7((1 ” Ooutput“ j—output

(Soutput: 2 [ZI(W3 Xp) - 7/1%}

SO

OE,(w)

- - —~/(7<(1) [1 - U(”)] [/7(W Xp) .7/1;} W;j—output
Ow;_

=22;2i(1 — zj) [M(W; X)) — Yp) Wi output

348

Putting it all together

We can then use the derivatives in one of two basic ways:

1 (as described previously)

OE(w) Z 0E,(w)

ow = ow
then ’
OFE(w)
Wil = Wiy — 1) —,
ow |,
1lusing just one pattern at once
0E,(w)
Wil =Wy =1 ———
ow W
selecting patterns
349

Example: the parity problem revisited

As an example we show the result of training a network with:

e Two inputs.
e One output.

e One hidden layer containingunits.

o 7 = (.01.

o All other details as above.

The problem is the parity problem. There dfenoisy examples.

The sequential approach is used, with0 repetitions through the entire training

sequence.

350

Example: the parity problem revisited

Before training

& 05
0 S
-05
= [1 2

351

Network output

Example: the parity problem revisited

o After training
Before training)

352

10

Example: the parity problem revisited

Error during training
T T T

0
] 100 200 300 400 500 600 700 800 900 1000

353

