Lecture Notes on

Types

for Part Il of the Computer Science Tripos

Prof. Andrew M. Pitts
University of Cambridge
Computer Laboratory

© 2011 A. M. Pitts

Contents

Learning Guide I

1 Introduction 1

2 ML Polymorphism 7
2.1 AnMLtypesystem e e 8
2.2 Examples of typeinference,byhand 17
2.3 Principaltypeschemes 22
2.4 Atypeinference algorithm 24
25 EXercises 28

3 Polymorphic Reference Types 31
3.1 Theproblem. 31
3.2 Restoringtypesoundness e e e 36
3.3 EXxercises 38

4 Polymorphic Lambda Calculus 39
4.1 From type schemes to polymorphictypes 39
4.2 ThePLCtypesystem i 42
4.3 PLCtypeinference 05
4.4 DatatypesinPLC 52
45 EXErCISES e e e e 59

5 Further Topics 63
5.1 Dependenttypes. 3 6
5.2 Curry-Howard correspondenceo e 66
5.3 Concurrency and distributed systems 71
5.4 SeCurity e e e 71
5.5 Low-levellanguages 71
5.6 Databasequerylanguages. 72

References 75

Learning Guide

These notes and slides are designed to accompany eighelectu type systems for Part Il
of the Cambridge University Computer Science Tripos. Theaili this course is to show by
example how type systems for programming languages canfireedend their properties
developed, using techniques that were introduced in the IBactourse onSemantics of
Programming Language&Ve apply these techniques to a few selected topics centagdym
around the notion of “polymorphism” (or “generics” as it isdwn in the Java and C
communities).

Formal systems and mathematical proof play an importaetirothis subject—a fact
which is reflected in the nature of the material presented &id in the kind of questions set
on itin the Tripos. As well as learning some specific factsuditioe ML type system and the
polymorphic lambda calculus, at the end of the course youldho

e appreciate how type systems can be used to constrain oriltkesbe dynamic
behaviour of programs;

e be able to use a rule-based specification of a type systemfdo typings and to
establish type soundness results;

e appreciate the expressive power of the polymorphic lambtaulus.

Tripos questions and exercises

A list of past Tripos questions back to 1993 that are relet@rihe current course is avail-
able at(www.cl.cam.ac.uk/teaching/exams/pastpapers/t-Types.html).In addition
there are a few exercises at the end of most sections.

Recommended reading

The recent graduate-level text by Pierce (2002) covers nofiche material presented in
these notes (although not always in the same way), plus migehbesides. It is highly
recommended. The following addition material may be useful

Sections 2-3(Cardelli 1987) introduces the ideas behind ML polymorphiand type-
checking. One could also take a look in (Milner, Tofte, Haypend MacQueen
1997) at the chapter defining the static semantics for the keorguage, although it
does not make light reading! If you want more help understanthe material in
Section 3 (Polymorphic Reference Types), try Section 111(Malue Polymorphism)
of the SML'97 Conversion Guiderovided by the SML/NJ implementation of ML.
(See the web page for this lecture course for a URL for thisidwemt.)

Section 4 Read (Girard 1989) for an account by one of its creators ofpibigmorphic
lambda calculus (Systeme F), its relation to proof theowy much else besides.

Note!

The material in these notes has been drawn from severatahffsources, including those
mentioned above and previous versions of this course by utte@aand by others. Any
errors are of course all my own work. Please let me know if yad tiypos or possible
errors: a list of corrections will be available from the ceeimveb page (follow links from
(www.cl.cam.ac.uk/teaching/)), which also contains pointers to some other useful
material.

Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk

1 Introduction

‘One of the most helpful concepts in the whole of programnsitige notion of
type, used to classify the kinds of object which are manipulafesignificant
proportion of programming mistakes are detected by an impletation which
does type-checking before it runs any program. Types pecvihxonomy which
helps people to think and to communicate about programs!

R. Milner, ‘Computing Tomorrow’ (CUP, 1996), p264

This short course is about the use of types in programminguiages. Types also play an
important role in specification languages and in formaldegindeed types first arose (in the
work of Bertrand Russell (Russell 1903) around 1900) as aokayoiding certain paradoxes
in the logical foundations of mathematics. We will returrthe interplay between types in
programming languages and types in logic at the end of theseou

Many programming languages permit, or even require, theafiseertain kinds of
phrases—types, structures, classes, interfaces, etceldssifying expressions according
to their structure (e.g. ‘this expression is an array of abgr strings’) and/or behaviour
(e.g. ‘this function takes an integer argument and returing af booleans’). As indicated
on Slide 1, aype systenfior a particular language is a formal specification of howhsac
classification of expressions into types is to be carried out

The full title of this course is
Type Systems for Programming Languages

What are ‘type systems’ and what are they good for?

‘A type system is a tractable syntactic method for proving the absence
of certain program behaviours by classifying phrases according to the
kinds of values they compute’

B. Pierce, ‘Types and Programming Languages’ (MIT, 2002), p1

Type systems are one of the most important channels by which
developments in theoretical computer science get applied in
programming language design and software verifiction.

Slide 1

Here are some ways (summarised on Slide 2) in which typermsgster programming
languages get used:

2 1 INTRODUCTION

Uses of type systems

Detecting errors via type-checking, either statically (decidable errors
detected before programs are executed) or dynamically (typing errors
detected during program execution).

Abstraction and support for structuring large systems.

Documentation.

Efficiency.

Whole-language safety.

Slide 2

Detecting errors Experience shows that a significant proportion of prograngmistakes
(such as trying to multiply an integer by a string) can be cetby an implementation which
doesstatic type-checking, i.e. which checks for typing errors befdrauns any program.
Type systems used to implement such checks at compile-@oessarily involvelecidable
properties of program phrases, since otherwise the pradessnpilation is not guaranteed
to terminate. (Recall the notion of (algorithmi@cidabilityfrom the CST IB ‘Computation
Theory’ course.) For example, in a Turing-powerful langaiégne that can code all partial
recursive functions), it is undecidable whether an arhjtegithmetic expression evaluates to
0 or not; hence static type-checking will not be able to eliaténall ‘division by zero’ errors.
Of course the more properties of program phrases a typemsgstan express the better and
the development of the subject is partly a search for gresatpressivity; but expressivity
is constrained in theory by this decidability requiremenrtd is constrained in practice by
questions of computational feasibility.

Abstraction and support for structuring large systems Type information is a crucial part
of interfacesfor modules and classes, allowing the whole to be to be dedigrdependently

of particular implementations of its parts. Type systemsnfahe backbone of various
module languages in which modules (‘structures’) are assigypes which are interfaces
(‘signatures’).

Documentation Type information in procedure/function declarations amaniodule/class
interfaces are a form of documentation, giving useful hatitsut intended use and behaviour.
Static type-checking ensures that this kind of ‘formal doeatation’ keeps in step with
changes to the program.

Efficiency Typing information can be used by a compilers to produce ratirgient code.
For example the first use of types in computer science (in g¥4) was to improve the
efficiency of numerical calculations in Fortran by distimghung between integer and real-
value expressions. Many static analyses carried out bynogitig compilers make use of
specialised type systems: an example is the ‘region inde‘arsed in the ML Kit Compiler

to replace much garbage collection in the heap by stackdbasenory management (Tofte
and Talpin 1997).

Safety

Informal definitions from the literature.

‘A safe language is one that protects its own high-level abstractions [no
matter what legal program we write in it]'.

‘A safe language is completely defined by its programmer’s manual
[rather than which compiler we are using]'.

‘A safe language may have trapped errors [one that can be handled
gracefully], but can’t have untrapped errors [ones that cause
unpredictable crashes]'.

Slide 3

Whole-language safety Slide 3 gives some informal definitions from the literatufe o
what constitutes a ‘safe language’. Type systems are anrtargdool for designing safe
languages, but in principle, an untyped language couldfledgavirtue of performing certain
checks at run-time. Since such checks generally hampereeffi; in practice very few
untyped languages are safe; Cardelli (1997) cites LISP aample of an untyped, safe
language (and assembly language as the quintessentigkahtynsafe language). Although
typed languages may use a combination of run- and compile¢hecks to ensure safety, they
usually emphasise the latter. In other words the ideal igtela type system implementing

4 1 INTRODUCTION

algorithmically decidable checks used at compile-timeule out all untrapped run-time
errors (and some kinds of trapped ones as well). Of courses danguages (such as C)
employ types without any pretensions to safety.

Formal type systems

e Constitute the precise, mathematical characterisation of informal type
systems (such as occur in the manuals of most typed languages.)

e Basis for type soundness theorems: ‘any well-typed program cannot
produce run-time errors (of some specified kind)'.

e Can decouple specification of typing aspects of a language from
algorithmic concerns: the formal type system can define typing
independently of particular implementations of type-checking
algorithms.

Slide 4

Some languages are designed to be safe by virtue of a tysysat turn out not to be—
because of unforeseen or unintended uses of certain cononigsaf their features (object-
oriented languages seem particularly prone to this propléve will see an example of this in
Section 3, where we consider the combination of ML polymawihwith mutable references.
Such difficulties have been a great spur to the developmetiteoformal mathematics and
logic of type systems: one can onprove that a language is safe after its syntax and
operational semantics have been formally specified. The maint of this course is to
introduce a little of this formalism and illustrate its us&sandard ML (Milner, Tofte, Harper,
and MacQueen 1997) is the shining example of a full-scalguage possessing a complete
such specification and whosge soundneggf. Slide 4) has been subject to proof.

Typical type system ‘judgement’

is a relation between typing environments (I'), program phrases (M) and
type expressions (7) that we write as

'-M:t1

and read as ‘given the assignment of types to free identifiers of M
specified by type environment I, then M has type 7.

E.g.
f :int list — int, b : bool - (if bthen fnil else3) : int

is a valid typing judgement about ML.

Slide 5

The study of formal type systems is partstfuctural operational semantic$o specify
a formal type system one gives a number of axioms and rulaadaoictively generating the
kind of assertion, or ‘judgement’, shown on Slide 5. Idedhg rules follow the structure
of the phrasel/, explaining how to type it in terms of how its subphrases canylpes—
one speaks odyntax-directedsets of rules. It is worth pointing out that different langea
families use widely differing notations for typing—seed#&li6.

Once we have formalised a particular type system, we are os#i@n toproveresults
abouttype soundneg$lide 4) and the notions ¢ype checkingtypeabilityandtype inference
described on Slide 7. You have already seen some examplés B3T IBSemantics of
Programming Languagesourse of formal type systems defined using inductive dejimst
generated by syntax-directed axioms and rules. In thisseowe look at more involved
examples revolving around the notion of ‘parametric polypmesm’, to which we turn next.

1

INTRODUCTION

Notations for the typing relation

‘foo has type bar’

ML-style (used in this course):

foo : bar
Haskell-style:
foo :: bar
ClJava-style:
bar foo
Slide 6

Type checking, typeability, and type inference

Suppose given a type system for a programming language with

judgements of the form I' = M : 7.

Type-checking problem: given I', M, and 7,is I' = M : 7 derivable in

the type system?

Typeability problem: given I' and M, is there any 7 for which

I' = M : 7 is derivable in the type system?

Second problem is usually harder than the first. Solving it usually
involves devising a type inference algorithm computing a 7 for each I'

and M (or failing, if there is none).

Slide 7

2 ML Polymorphism

As indicated in the Introduction, static type-checkingaegarded by many as an important
aid to building large, well-structured, and reliable safter systems. On the other hand,
early forms of static typing, for example as found in Paseaigded to hamper the ability to
write generic code For example, a procedure for sorting lists of one type o& datuld
not be applied to lists of a different type of data. It is natuwo want apolymorphic
sorting procedure—one which operates (uniformly) on liftseveral different types. The
potential significance for programming languages of thisq@menon opolymorphisnwas
first emphasised by Strachey (1967), who identified sevefferent varieties: see Slide 8.
Here we will concentrate on parametric polymorphism, alsoin as ‘generics’. One way to
getitis to make the type parameterisation an explicit path@language syntax: we will see
an example of this in Section 4. In this section we look atithglicit version of parametric
polymorphism first implemented in the ML family of languagesd subsequently adopted
elsewhere, for example in Haskell, Java arid ®IL phrases need contain little explicit type
information: the type inference algorithm infers a ‘mostgeal’ type (scheme) for each well-
formed phrase, from which all the other types of the phrasebeaobtained by specialising
type variables. These ideas should be familiar to you fromr ywevious experience of
Standard ML. The point of this section is to see how one giveeaise formalisation of a
type system and its associated type inference algorithra fonall fragment of ML, called
Mini-ML.

Polymorphism = ‘has many types’

Overloading (or ‘ad hoc’ polymorphism): same symbol denotes
operations with unrelated implementations. (E.g. + might mean both
integer addition and string concatenation.)
Subsumption 71 <: T9: any M7 : 71 can be used as M7 : 7o without
violating safety.
Parametric polymorphism (‘generics’): same expression belongs to a
family of structurally related types. (E.g. in SML, length function

fun lengthnil = 0

| length (x::xs) = 1+ (lengthxs)

has type T list — int for all types T.)

Slide 8

8 2 ML POLYMORPHISM

Type variables and type schemes in Mini-ML

To formalise statements like
“ length has type T list — int, for all types 7’

it is natural to introduce type variables « (i.e. variables for which types
may be substituted) and write

length : Y o (a list — int).

YV a (a list — int) is an example of a type scheme.

Slide 9

2.1 An ML type system

As indicated on Slide 9, to formalise parametric polymosphi we have to introducegpe
variables An interactive ML system will just display list — int as the type of théength
function (cf. Slide 8), leaving the universal quantificatiaver« implicit. However, when it
comes to formalising the ML type system (as is done in the digimof the Standard ML
‘static semantics’ in Milner, Tofte, Harper, and MacQue®&81, chapter 4) it is necessary to
make this universal quantification over types explicit imgoway. The reason for this has
to do with the typing of local declarations. Consider thersgke given on Slide 10. The
expression(f true) :: (fnil) has typebool list, given some assumption about the type of
the variablef. Two possible such assumptions are shown on Slide 11. Heaeenaterested
in the second possibility since it leads to a type system waty useful properties. The
particular grammar of ML types and type schemes that we wéligs shown on Slide 12.

2.1 An ML type system

Polymorphism of let-bound variables in ML

For example in
let f = Az(z)in(f true) :: (fnil)

)\:(:(:(:) has type 7 — 7 for any type 7, and the variable f to which it is
bound is used polymorphically:

- in (f true), f has type bool — bool
- in (fnil), f has type bool list — bool list

Overall, the expression has type bool list.

Slide 10

‘Ad hoc’ polymorphism:

if f: bool — bool
and f : bool list — bool list,
then (f true) :: (fnil) : bool list.

‘Parametric’ polymorphism:

if f:Va(a—a),
then (f true) :: (fnil) : bool list.

Slide 11

10 2 ML POLYMORPHISM

Mini-ML types and type schemes

T
ypes T o= « type variable

| bool type of booleans
| 7 — 7 function type

| T list listtype

where « ranges over a fixed, countably infinite set T'y Var.

Type Sch
ype Sehemes o == VA1)
where A ranges over finite subsets of the set T'y Var.
When A = {aq,...,a,}, wewrite VA(T) as
Val,...,an (T)
Slide 12

The following points about type schemes! (7) should be noted.

(i) The case whe is empty,A = {}, is allowed: V{ } (7) is a well-formed type
schemeWe will often regard the set of types as a subset of the set offig schemes
by identifying the type 7 with the type schemev { } (7).

(i) Any occurrences inr of a type variablex € A become bound i A (7). Thus by
definition, thefree type variablesf a type schem¥ A () are all those type variables
which occur inT, but which are not in the finite set. (For example the set of free
type variables of/ o (o — /) is {/}.) We call a type scheme A () closedif it
has no free type variables, that is,Af contains all the type variables occurring in
7. As usual for variable-binding constructs, we are not edexd in the particular
names of/-bound type variables (since we may have to change them td eanable
capture during substitution of types for free type variahl@hereforave will identify
type schemes up to alpha-conversion of-bound type variables. For example,
Va(a—a')andva” (o — ') determine the same alpha-equivalence class and will
be used interchangeably. Of course the finite set

fiv(V A (7))

of free type variables of a type scheme is well-defined upgbalconversion of bound
type variables. Just as in (i) we identified Mini-ML typesvith trivial type schemes
V{} (7), so we will sometimes write

fiv(T)

2.1 An ML type system

11

for the finite set of type variables occurringin(of course all such occurrences are

free, because Mini-ML types do not involve binding openasp

(iii) ML type schemes are not ML types!So for exampleq —V o/ () is neither a well-
formed Mini-ML type nor a well-formed Mini-ML type schemeRather, Mini-ML
type schemes are a notation for families of types, parametkby type variables. We
get types from type schemes by substituting types for typmabikes, as we explain

next.

The ‘generalises’ relation between type schemes and types

and write if 7 can be obtained from the type 7’ by

ct=1,...,n):

T="7r/a1,...,Tn/an)].
variables in 0.)

of atype scheme o ifo > 7.

We say a type scheme o =V aq,...,q, (7") generalises a type T,

simultaneously substituting some types 7; for the type variables «;

(N.B. The relation is unaffected by the particular choice of names of bound type

The converse relation is called specialisation: a type 7 is a specialisation

Slide 13

Slide 13 gives some terminology and notation to do with stuistg types for the bound
type variables of a type scheme. The notion of a type sclgameralisinga type will feature
in the way variables are assigned types in the Mini-ML typstey that we are going to

define in this section.
Example 2.1.1. Some simple examples of generalisation:

Va(a—a) = bool — bool
Va(a—a) = o list — o list
Vala—=a) = (@ =ad) = (af = d).
However
Vala—a) # (o = ad)—d.

The step of making type schemes first class types will be tak8ection 4.

12 2 ML POLYMORPHISM

This is because in a substitutiefr’ /o], by definition we have to repla@dl occurrences in
7 of the type variablex by 7/. Thus whenr = o« — a, there is no type’ for which 7|7/ /«/]
is the type(a — a) — «a. (Simply because in the syntax treerdf’ /a] = 7/ — 7/, the two
subtrees below the outermost constructer are equal (hamely te’), whereas this is false
of (¢ = a) — a.) Another example:

Vag,as (o = ag) = alist — bool.

However
Vag (g — ag) # alist — bool

becausev; is a free type variable in the type scheme; (a; — «2) and so cannot be
substituted for during specialisation.

Mini-ML typing judgement

takes the form where

e the typing environment I is a finite function from variables to type

schemes.
Wewrite I' = {z1 : 01,...,2, : 0, } to indicate that I has
domain of definition dom (") = {x1, ..., x,} and maps each z;

to the type scheme o; fori = 1..n.)
e M is an Mini-ML expression

e T is an Mini-ML type.

Slide 14

Slide 14 gives the form of typing judgement we will use tostate ML polymorphism
and type inference. Just as we only consider a small subsét tfpes, we restrict attention
to typings for a small subset of ML expression$, generated by the grammar on Slide 15.
We use a non-standard syntax compared with the definitioMilmér, Tofte, Harper, and
MacQueen 1997). For example we write (M) for fn x => M andlet x = M; in My
for let val x = M1 in M2 end. Furthermore we call the symbat™ occurring in these
expressions gariablerather than a ‘(value) identifier’. As usual, the free valéstof\x (M)
are those of\/, except forz. In the expressiolet x = M7 in M>, any free occurrences of
the variablex in M, become bound in the@et-expression. Similarly, in the expression

2.1 An ML type system 13

case M of nil => M, | 1 :: xo => M3, any free occurrences of the variablgsandz- in
M3 become bound in thease-expression. The axioms and rules inductively generatieg t
Mini-ML typing relation for these expressions are given ¢id&s 16-17.

Mini-ML expressions, M
= variable
| true boolean values
| false
| if M then M else M conditional
| Ax(M) function abstraction
| MM function application
| letz=MinM local declaration
| mnil nil list
| M:M list cons
| caseMofnil=>M| x::x=>M case expression

Slide 15
Note the following points about the type system defined odeSIi16—-19.

(i) Given a type environmerit we write", x : ¢ to indicate a typing environment with
domaindom(I') U {z}, mappingz to ¢ and otherwise mapping like. When we use
this notation it will almost always be the case tha# dom(T") (cf. rules (n), (let)
and case)).

(i) In rule (fn) we usel',x : 7, as an abbreviation for,z : V{} (71). Similarly, in
rule (case), I', z1 : 71,29 : 7y list really meand”, zq : V{} (7)), 22 : V{} (71 list).
(Recall that by definition, a typing environment has to majeddes to type schemes,
rather than to types.)

(iii) In rule (let) the notationftv(I") means the set of all type variables occurring free in
some type scheme assignedin(For example, it" = {z; : 01,..., 2, : 0,}, then
fto(T') = ftv(o1)U---U ftv(oy,).) Thus the setl = ftv(7) — fto(I") used in that rule
consists of all type variables inthat do not occur freely in any type scheme assigned
inT.

14

2 ML POLYMORPHISM

Mini-ML type system, |

(var =) Fkz:7 if(x:0)€l ando =T
(bool) '+ B :bool if B€ {true,false}

I'EMi:bool T'EMy:7 I'Msg: 7
' if M7 then Myelse M3 : T

(if)

Slide 16

Mini-ML type system, II

(nil) I'Fnil: 7 list

I'EMy:7 T'E Msy: Tlist
F}_MliiMQ:TliSt

(cons)

I'E My list I'E M :m
Uyxy:m,x0 1 list = Ms @ 1o if :(}1,5112§§
(case) dom(T")
I' - case M of nil => Mo and r1 # Ta

| 1 ::x9=> M3 : 1

Slide 17

2.1 An ML type system

Mini-ML type system, ll|

Fe:m=M:m
(fn) ifx ¢ dom(I)
FEXe(M):m — 1

F|_M12T1—>T2 F}_MQITl

(app)

'k M1 M2 79
Slide 18
Mini-ML type system, IV
I'EM:T1
. e
(let) F,IVA(T) l_MQ . T Ifx§§ dOTn(F) and
I'Fletx = Myin My : 7/ A= fto(r) — fto(T)

Slide 19

15

16 2 ML POLYMORPHISM

Assigning type schemes to Mini-ML expressions

Given a type scheme o = V A (), write

if A= ftv(r) — ftv(I') and I = M : 7 is derivable from the axiom
and rules on Slides 16-19.

When I' = { } we just write for { } = M : o and say that

the (necessarily closed—see Exercise 2.5.2) expression M is typeable
in Mini-ML with type scheme o.

Slide 20

As usual, the axioms and rules on Slides 16-19 are scheniatit!/, andr stand for
any well-formed type environment, expression, and type. Thermaand rules are used to
inductively generate thigyping relation—a subset of all possible triplds- M : 7. We say
that a particular tripld” = M : 7 is derivable(or provable or valid) in the type system if
there is a proof of it using the axioms and rules. Thus thentypelation consists of exactly
those triples for which there is such a proof.

In fact we often use the typing relation to assign not jusesyut also type schemes to
Mini-ML expressions, as described on Slide 20.

Example 2.1.2. We verify that the example of polymorphism bét-bound variables given
on Slide 10 has the type claimed there, i.e. that

Flet f = Ax(z)in (f true) :: (fnil) : bool list.
holds.
Proof. First note that- Az(z) : Va (a — «), as witnessed by the following proof:

(var =) usingv{} (o) > «
(fn)

1) r:alFz:a«
{}FXz(z):a—a
Next note that sinc¥ o (« — «) = bool — bool, by (var =) we have

f:Va(la—a)k f: bool — bool.

2.2 Examples of type inference, by hand 17

By (bool) we also have

f:Va(a— a)t true : bool

and applying the ruleapp) to these two judgements we get

(2) f:Va(a—a)t ftrue: bool.

Similarly, using &pp) on (var) and fil), we have

(3) f:Va(a—a)k fnil: bool list.

Applying rule (cons) to (2) and (3) we get

f:Va(la—a)k (ftrue):: (fnil) : bool list.

Finally we can apply rulelét) to this and (1) to conclude

{}F1let f = Ax(z)in (f true) :: (fnil) : bool list

as required.]

2.2 Examples of type inference, by hand

As for the full ML type system, for the type system we have jostoduced the typeability
problem (Slide 7) turns out to be decidable. Moreover, anaitpe possible type schemes a
given closed Mini-ML expression may possess, there is a gergtral one—one from which
all the others can be obtained by substitution. Before shgwihy this is the case, we give
some specific examples of type inference in this type system.

18 2 ML POLYMORPHISM

Two examples involving self-application

MY let f = Ax1(Axo(zy1)) in f f

M AF(f 1)) Azr(Awa(an))

Are M and M’ typeable in the Mini-ML type system?

Slide 21

Given a typing environmerit and an expressiof/, how can we decide whether or not
there is a type schemefor whichT' = M : ¢ holds? We are aided in this task by samtax-
directed(or ‘structural’) nature of the axioms and rules:Tif- M : V A (7) is derivable,
i.e.if A= fto(r)— fto(") andl’ - M : 7 is derivable from Slides 16-19, then the outermost
form of the expressioft/ dictates which must be the last axiom or rule used in the pobof
I' = M : 7. Consequently, as we try to build a proof of a typing judgenier M : 7 from
the bottom up, the structure of the expressidndetermines the shape of the tree together
with which rules are used at its nodes and which axioms at@gds. For example, for the
particular expression/ given on Slide 21, any proof df} - M : 7, from the axioms and
rules, has to look like the tree given in Figure 1. Node (CQupposed to be an instance
of the (et) rule; nodes (C1) and (C2) instances of the fule; leaves (C3), (C5), and (C6)
instances of thevar >) axiom; and node (C4) an instance of tlagif) rule. For these to be
valid instances the constraints (C0)—(C6) listed on Sl2i@é&ve to be satisfied.

2.2 Examples of type inference, by hand 19

(C3)
T1:T3,Xo:T5 X1 :7Tg

(C2) (C5) (C6)
x1 13 F Axg(xy) iy fYA(R)F f:m f:VYA(m)F f:7s

(1) (C1)
{}|_)\CC1(>\ZC2($1)):’7_2 fiVA(TQ)"ffITl

(€0)

{} + 1etf =)\il?l()\.il?g(wl)) inff T

Figure 1: Skeleton proof tree for let f = A\xy(Aza(z1))in f f

Constraints generated while inferring a type for

let f = Az (Azg(z1))in f f
(CO) A = fto(ra)
(C1) Tg = T3 —> T4
(C2) T4 = T5 — T6
(C3) V{}(13) > 76, i.e. T3 = Tg
(C4) T7r =78 — T
(C5) VA(rm) =17
(C6) VA(m) > 138

Slide 22

ThusM is typeable if and only if we can find types, . . . , 75 satisfying the constraints
on Slide 22. First note that they imply

T2 @ T3 — T4 (e 73— (75 = T6) ‘@ Te — (75 — T6).

So let us takers, 76 to be type variables, say., «; respectively. Hence by (CO4 =
fto(1e) = ftv(ag — (aa — a1)) = {a1, az}. Then (C4), (C5) and (C6) require that

Vap,as (g = (e —aq)) =13 — 711 and Vag,as (e — (ae = aq)) > 7s.

20 2 ML POLYMORPHISM

In other words there have to be some typgs . ., 712 such that

(C?) Tg—)(710—>7'9)=7'8—>7'1
(CS) 7'11—)(7'12—>7'11)=7'8.

Now (C7) can only hold if
Tg = T8 and T10 —~>T9g = T1

and hence

(C8)
TN =T10 —7T9 =T10 — T8 = Ti0 — (7'11 — (7'12—)7'11)).

with 79, 711, 712 Otherwise unconstrained. So if we take them to be type i@saly, a4, as
respectively, all in all, we can satisfy all the constramtsSlide 22 by defining

A={ag,as}

71 = a3 — (g — (a5 = ay))

To = a1 — (e — 1)

3=0

Ty = Qg — Q1

T5 = Q2

Te = (1

7 = (g = (a5 = ay)) = (a3 = (g — (a5 = ay)))

Ts = ay — (a5 —).
With these choices, Figure 1 becomes a valid proof of
{}Fletf=Avi(Aze(z1))inf [: a3 = (qa = (a5 = aa))
from the typing axioms and rules on Slides 16-19, i.e. we de ha
(4) Flet f=Ari(Axa(z1))in f f : Vas, aq, a5 (as — (g — (a5 — ag)))

If we go through the same type inference process for the egfme)/’ on Slide 21 we
generate a tree and set of constraints as in Figure 2. Thgdgimparticular that

(C13) (C12) (C11)
= T4 = T = T7—>T5.

T7
But there are no types;, 7, satisfyingr; = m — 75, because; — 75 contains at least one
more ‘=’ symbol than does;. So we conclude thab f(f f)) A\x1(Az2(z1)) is not typeable
within the ML type system.

2.2 Examples of type inference, by hand

21

— ry (C12) — y (C13) T (C16)
fimubf:6 fimbfim 1) 1:78, %2 Tio -1 1 Ti1 (©15)
fimbff:Ts x1 T8 F Axa(x1) @ T9

(C10) (C14)
{}EANF(Ff): 72 {}F: Ary(Aza(x1)) : 73 (©9)

{FE S S) Aer(Aza(z1)) : 7

Constraints:

(C9) To =T3 = T1
(C10) To =T4 —Ts
(C11) Te = T7 — T5
(C12) V{}(r4) > 76, i.€. T4 = Tg

(C13) V{}(ma) = 17,ie. T4 =77

(C14) T3 = T8 — Ty
(C15) T9 = T10 = T11
(C16) V{}(m1) > 78, i.e. 711 = T3

Figure 2: Skeleton proof tree and constraints for (Af(f f)) Az1(Aza(z1))

22 2 ML POLYMORPHISM

2.3 Principal type schemes

The type schem¥ as, o, a5 (a3 — (as — (a5 — ay))) not only satisfies (4), itis in fact
the most general, gorincipal type scheme follet f = Az (Az2(z1)) in f f, as defined
on Slide 23. It is worth pointing out that in the presence 9f {ae converse of condition
(b) on Slide 23 holds: if- M : YA(r) andV A(7) = 7/, thenk M : VA’ (7') (where
A’ = fto(7")). This is a consequence of the substitution property ofivislini-ML typing
judgements given in Exercise 2.5.6.

Slide 24 gives the main result about the Mini-ML typeabilggoblem. It was first
proved for a simple type system without polymorphiet-expressions by Hindley (1969)
and extended to the full system by Damas and Milner (1982).

Principal type schemes for closed expressions

A closed type scheme V A (T) is the principal type scheme of a closed
Mini-ML expression M if

@FM:VA(T)

(b) for any other closed type scheme V A’ (77),
it M :VA (7),thenVA(r) = 7'

Slide 23

Remark 2.3.1(Complexity of the type checking algorithmplthough typeability is decid-
able, it is known to be exponential-time complete. Furthememthe principal type scheme of
an expression can be exponentially larger than the expregself, even if the type involved
is represented efficiently as a directed acyclic graph. Meeisely, the time taken to de-
cide typeability and the space needed to display the prheype are both exponential in
the number of nestetkt’s in the expression. For example the expression on SlideaRg{
from Mairson 1990) has a principal type scheme which wolkd taundreds of pages to print
out. It seems that such pathology does not arise naturaltiyttzat the type checking phase
of an ML compiler is not a bottle neck in practice. For moreailstabout the complexity of
ML type inference see (Mitchell 1996, Section 11.3.5).

2.3 Principal type schemes

Theorem (Hindley; Damas-Milner)

If the closed Mini-ML expression M is typeable (i.e. = M : o holds for
some type scheme o), then there is a principal type scheme for M .

Indeed, there is an algorithm which, given any M as input, decides
whether or not it is typeable and returns a principal type scheme if it is.

Slide 24

An ML expression with a principal type scheme
hundreds of pages long

let pair = Ax(Ay(Az(zxy))) in
letx1 = Ay(pairyy) in
let zo = A\y(z1(z1 y)) in
let zg = Ay(z2(x2y)) in
let x4 = Ay(z3(x3y)) in
let x5 = A\y(z4(x4y)) in
z5(Ay(y))

(Taken from Mairson 1990.)

Slide 25

23

24 2 ML POLYMORPHISM

2.4 Atype inference algorithm

The aim of this subsection is to sketch the proof of the Hpddamas-Milner theorem stated
on Slide 24, by describing an algorithmi, for deciding typeability and returning a most
general type schement is defined recursively, following structure of expressi¢asd its
termination is proved by induction on the structure of esprens). As the examples in
Section 2.2 should suggest, the algorithm depends cruaiptbnunification—the fact that
the solvability of a finite set of equations between algebtarms is decidable and that a
most general solution exists, if any does. This fact wasadesed by Robinson (1965)
and has been a key ingredient in several logic-related afeasmputer science (automated
theorem proving, logic programming, and of course typeesyist to name three). The form of
unification algorithmmgu, we need here is specified on Slide 26. Although we won’t bothe
to give an implementation ofrgu here (see for example (Rydeheard and Burstall 1988,
Chapter 8), (Mitchell 1996, Section 11.2.2), or (Aho, Setimd Ullman 1986, Section 6.7)
for more details), we do need to explain the notation for tgpbstitutions introduced on
Slide 26.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types 71 and
To decides whether 71 and 79 are unifiable, i.e. whether there exists a
type-substitution S € Sub with

@ S(m1) = S(m).

Moreover, if they are unifiable, mgu (71, T2) returns the most general
unifier—an S' satisfying both (a) and

(b) forall S” € Sub, if S’'(11) = S'(72), then S” = T'S for some
T € Sub.

By convention mgu (711, 7o) = FAIL if (and only ify 71 and 75 are not unifiable.

Slide 26

Definition 2.4.1 (Type substitutions) A type substitutiort is a (totally defined) function
from type variables to Mini-ML types with the property théita) = « for all but finitely
manyc«. We writeSub for the set of all such functions. Tlmainof S € Sub is the finite
set of variables

dom(S) def {a € TyVar | S(a) # a}

Given a type substitutiol§, the effect of applying the substitution to a type is written

2.4 Atype inference algorithm 25

S;thusifdom(S) = {as,...,a,} andS(«;) is the typer; for eachi = 1..n, thenS(7) is
the type resulting from simultaneously replacing each oetice ofa; in 7 with 7; (for all
i=1..n),le.

ST=71lr/a1,...,Th/0m]

using the notation for substitution from Slide 13. Notwithsling the notation on the right
hand side of the above equation, we prefer to write the agijidic of a type substitution
functionS on the left of the type to which it is being appliéds a result, theompositioril’s

of two type substitutions, 7" € Sub means first applys and therl". Thus by definitioril"S

is the function mapping each type variabléo the typel'(S(«)) (apply the type substitution
T to the typeS(«)). Note that the functiofi’S does satisfy the finiteness condition required
of a substitution and we do hateS € Sub; indeed,dom(T'S) C dom(T) U dom(S).

More generally, ifdlom(S) = {a, ..., a,} ando is an Mini-ML type scheme, thefi o
will denote the result of the (capture-avoidfigubstitution ofS(«;) for each free occurrence
of a; in o (fori = 1..n).

Even though we are ultimately interested in the typeabditglosedexpressions, since
the algorithmpt descends recursively through the subexpressions of the expression,
inevitably it has to generate typings for expressions wite fvariables. Hence we have
to define the notions of typeability and principal type sckeior open expressions in the
presence of a non-empty typing environment. This is doneliole 87. For the definitions
on that slide to be reasonable, we need some properties tfimg relation with respect
to type substitutions and specialisation. These are stateflide 28; we leave the proofs
as exercises (see Exercise 2.5.6). To compute principaldgpemes it suffices to compute
‘principal solutions’ in the sense of Slide 27: forif is in fact closed, then any principal
solution(.S, o) for the typing problen{ } = M : ? has the property that is a principal type
scheme forM! in the sense of Slide 23 (see Exercise 2.5.5).

li.e. we writeS 7 rather tharr S as in the Part IB.ogic and Proofcourse.
2Since we identify type schemes up to renaming thefround type variables, we always assume
the bound type variables inare different from any type variables in the typge@y;).

26

2 ML POLYMORPHISM

Principal type schemes for open expressions

A solution for the typing problem I" = M : 7 is a pair| (.S, o) | consisting
of a type substitution S and a type scheme ¢ satisfying

ST'HFM:o

where ST ={z1 : So1,...,2p : Sop}, it T ={z1 1 01,...,25 : O }).

Such a solution is principal if given any other, (S’, '), there is some
T € SubwithTS = 5" and T'(0) = o’

[For type schemes o and o’, with ¢’ =V A’ (7’) say, we define
o =o' [tomean A’ N ftv(o) = {}and o = 7]

Slide 27

Properties of the Mini-ML typing relation

e IfI' = M : o, then for any type substitution S € Sub
SI'- M : So.

e If’FM:ocando =o', thenl' - M : o'.

Slide 28

2.4 Atype inference algorithm 27

Specification for the principal typing algorithm, pt

pt operates on typing problems I' = M : 7 (consisting of a typing
environment I and a Mini-ML expression M). It returns either a pair

(S, 'r) consisting of a type substitution S € Sub and a Mini-ML type T,
or the exception FAIL.

e IfI"' = M : 7 has a solution (cf. Slide 27), then pt(I' - M : 7)
returns (.S, 7) for some S and T;

moreover, setting A = (ftv(7) — ftv(ST)), then (S,V A (7)) is a
principal solution for the problem I' = M : ?.

e IfI"' = M : 7 has no solution, then pt(I' = M : 7) returns FAIL.

Slide 29

Slide 29 sets out in more detail what is required of the ppaltyping algorithmpt.
One possible algorithm in somewhat informal pseudocode lEaving out the cases fat 1,
cons, andcase-expressions) is sketched on Slide 30 and in FiguteNbte the following
points about the definitions on Slide 30 and in Figure 3:

() We implicitly assume that all bound variables in express and bound type variables
in type schemes are distinct from each other and from any etr@ables in context.
So, for example, the clause for function abstractionslyeatsumes that ¢ dom(I");
and the clause for variables assumes that ftv(I') = { }.

(i) The type substitution/d occurring in the clauses for variables and booleans is the
identity substitution which maps each type variablé itself.

(i) We have not given the clauses of the definition fdrl, cons, anccase-expressions
(Exercise 2.5.4).

(iv) We do not give the proof that the definition in Figure 3 mrrect (i.e. meets the
specification on Slide 29): but see Exercise 2.5.7. The coress of the algorithm

*An implementation in Fresh O’Camingw.cl.cam.ac.uk/users/amp12/fresh-ocaml/) can
be found on the course web page. The Fresh O’Caml code is kabigrclose to the informal

pseudocode given here, because of Fresh O’'Caml’s fasifitiedealing with binding operations and
fresh names.

28 2 ML POLYMORPHISM

depends upon an important property of Mini-ML typing, naynislatit is respected
by the operation of substituting types for type variabkee Exercise 2.5.6.

Some of the clauses in a definition of ~ pt

Function abstractions: pt(I' - Ax(M) : 7) =
let o = fresh in

let (S,7) =pt(Cyx:akF M:?7)in (S,S(a) = 7)
Function applications: pt(I" = M1 My : 7) o
let (S1,71) =pt(I'F My :7)in

let (S2,7m2) = pt(S1I'F My :7)in

let o = fresh in

let S3 = mgu(Sy 11, 72 — «) in (535251, S3(a))

Slide 30

More efficient algorithms make use of a different approacisubstitution and unifi-
cation, based on equivalence relations on directed acydiphg and union-find algorithms:
see (Rémy 2002, Sect. 2.4.2), for example. In that refereantd also in Pierce’s book (Pierce
2002, Section 22.3), you will see an approach to type infexafgorithms that views them as
part of the more general problem of generating and soleorngstraint problemsThis seems
to be a fruitful viewpoint, because it accommodates a widgezof different type inference
problems.

2.5 Exercises

Exercise 2.5.1.Here are some type checking problems, in the sense of SlitR¥okie the
following typings hold for the Mini-ML type system:

FAz(z::nil) : Va (o — alist)

F Az(casexof nil =>true | x; :: w9 => false) : Vo (« list — bool)
FAzp(Aza(x1)) : Vag,as (o — (ag — aq))

Flet f=Azi(Aza(z1))inf f: Vau, ag, a3 (a1 = (a2 — (a3 — a2))).

2.5 Exercises 29

Variables: pt(T Fz:?) %< let VA (r) = D(2) in (Id, 7)

let-Expressions: pt(I' - letx = My inMs : 7) &

let (S, 7)) =pt(I'F My :7)in
let A= fto(ry) — fto(S1 1) in
let (SQ,TQ) = pt(SlF,x VA (7'1) F M2 . ?) in (8251,7'2)

Booleans (B = true, false): pt(I't- B : ?) ot (Id, bool)

Conditionals: pt(T' - if M; then My else M3 : 7) def

let (S1,7)=pt(I'-M;:7)in

let Sy = mgu(r1, bool) in

let (Sg,Tg) = pt(SQSl 'k M2 : ?) in

let (S4,7'4) = pt(535281 'k M3 : ?) in

let 55 = mgu(S4 73, T4) in (5554535251, 55 7'4)

Figure 3: Some of the clauses in a definition of pt

Exercise 2.5.2.Show that if{ } - M : o is provable, them/ must beclosed i.e. have
no free variables. [Hint: use rule induction for the rulesSQlides 16-19 to show that the
provable typing judgement§, - M : 7, all have the property thgt (M) C dom(T").]

Exercise 2.5.3.Let o ando’ be Mini-ML type schemes. Show that the relation- o’
defined on Slide 27 holds if and only if

Vr(oc' =7 = o»-1).
[Hint: use the following property of simultaneous subgtdn:
(rlr/on, o /o)) [/ = 7[n 7/ /on, ... [T /6]]
which holds provided the type variabl@sdo not occur inr.]

Exercise 2.5.4.Try to augment the definition gft on Slide 30 and in Figure 3 with clauses
fornil, cons, andtase-expressions.

Exercise 2.5.5.SupposeV/ is a closed expression and th{at o) is a principal solution for
the typing problem{ } = M : ? in the sense of Slide 27. Show thatmust be a principal
type scheme fof/ in the sense of Slide 23.

Exercise 2.5.6.Show that ifl" - M : o is provable and' € Sub is a type substitution, then
ST+ M : Sois also provable.

Exercise 2.5.7. [hard]Try to give some of the proof that the definition in Figure 3 s¢be
specification on Slide 29. For example, try to prove that if

VT (pt(I' = M; : 7) has correct properti¢s

30 2 ML POLYMORPHISM

fori = 1,2, then
VT (pt(I' F My M, : 7) has correct propertigs

(Why is it necessary to build the quantification oveinto the inductive hypotheses?)

31

3 Polymorphic Reference Types
3.1 The problem

Recall from the Introduction that an important purpose @tgystems is to provideafety
(Slide 3) viatype soundnes®sults (Slide 4). Even if a programming language is intende
to be safe by virtue of its type system, it can happen thatragpéeatures of the language,
each desirable in themselves, can combine in unexpectesl t@groduce an unsound type
system. In this section we look at an example of this whicluged in the development of
the ML family of languages. The two features which combina masty way are:

e ML's style of implicitly typedlet-bound polymorphism, and
o reference types.

We have already treated the first topic in Section 2. The skconcerns ML's imperative
features, which are based upon the ability to dynamicalgate locally scoped storage
locations which can be written to and read from. We begin bingithe syntax and typing
rules for this. We augment the grammar for Mini-ML types @8li12) with a unit type (a
type with a single value) angferenceypes; and correspondingly, we augment the grammar
for Mini-ML expressions (Slide 15) with a unit value, and og#ons for reference creation,
dereferencing and assignment. These additions are shoshdmn31. We call the resulting
language Midi-ML. The typing rules for these new forms of egsion are given on Slide 32.

ML types and expressions for mutable references

T =
| unit unit type
| Tref reference type.
M =
() unit value

‘M dereference

|
| ref M reference creation
|
| M :=M assignment

Slide 31

32 3 POLYMORPHIC REFERENCE TYPES

Midi-MLs extra typing rules

(unit) L' () : unit
(ref) I'EM:Tt
I'-ref M :7ref
' M :1ref
(get)
r='Mm:r
I'-M;:7ref T'EMy:T
(set)

I' = My := My : unit

Slide 32

Example 3.1.1

The expression

letr = ref \z(z)in
letu = (r:= Az/(reflz’)) in

('r)0)

has type unzt.

Slide 33

3.1 The problem 33

Example 3.1.1. Here is an example of the typing rules on Slide 32 in use. Tipeession
given on Slide 33 has typenit.

Proof. This can be deduced by applying thet] rule (Slide 19) to the judgements
{}Fref \z(x): (o« — a) ref
r:Va((a—a)ref) - letu = (r:= \x'(ref !2')) in (I7)() : unit.
The first of these judgements has the following proof:

(var >)

(fn)

riakFzr:ia
{}FXz(z):a—«
{} Fref \z(x): (a« — a) ref

(ref)

The second judgement can be proved by applyingltht@ rule to

(5) r:Va((a— a)ref) b r=\t'(reflz’) : unit
(6) r:Va((a—a)ref),u: unit = (Ir)() : unit

Writing I for the typing environmentr : Vo ((a — «) ref)}, the proof of (5) is

/ ; (var >)
2 :aref -x': aref

(get)

o' :aref 12«
(ref)

I, 2" :aref - refla’ : aref

>) (fn)

(var
TCkr:(aref — aref) ref I'F X\t (refla’) : aref — aref (set)
set
L'Fr:=X\e/(refl2') : unit

while the proof of (6) is

(var =)
Uyu: unit = r: (unit — unit) ref

(get) (unit)
Cu: unit F r : unit — unit D u: unit & () @ unit

C,u: unit B (1r)() : unit (app)

O

Although the typing rules for references seem fairly inrmgesj they combine with the
previous typing rules, and with thé&() rule in particular, to produce a type system for which
type soundness fails with respect to ML's operational séimsnFor consider what happens
when the expression on Slide 33, callft, is evaluated.

Evaluation of the outermostet-binding in M creates a fresh storage location bound
to » and containing the valugz(z). Evaluation of the secontlet-binding updates the

34 3 POLYMORPHIC REFERENCE TYPES

contents ofr to the value\z’(ref !z’) and binds the unit value te. (Since the variable
does not occur in its bodyl/’s innermostlet-expression is just a way of expressing the
sequencér := Az’ (ref !2’)); (Ir)() in the fragment of ML that we are using for illustrative
purposes.) Nextlr)() is evaluated. This involves applying the current contehis which is
Az’ (ref l2'), to the unit valu€). This results in an attempt to evaluétg i.e. to dereference
something which is not a storage location, an unsafe op@rathich should be trapped. Put
more formally, we have

(M,{}) — FAIL

in the transition system defined in Figure 4 and Slide 34 (u#he rather terse ‘evaluation
contexts’ style of Wright and Felleisen (1994)). The confegions of the transition system
are of two kinds:

e A pair (M, s), where M is an ML expression and is a state—a finite function
mapping variables;, (here being used as the names of storage locations) tactignta
values V. (The possible forms of/ for this fragment of ML are defined in
Figure 4.) Furthermore, we require a well-formedness dardior such a pair to
be a configuration: the free variablesof and of each value(x) (asx ranges over
dom(s)) should be contained in the finite séim(s).

e The symbolFAIL, representing a run-time error.

(The notations[z +— V] used on Slide 34 means the state with domain of definition
dom(s) U {z} mappingz to V' and otherwise acting like.)

Midi-ML transitions involving references

(lx,s) — (s(z),s) ifx € dom(s)
(1V,s) — FAIL itV nota variable
(x:=V" s) —{0),slz— V')
(V:=V' s) — FAIL ifV nota variable

(ref V,s) — (z,s[x — V]) ifz ¢ dom(s)
where V' ranges over values:

Vi=a | Xx(M)|()|true | false |nil |V =V

Slide 34

3.1 The problem 35

The axioms and rules inductively defining the transition system for Midi-ML are those on
Slide 34 together with the following ones:

e (if truethen M; else My, s) — (M, s)

e (if falsethen M; else My, s) — (My, s)

o (if V then M, else My, s) — FAIL, if V ¢ {true, false}
o ((Ax(M)V',s) = (M[V'/x], s)

o (VV' s) — FAIL, if V not a function abstraction

e (letz =V inM,s) — (M[V/x],s)

e (casenilofnil=>M |z :xzo=>M',s) — (M, s)

(

o (caseVj:Voofnil=>M |z ixe=>M',s) = (M'[V1/z1,Va/x2], s)
(case Vofnil=>M | x1 = xo=>M' s) — FAIL, if V is neither nil nor a cons-
v

(M, s) — (M’ s")
(E[M], s) = (E[M], §')
(M, s) — FAIL
(E[M], s) — FAIL

where V' ranges over values:

Vi=x | Xx(M)| ()| true | false |nil |V =V
£ ranges over evaluation contexts:

E = —|iffthenMelseM |EM |VE|letz=EinM |E:M |V =&
| casefofnil=>Ml|zuz=>M|ref&|I€|E=M|V:=¢&

and E[M] denotes the Midi-ML expression that results from replacing all occurrences of
‘—"by M in€&.

Figure 4: Transition system for Midi-ML

36 3 POLYMORPHIC REFERENCE TYPES
3.2 Restoring type soundness

The root of the problem described in the previous sectios iie the fact that typing
expressions likeet » = ref M; in M5 with the (et) rule allows the storage location (bound
to) r to have a type schemegeneralising the reference type of the typédf. Occurrences
of r in M, refer to the same, shared location and evaluatial@imay cause assignments to
this shared location which restrict the possible type ofeglient occurrences of But the
typing rule allows all these occurrencesrao haveanytype which is a specialisation of,
and this can lead to unsafe expressions being assigned ages have seen.

We can avoid this problem by devising a type system that pte\geeneralisation of type
variables occurring in the types of shared storage locati@mumber of ways of doing this
have been proposed in the literature: see (Wright 1995)4$aneey of them. The one adopted
in the original, 1990, definition of Standard ML (Milner, Tef and Harper 1990) was that
proposed by Tofte (1990). Itinvolves partitioning the daype variables into two (countably
infinite) halves, the ‘applicative type variables’ (rangaekr by«) and the ‘imperative type
variables’ (ranged over byx). The rule ¢ef) is restricted by insisting that only involve
imperative type variables; in other words the principaltyggcheme oz (ref z) becomes
V_a(-a — _aref), rather tharv o (o« — a ref). Furthermore, and crucially, thée) rule
(Slide 19) is restricted by requiring that when the type sohe = V A (1) assigned ta\/;
is such that4 contains imperative type variables, th&h must be a value (and hence in
particular its evaluation does not create any fresh std@mions).

This solution has the advantage that in the new system tleabylity of expressions not
involving references is just the same as in the old systemwveder, it has the disadvantage
that the type system makes distinctions between expressioich are behaviourly equivalent
(i.e. which should be contextually equivalent). For exaariplere are many list-processing
functions that can be defined in the pure functional fragmo&ML by recursive definitions,
but which have more efficient definitions using local refees) Unfortunately, if the type
scheme of the former is something likex (« list — « list), the type scheme of the latter
may well be the different type scherea (-« list — _a list). So we will not be able to use
the two versions of such a function interchangeably.

The authors of the revised, 1996, definition of Standard Mllr{st, Tofte, Harper, and
MacQueen 1997) adopt a simpler solution, proposed indegrdlycdby Wright (1995). This
removes the distinction between applicative and impegdtipe variables (in effect, all type
variables are imperative, but the usual symhelg’ ... are used) while retaining a value-
restricted form of thel¢t) rule, as shown on Slide 35Thus our version of this type system
is based upon exactly the same form of type, type scheme antjtjudgement as before,
with the typing relation being generated inductively by #xéoms and rules on Slides 16-19
and 32, except that the applicability of tHet] rule is restricted as on Slide 35.

IN.B. what we call a value, (Milner, Tofte, Harper, and Mac@®ue 997) calls axon-expansive
expression

3.2 Restoring type soundness 37

Value-restricted typing rule for let-expressions

F|—M1:T1

e :VA(m) E My :
(letv)

I'Fletx =Miin My :

(1) provided x ¢ dom(T") and
o {} if M7 is not a value
- fto() — fto(T") it My is a value

(Recall that values are given by
Vi=z | x(M)|()]| true | false |nil |V : V)

Slide 35

Example 3.2.1. The expression on Slide 33 is not typeable in the type sysbemlidi-ML
resulting from replacing rulddt) by the value-restricted ruléefv) on Slide 35 (keeping all
the other axioms and rules the same).

Proof. Because of the form of the expression, the last rule usedyipaof of its typeability
must end with fetv). Because of the side condition on that rule and sirefe \x(x) is not
avalue, the rule has to be applied with= { }. This entails trying to type

(7) letu = (r:= A\z'(ref!z’)) in (Ir)()

in the typing environment' = {r : (o« — «) ref }. But this is impossible, because the type
variablea is not universally quantified in this environment, wherdeestivo instances ofin
(7) are of different implicit types (namelyy ref — « ref) ref and(unit — unit) ref). 0O

The above example is all very well, but how do we know that weehechieved safety
with this type system for Midi-ML? The answer lies in a fornpabof of thetype soundness
property stated on Slide 36. To prove this result, one firsttbaormulate a definition of
typing for general configurations\/, s) when the state is non-empty and then show

e typing is preserved under steps of transities,

e if a configuration can be typed, it cannot posses a tranditidtd /L.

38 3 POLYMORPHIC REFERENCE TYPES

Thus a sequence of transitions from such a well-typed cordigun can never lead to the
F AIL configuration. We do not have the time to give the detailsimdburse: the interested
reader is referred to (Wright and Felleisen 1994; Harped18&& examples of similar type
soundness results.

Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type scheme o

for which
FM:o

is provable in the value-restricted type system (axioms and rules on
Slides 16-18, 32 and 35), then evaluation of M does not fail, i.e. there is
no sequence of transitions of the form

(M,{}) =+ — FAIL

for the transition system — defined in Figure 4
(where { } denotes the empty state).

Slide 36

Although the typing rulel¢tv) does allow one to achieve type soundness for polymorphic
references in a pleasingly straightforward way, it does nmétat some expressions not
involving references that are typeable in the original Mpdysystem are no longer typeable
(Exercise 3.3.2.) Wright (1995, Sections 3.2 and 3.3) a®syhe consequences of this and
presents evidence that it is not a hindrance to the use otl&tdiML in practice.

3.3 Exercises

Exercise 3.3.1.Letting M denote the expression on Slide 33 gndthe empty state, show
that(M,{}) —* FAIL is provable in the transition system defined in Figure 4.

Exercise 3.3.2.Give an example of a Mini-ML1et-expression which is typeable in the
type system of Section 2.1, but not in the type system of 8&e@&i2 for Midi-ML with the
value-restricted ruleltv).

4 Polymorphic Lambda Calculus

In this section we take a look at a type system for explicityetd parametric polymorphism,
variously called thgolymorphic lambda calculyushesecond order typed lambda calcujus
or system Flt was invented by the logician Girard (1972) and, indegertly and for different
purposes, by the computer scientist Reynolds (1974). Ituragd out to play a foundational
role in the development of type systems somewhat simildrabglayed by Church’s untyped
lambda calculus in the development of functional prograngmAlthough it is syntactically
very simple, it turns out that a wide range of types and typestactions can be represented
in the polymorphic lambda calculus.

4.1 From type schemes to polymorphic types

We have seen examples (Example 2.1.2 and the first examplieder?3) of the fact that the
ML type system permitset-bound variables to be used polymorphically within the botly
a let-expression. As Slide 37 points out, the same is not trug-lebund variables within
the body of a function abstraction. This is a consequencleeofdct that ML types and type
schemes are separate syntactic categories and the fuhgi®ioonstructor—, operates on
the former, but not on the latter. Recall that an importamppse of type systems is to provide
safety(Slide 3) viatype soundned$lide 4). Use of expressions such as those mentioned on
Slide 37 does not seem intrinsically unsafe (although uskeofecond one may cause non-
termination—cf. the definition of the fixed point combinaitountyped lambda calculus). So
it is not unreasonable to seek type systems more powerfolttit@ML type system, in the
sense that more expressions become typeable.

One apparently attractive way of achieving this is just togedypes and type schemes
together: this results in the so-callpdlymorphic typeshown on Slide 38. So let us consider
extending the ML type system to assign polymorphic typespressions. So we consider
judgements of the form' = M : 7 where:

e 7 is a polymorphic type;
e ['is a finite function from variables to polymorphic types.

In order to make full use of the mixing ef> andV present in polymorphic types we
have to replace the axiomdr) of Slide 16 by the axiom and two rules shown on Slide 39.
(These are in fact versions for polymorphic types of ‘adibisgules’ in the original ML type
system.) In ruledpec), [’ /a] indicates the polymorphic type resulting from substitgtin
7’ for all free occurrences af in .

39

40

4 POLYMORPHIC LAMBDA CALCULUS

A-bound variables in ML cannot be used
polymorphically within a function abstraction

E.g. Af((ftrue) :: (fnil)) and Af(f f) are not typeable in the ML type
system.

Syntactically , because in rule
Fe:mbEM:m

(fn)
CEXe(M):1— 1

the abstracted variable has to be assigned a trivial type scheme (recall
x : 7y standsfor z : V{ } (1))

Semantically , because V A (71) — 72 is not semantically equivalent to
an ML type when A # { }.

Slide 37
Monomorphic types ...
Tu=a | bool | T— 7| T list
...and type schemes
ou=1|Va(o)
Polymorphic types
mu=a | bool | m—m | wlist | Va(m)

E.g.a — o isatype, Va (o —) is a type scheme and a polymorphic type
(but not a monomorphic type), ¥V o () — « is a polymorphic type, but not a
type scheme.

Slide 38

4.1 From type schemes to polymorphic types 41

Identity, Generalisation and Specialisation

(id) FFx:n if(x:7m) el

r-M:nx
(gen) ifa & fto(I'
¢ 'EM:Va(r) # ol

'EM:Va(r)
'k M:rw[r'/a]

(spec)

Slide 39

Example 4.1.1. In the modified ML type system (with polymorphic types andr(>-)
replaced by id), (gen), and §pec)) one can prove the following typings for expressions
which are untypeable in ML

(8) {}FAf((f true) :: (fnil)) : Va (o — a) — bool list
9) {}FMS):Va(a) = Va(q).

Proof. The proof of (8) is rather easy to find and is left as an exerdik=re is a proof for

(9):

(id) (id)
f:Vai(aq)bF f:Va (o) X f:Vay(an)bF f:Va (o))
fiVa (o) F f:as— as f:Var(an)F f:as

(app)

fiVOél (041) l_ff a7
f:VYar (o) F ff:Vas(a)
{} +)\f(ff) 3v041 (041) —>Va2 (C\CQ)

(gen)
(fn).

Nodes (1) and (2) are both instances of thpe¢) rule: the first uses the substitution
(g — ag)/aq, whilst the second uses, /«;. O

42 4 POLYMORPHIC LAMBDA CALCULUS

Fact (see Wells 1994):
For the modified ML type system with polymorphic types and (var >)

replaced by the axiom and rules on Slide 39, the type checking and
typeability problems (cf. Slide 7) are equivalent and undecidable.

Slide 40

So why does the ML programming language not use this extetygesystem with
polymorphic types? The answer lies in the result stated @e3l0: there is no algorithm
to decide typeability for this type system (Wells 1994). Thiiiculty with automatic type
inference for this type system lies in the fact that the galisation and specialisation rules
are not syntax-directed: since an application of eitlgen) or (spec) does not change the
expressionV/ being checked, it is hard to know when to try to apply them ahbttom-up
construction of proof inference trees. By contrast, in antyfie system based oiif, (gen)
and gpec), but retaining the two-level stratification of types int@nomorphic types and
type schemes, this difficulty can be overcome. For in thag¢ ca® can in fact push uses of
(spec) right up to the leaves of a proof tree (where they merge withgxioms to become
(var) axioms) and push uses afef) right down to the root of the tree (and leave them
implicit, as we did on Slide 19).

4.2 The PLC type system

The negative result on Slide 40 does not rule out the use qfdlyenorphic types of Slide 38
in programming languages, since one may consa@licitly typedlanguages (Slide 41)
where the tagging of expressions with type information ezadhe typeability problem
essentially trivial. We consider such a language in thiseation, thgolymorphic lambda
calculus(PLC).

4.2 The PLC type system 43

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program phrases and
typings have to be inferred (ideally, entirely at compile-time). (E.g.
Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the syntax.
(E.g. Java.)

E.g. self application function of type V o (o) — V o ()
(cf. Example 4.1.1)

Implicitly typed version: A f (f f)
Explicitly type version: A f : Vaq (1) (A s (f(ae — a2)(f az2)))

Slide 41

Remark 4.2.1 (Explicitly typed languages)One often hears the view that programming
languages which enforce a large amount of explicit type rm#ftdion in programs are
inconveniently verbose and/or force the programmer to nmalgerithmically irrelevant
decisions about typings. But of course it really dependshuppe intended applications.
At one extreme, in a scripting language (interpreted itarely, used by a single person to
develop utilities in a rapid edit-run-debug cycle) impitgiping may be desirable. Whereas at
the opposite extreme, a language used to develop largeagefsystems (involving separate
compilation of modules by different teams of programmeray imenefit greatly from explicit
typing (not least as a form of documentation of programmat&ntions, but also of course
to enforce interfaces between separate program parts)rt Apen these issues, explicitly
typed languages are usefuliatermediate languagéas optimising compilers, since certain
optimising transformations depend upon the type inforametihey contain. See (Harper and
Stone 1997), for example.

44

4 POLYMORPHIC LAMBDA CALCULUS

PLC syntax

Types T =« type variable
| 7 —7 function type
| Va(r) V-ype

Expressions

M x variable

Az : 7 (M) function abstraction

|

| MM function application
| Ao (M) type generalisation
|

Mt type specialisation

(o and x range over fixed, countably infinite sets T'y Var and Var respectively.)

Slide 42

Functions on types

In PLC, | A ae (M) | is an anonymous notation for the function F’

mapping each type 7 to the value of M [7/a/] (of some particular type).
denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on types
(Aa (M) T — M[1/a]
as well as the usual form of beta-reduction from A-calculus

()\ZB : T(Ml))M2 — Ml[Mg/a’,‘]

Slide 43

4.2 The PLC type system 45

The explicit type information we need to add to expressiangét syntax-directed
versions of the den) and épec) rules (Slide 39) concerns the operationstyjfe gener-
alisation andtype specialisation These are forms of function abstraction and application
respectively—for functions defined on the collection otgtles (and taking values in one par-
ticular type), rather than on the values of one particulpetySee Slide 43. The polymorphic
lambda calculus, PLC, provides rather sparse means foinggBach functions—for exam-
ple there is no ‘typecase’ construct that allows branchoupeding to which type expression
is input. As a result, PLC is really a calculus mdrametrically polymorphidunctions (cf.
Slide 8). The PLC syntax is given on Slide 42. Its typesare like the polymorphic types,
7, given on Slide 38, except that we have omitbed! and(_) list—because in fact these and
many other forms of datatype are representable in PLC (se®8d.4 below). We have also
omittedlet-expressions, because (unlike the ML type system presentgetction 2.1) they
are definable from function abstraction and applicatiomwie correct typing properties: see
Exercise 4.5.3.

Remark 4.2.2(Operator association and scopind)s in the ordinary lambda calculus, one
often writes a series of PLC applications without parergbgsising the convention that
application associates to the left. Thus M, M3 meang My M) Mz, andM; M, T3 means
(My M>)1s. Note that an expression like/; 7, M3 can only associate &3/, 72) M3, since
association the other way involves an ill-formed expras$ioMs). Similarly M; 7 75 can
only be associated 9/, 72)73 (sincer; 7 is an ill-formed type). On the other hand it is
conventional to associate a series of function types toighe.rThusm;, — 7 — 73 means
™ — (7'2 — 7'3).

We delimit the scope of-, A-, and A-binders with parentheses. Another common way
of writing these binders employs ‘dot’ notation

Ya .1 1. M Aa. M

with the convention that the scope extends as far to the aghpossible. For example
Vag . (VYoo . 7 — 1) — ap meansV oy (Vas (T — a1) — «1). One often writes iterated
binders using lists of bound (type) variables:

Vay, as (1) LYy (Vo (1))

def
Axy:T,x T2 (M) = Aoy i1 (Aag 1o (M))

Aag,as (M) € Aay (Aas (M)) .

It is also common to write a type specialisation by subsikripthe type: M. s,

Remark 4.2.3(Free and bound (type) variablesjny occurrences in of a type variablex
become bound i « (7). Thus by definition, the finite seftv (), of free type variables of a
typer, is given by

fto(e) € {a}
fro(m = 72) 2 fro(m) U fto(r)
foVa () Y fro(r) — {a).

46 4 POLYMORPHIC LAMBDA CALCULUS

Any occurrences i/ of a variabler become bound in\ z : 7 (M). Thus by definition, the
finite set,fu(M), of free variables of an expressiav, is given by

folz) € {z}
foha: 7 (M) < fo(M) - {z}
fo(My My) < fo(My) U fo(Msy)
fo(Aa (M) = fo(M)
fo(M) o fo(M).

Moreover, since types occur in expressions, we have to denshefree type variables
of an expression The only type variable binding construct at the level of reggions is
generalisation: any occurrenceslif of a type variablex become bound it o (M). Thus

def

fru(z) = {}
fohz 7 (M) Y fro(r) U fto(M)
Fro(My Ma) < fro(My) U fto(Ms)
fto(Ao (M) = fro(M) — {a}
oM7) fro(M) U fro(r).

As usualwe implicitly identify PLC types and expressions up to atpbaversion of bound
type variables and bound variableSor example

Az:a(Aa(zxa))z and (A2’ :a(Ad (2'd))))z

are alpha-convertible. We will always choose names of boatarthbles as in the second
expression rather than the first, i.e. distinct from any fragables (and from each other).

Remark 4.2.4(Substitution) For PLC, there are three forms of (capture-avoiding) stibsti
tion, well-defined up to alpha-conversion:

e 7[7’'/a] denotes the type resulting from substituting a typéor all free occurrences of the
type variablex in a typer.

e M[M'/z] denotes the expression resulting from substituting anesgion)/’ for all free
occurrences of the variablein the expressiol/ .

e M|[r/a] denotes the expression resulting from substituting a tyfue all free occurrences
of the type variablev in an expression/.

The PLC type system uses typing judgements of the form shav8lide 44. Its typing
relation is the collection of such judgements inductived§ined by the axiom and rules on
Slide 45.

4.2 The PLC type system

PLC typing judgement

takes the form where

e the typing environment I' is a finite function from variables to PLC

types.
Wewrite I' = {z1 : 7q,..., 2, : 7, } to indicate that I has
domain of definition dom (") = {x1, ..., x,} and maps each z;

to the PLC type 7; forz = 1..n.)
e)M is a PLC expression

e 7 isaPLC type.

Slide 44

PLC type system

(var) F'tz:7 if(x:7)el
Fe:mEM:m
(fn) itz ¢ dom(T)
FFAx:mp(M):11— 7

F}_M12T1—>T2 F}_Mgi’ﬁ

(app)
PP Fl_MlMQZTQ
(gen) LEM:7 it ¢ fto(T)
F'Aa(M):Va(r)
'EM:Va(m)
(spec)

't Mmry:1i[me/a]

Slide 45

48 4 POLYMORPHIC LAMBDA CALCULUS

An incorrect ‘proof’

(var)

(fn)

T1:o,Ty b a9«

r1:abF Az a(r): a—

wrong!
£L'1:al—Aa()\an;a(x2)):va(a_>a>(g)

Slide 46

Remark 4.2.5(Side-condition on rulegen)). To illustrate the force of the side-condition on
rule (gen) on Slide 45, consider the last step of the ‘proof’ on Slide #Gs not a correct
instance of theden) rule, because the concluding judgement, whose typing@mvient
I' = {z; : «}, does not satisfyx ¢ ftv(I") (sinceftv(I') = {a} in this case). On the
other hand, the expressidnu (A x5 : « (z2)) does have typ& o (a« — «) given the typing
environment{x; : a}. Here is a correct proof of that fact:

(var)

(fn)

1o, T Fao o

x1:abkArg i d (xg):d =

(gen)
r1:abFAd (Azg: o (x2)) : V' (o —)

where we have used the freedom afforded by alpha-convetsioename the bound type
variable to make it distinct from the free type variablesh# typing environment: since we
identify types and expressions up to alpha-conversionuithgement

z1:akFAa(Aze :a(xg)) :Va(la— a)
is the same as

r1:iakFAd Azg:d (22)):Va (o —)

4.2 The PLC type system 49
and indeed, is the same as
z1:abFAd (Aze:d (22)) : Va" (" —).

Example 4.2.6.On Slide 41 we claimed that f : Va; (a1) (Aas (f(ae = a2)(f az2)))
has typeV a (o) — V « (). Here is a proof of that in the PLC type system:

(var) (var)
f:Var(a)F f:Vag(a) f:Var(a)F f:Vag (o)
(spec) (spec)
f:val(al)l_f(OéQ—)OéQ):OéQ—)OtQ fI\V/Ckl(Oq)'_kaQZOéQ
(app)

f : VOél (041) F f(OéQ — OéQ)(fOéQ) e
f : VOél (Oél) H AOCQ (f(OéQ — Oég)(f 042)) : VOKQ (042)
{}EAf:Var (o) (Aaz (flaz = a2)(f a2))) : (Vou (on)) = Vs (a2)

(gen)

(fn).

Example 4.2.7. There is no PLC type for which
(10) {}FAa((Az:a(z))a): T

is provable within the PLC type system.

Proof. Because of the syntax-directed nature of the axiom and afilée PLC type system,
any proof of (10) would have to look like

(var)
(fn)
(spec)
(gen)

riabFz:a
{}FAz:a(x): 7"
{}IFQAz:a(@)a: 7

{}FAa((Az:a(x))a): T

for some types, 7' and7”. For the application of rulefi) to be correct, it must be that
7" = a — «. But then the application of rulegec) is impossible, because — « is not a
V-type. So no such proof can exist. O

50 4 POLYMORPHIC LAMBDA CALCULUS

Decidability of the PLC typeability
and type-checking problems

Theorem.

For each PLC typing problem, I' = M : 7, there is at most one PLC type
T for which I' = M : 7 is provable. Moreover there is an algorithm, typ,
which when given any I' = M : 7 as input, returns such a 7 if it exists
and FAILs otherwise.

Corollary.
The PLC type checking problem is decidable: we can decide whether or
not I = M : 7 is provable by checking whether typ(I" = M : 7) = 7.

(N.B. equality of PLC types up to alpha-conversion is decidable.)

Slide 47

4.3 PLC type inference

As Examples 4.2.6 and 4.2.7 suggest, the type checking geclylity problems (Slide 7)
are very easy to solve for the PLC type system, compared WahL type system. This
is because of the explicit type information contained in Rixpressions together with the
syntax-directed nature of the typing rules. The situat®summarised on Slide 47. The
‘uniqueness of types’ property stated on the slide is eapyaee by induction on the structure
of the expression/, exploiting the syntax-directed nature of the axiom andsulf the PLC
type system. Moreover, the type inference algorittymemerges naturally from this proof,
defined recursively according to the structure of PLC exgioes. The clauses of its definition
are given on Slides 48 and 49he definition relies upon the easily verified fact that eyal
of PLC types up to alpha-conversion is decidable. It alsorags that the various implicit
choices of names of bound variables and bound type variabéesnade so as to keep them
distinct from the relevant free variables and free typealdas. For example, in the clause
for type generalisationd « (M), we assume the bound type variablés chosen so that

a ¢ fto(T).

!An implementation of this algorithm in Fresh O’Caml can berfd on the course web page.

4.3 PLC type inference

PLC type-checking algorithm, |

Variables:

typ(D,x: 7k x:7) A

Function abstractions:

typ(C =Xz :m (M) :7) o

let o =typ(l,x:m EM:?)inT — 7o
Function applications:
typ(D'+= My My = 7) o
let 1 =typ(l'F M :7)in

let 79 = typ(I'F My : ?7) in

case Ty of 7T—= 7 +— if T =7 then 7/ else FAIL

| s FAIL

Slide 48

PLC type-checking algorithm, Il

Type generalisations:
typ(T + Ao (M) : 7)<
let 7 =typ(TF M :?7)inVa(r)

Type specialisations:
typ('= M 19 :7) def

let 7 =typ(I' - M :7) in

case 7 of Va(r) — mi[r/a]

| _ — FAIL

Slide 49

51

52 4 POLYMORPHIC LAMBDA CALCULUS

4.4 Datatypesin PLC

The aim of this subsection is to give some impression of jogt éxpressive is the PLC type
system. Many kinds of datatype, including both concreta @labdoleans, natural numbers,
lists, various kinds of tree, ...) and also abstract datgypvolving information hiding, can

be represented in PLC. Such representations involve

¢ defining a suitable PLC type for the data,
e defining some PLC expressions for the various operatiorecaged with the data,

e demonstrating that these expressions have both the ctypogs and the expected
computational behaviour.

In order to deal with the last point, we first have to consiadenes operational semantics
for PLC. Most studies of the computational properties ofypwrphic lambda calculus have
been based on the PLC analogue of the notioeth-reductionfrom untyped lambda
calculus. This is defined on Slide 50.

Beta-reduction of PLC expressions

M beta-reduces to M’ in one step, | M — M’ |, means

M’ can be obtained from M (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

()\ZB T (Ml)) M2 — Ml[Mg/x]
(Aa(M))T — M[T/a].

M —* M’ indicates a chain of finitelyT many beta-reductions.

(T possibly zero—which just means M and M’ are alpha-convertible).

M is in beta-normal form if it contains no redexes.

Slide 50

Example 4.4.1.Here are some examples of beta-reductions. The variouses@dee shown

4.4 Datatypes in PLC 53

boxed. Clearly, the final expressigrns in beta-normal form.

Ax:ag—=ar(zy)|(Aae (Az:az(2))) (a1 = aq)

I

(Aaa (Az:az(2))) (a1 — aq) |y Azx:ag—ar(zy)(Az:a1 — aq (2))

\/

Properties of PLC beta-reduction on typeable expressions

Suppose I' = M : 7 is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M — M’ then' = M’ : 7 is also a provable
typing.

Church Rosser Property. If M —* My and M —* Ms, then there is
M’ with M7 —* M’ and My —* M’.

Strong Normalisation Property. There is no infinite chain

M — M; — My — ... of beta-reductions starting from M.

Slide 51

Slide 51 lists some important properties typeablePLC expressions that we state
without proof. The first is a weak form of type soundness te&lide 4) and its proof is
straightforward. The proof of the Church Rosser propertgl$® quite easy whereas the
proof of Strong Normalisations is difficutt. It was first proved by (Girard 1972) using a

!Since it in fact implies the consistency of second ordehandtic, it furnishes a concrete example
of Godel's famous incompleteness theorem: the strong alisation property of PLC is a statement

54 4 POLYMORPHIC LAMBDA CALCULUS

clever technique called ‘reducibility candidates’; if yate interested in seeing the details,
look at (Girard 1989, Chapter 14) for an accessible accoiuhiegproof.

PLC beta-conversion, =3

By definition, | M =g M’ | holds if there is a finite chain

M—.-— ... —._ M

where each — is either — or <—, i.e. a beta-reduction in one direction or
the other. (A chain of length zero is allowed—in which case M and M’
are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for typeable
PLC expressions, M =g M’ holds if and only if there is some
beta-normal form N with

M —* N *« M’

Slide 52

Theorem 4.4.2. The properties listed on Slidgl have the following consequences.

(i) Each typeable PLC expression/, possesses heta-normal formi.e. an N such that
M —* N - , which is unique (up to alpha-conversion).

(i) The equivalence relation obeta-conversiorSlide 52) between typeable PLC expressions
is decidable, i.e. there is an algorithm which, when given typeable PLC expressions,
decides whether or not they are beta-convertible.

Proof. For (i), first note that such a beta-normal form exists bee&use start reducing re-
dexes inM (in any order) the chain of reductions cannot be infinite (vgi®& Normalisation)
and hence terminates in a beta-normal form. Uniquenesgdfdta-normal form follows by
the Church Rosser property: M —* N; andM —* N, thenN; —* M’ *< N, holds
for someM’; so if N; and N, are beta-normal forms, then it must be that —* M’ and
N, —* M’ are chains of beta-reductions of zero length and héfhce- M’ = N, (equality
up to alpha-conversion).

For (ii), we can use an algorithm which reduces the betaxesief each expression in
any order until beta-normal forms are reached (in finitelynynateps, by Strong Normal-
isation); these normal forms are equal (up to alpha-corm@ysf and only if the original
expressions are beta-convertible. (And of course, theioalaf alpha-convertibility is de-
cidable.) O

that can be formalised within second order arithmeticue {as witnessed by a proof that goes outside
second order arithmetic), but cannot be proved within tistiesn.

4.4 Datatypes in PLC 55

Remark 4.4.3. In fact, the Church Rosser property holds for all PLC expogss whether
or not they are typeable. However, the Strong Normalisghiaperties definitely fails for
untypeableexpressions. For example, consider

QYN a(f AL alff)

from which there is an infinite chain of beta-reductions, e — 2 — Q — ---. Aswith
the untyped lambda calculus, one can regard polymorphibdiancalculus as a rather pure
kind of typed functional programming language in which catgion consists of reducing
typeable expressions to beta-normal form. From this viemtpthe properties on Slide 51
tell us that (unlike the case of untyped lambda calculus) Bafnot be ‘“Turing powerful’,
i.e. not all partial recursive functions can be programnmeitl jusing a suitable encoding of
numbers). This is simply because, by virtue of Strong Noisatibn, computation always
terminates on well-typed programs.

Now that we have explained PLC dynamics, we return to thetopresf representing
datatypes as PLC types. We consider first the simple exampleobeans and then the more
complicated example of polymorphic lists.

Polymorphic booleans

bool & v (= (= a))
def
True = Aa()\:l:1 QT Oé(l’l))
def
False = Aa(Axy @ a,z9 : a(x2))

if déonz()\b: bool,x1 : a,x9 : a(baxy x2))

Slide 53

Example 4.4.4(Booleans) The PLC type corresponding to the ML datatype

datatype bool = True | False

56 4 POLYMORPHIC LAMBDA CALCULUS

is shown on Slide 53. The idea behind this representatidmaisthe ‘algorithmic essence’
of a booleanp, is the operation\z; : o, x5 : a(if bthen x; else) of typea — a — a,t
taking a pair of expressions of the same type and returniegoorother of them. Clearly,
this operation is parametrically polymorphic in the typeso in PLC we can take the step of
identifying booleans with expressions of the correspogtitype,V o (o« — o« — «). Note
that for the PLC expressioriEue and Fulse defined on Slide 53 the typings

{}F True :Va(a—a—a) and {}F False :Va(a—a— a)

are both provable. The_thenelse construct, given for the above ML datatype byase-
expression

case M of True => M, | False => M3

has an explicitly typed analogue in PLC, vif.r M; Ms M3, wherer is supposed to be the
common type of\/;, and M3 andif is the PLC expression given on Slide 53. It is not hard
to see that

{}+if :Va(bool = (a = (a— a))).

ThusifI' = My : bool, ' = My : 7 andl' = M3 : 7, thenD - if 7 My My M3 : 7 (cf. the
typing rule (f) on Slide 16). Furthermore, the expressidhsie, Fulse, andif have the
expected dynamic behaviour:

if My —* True andM, —* N, thenif T My My M3 —* N,

if M; —* False andM3 —* N, thenifTMl Mo M —* N.

It is in fact the case thalrue and Fualse are the only closed beta-normal forms in PLC of
type bool (up to alpha-conversion, of course), but it is beyond thepeanf this course to
prove it.

'Recall our notational conventions: — o — o meansxy — (o — a).

4.4 Datatypes in PLC

Polymorphic lists

alist & v/ (a = (a—ad —ad)—d)

Nig ¢ Ao, N2, f:ra—d —d (7))
Cons & Aa(A\z : a, b : alist(Aa(
M fra—ad —d(

fa(ta'a’ f)))))

Slide 54

Iteratively defined functions on finite lists

f
A* X finite lists of elements of the set A
Givenaset A’, an elementz’ € A’, and afunction f : A — A" — A/,
the iteratively defined function listIter = f is the unique function
g : A* — A’ satisfying:
g Nil =2’
g(@=l)=fz(gl).

foralz € Aand/ € A*.

Slide 55

57

58 4 POLYMORPHIC LAMBDA CALCULUS

Example 4.4.5(Lists). The polymorphic type corresponding to the ML datatype
datatype « list = Nil | Cons of a * (« list)

is shown on Slide 54. Undoubtedly it looks rather mysteriatuirst sight. The idea behind
this representation has to do with the operationtefation over a listshown on Slide 55.
The existence of such functioistiter 2’ f does in fact characterise the skt of finite lists
over a setd uniquely up to bijection. We can take the operation

(11) M fra—a — o (listlter 2’ f ()

(of type o’ — (o — o’ — o) — &) as the ‘algorithmic essence’ of the li6t: « list.
Clearly this operation is parametrically polymorphicdhand so we are led to thétype
given on Slide 54 as the polymorphic type of lists represkia the iterator operations they
determine. Note that from the perspective of this reprediemt, thenil list is characterised
as that list which when anystlter 2’ f is applied to it yields:’. This motivates the definition
of the PLC expressiowVil on Slide 54. Similarly for the constructd@ons for adding an
element to the head of a list. It is not hard to prove the typing

{}F Nil :¥Va(alist)
{}F Cons :Va(a— alist — «alist).

As shown on Slide 56, an explicitly typed version of the ogieraof list iteration can
be defined in PLCiter a o 2’ f satisfies the defining equations for an iteratively defined
function (11) up to beta-conversion.

List iteration in PLC

iter % Ao, /(M !, fra— ' — d(
N alist (a2 f)))
satisfies:
o Hiter :Va,o (¢/ = (a—ad —d) = alist —)
o iterad 2’ f(Nila) =3 2

o iterad x’' f(Consaxl)=p fux(iterad z' f1)

Slide 56

4.5 Exercises 59

ML PLC
def
datatype null = ; null = Va(a)
datatype unit = Unit; unit € Vo (o = «)
aq * Qo Oél*OégdéfVOé((OélﬁOéQ%Oé)—)Oé)
def
datatype (a1, ag)sum = (a1, o) sum =
Inl of ay | Inr of ao; Va (a1 = a) = (ae — a) — «a)
datatype nat = nat def
Zero | Succ of nat; Va(a— (a—a) = «a)
. . def
datatype binTree = binTree =
Leaf | Node of binTree x binTree; Va(a— (a—a—a) =)

Figure 5: Some more algebraic datatypes

Booleans and lists are examples of ‘algebraic’ datatypespnes which can be specified
(usually recursively) using products, sums and previodsfyned algebraic datatypes. Thus
in Standard ML such a datatype (callelg, with constructor€’, . . ., C,,,) might be declared

by
datatype (a1,...,an)alg=Cpof 71 |-+ | Cp, of Ty

where the typesy, ..., 7, are built up from the type variables,, ..., «, and the type
(a1,...,an)alg itself, just using products and previously defined algebdiitatype con-
structors, but not, for example, using function types. Fegb gives some other algebraic
datatypes and their representations as polymorphic typdact all algebraic datatypes can
be represented in PLC: see (Girard 1989, Sections 11.3+5)de details.

4.5 Exercises

Exercise 4.5.1.Give a proof inference tree for (8) in Example 4.1.1. Show tha
Vi (g = Vas (ag)) — bool list

is another possible polymorphic type fof ((f true) :: (f nil)).

Exercise 4.5.2.Show that ifl' - M : 7 andI" = M : 7" are both provable in the PLC type

system, them = 7/ (equality up toa-conversion). [Hint: show thall def {T,M,7) | THF
M:7 & V7' (I'EM: 7 = 7=7")}is closed under the axioms and rules on Slide 45.]

60 4 POLYMORPHIC LAMBDA CALCULUS

Exercise 4.5.3.In PLC, defining the expressidrt x = M; : 7 in M5 to be an abbreviation
for (Az : 7 (Ms)) My, show that the typing rule

'-M;:m Tyx:mbEMs:m
FI—(leta::MlleinMg):Tg

if z ¢ dom(T)

is admissible—in the sense that the conclusion is provékieihypotheses are.

Exercise 4.5.4.The erasure erase(M), of a PLC expressiod/ is the expression of the
untyped lambda calculus obtained by deleting all type miatron from\/:

erase(x

erase(Ax : 7 (M)) = Az (erase(M))

~— — ~— ~— —

erase(My My erase(My) erase(Ms)
erase(A o (M) def erase(M)
erase(M T o erase(M).

(i) Find PLC expressions/; and M, satisfyingerase(M;) = Az () = erase(Ms) such that
F M :Va(a— a)and- M, : Vag (ag — Vas (o)) are provable PLC typings.

(i) We saw in Example 4.2.6 that there is a closed PLC expyasy of typeV a (a) —Va («)

satisfyingerase(M) = X f (f f). Find some other closed, typeable PLC expressions with
this property.

(i) [For this part you will need to recall, from the CST PdB Foundations of Functional
Programmingcourse, some properties of beta reduction of expressidghs intyped lambda
calculus.] A theorem of Girard says thatHf M : 7 is provable in the PLC type system,
then erase(M) is strongly normalisable in the untyped lambda calcules, there are no
infinite chains of beta-reductions starting framuse(M). Assuming this result, exhibit an
expression of the untyped lambda calculus which is not equatase(M') for any closed,
typeable PLC expressialy.

Exercise 4.5.5.Attack or defend the following statement.

‘A typed programming language olymorphiaf a well-formed phrase of the language may
have several different types.

[Hint: consider the property of PLC given in the theorem oll&H7.]
Exercise 4.5.6.Prove the various typings and beta-reductions assertexample 4.4.4.

Exercise 4.5.7.Prove the various typings asserted in Example 4.4.5 ancetlaedonversions
on Slide 56.

4.5 Exercises 61

Exercise 4.5.8.For the polymorphic product type; * as defined in the right-hand column
of Figure 5, show that there are PLC expressiBng-, fst, andsnd satisfying:

{}F Pair :Vaj,as (o = as — (a1 x az))
{}F fst:Vag,as (a1 xaz) — ar)
{}Fsnd :Vag,as (a1 *az) = ag)

fst ay aa(Pair ag cp k1 £2) =5 21

snd o ag(Pair o ag 1 T2) =g 2.

Exercise’ 4.5.9. Suppose that is a PLC type with a single free type variabte, Suppose
also thatl is a closed PLC expression satisfying

{}FT: Vo, a2 ((a1 = a2) = (tlar/a] = Taz/a])).
Define. to be the closed PLC type
L Va((t = a) — a).
Show how to define PLC expressioRsand/ satisfying

{}FR:Va((t—a) > t—a)
{}FI:7[t/a] =1
(Raf)YIz) =" f(Tia(Raf)x).

62

4 POLYMORPHIC LAMBDA CALCULUS

5 Further Topics

The study of types forms a very vigorous area of computemseigesearch, both for
computing theory and in the application of theory to praeticThis course has aimed
at reasonably detailed coverage of a few selected topictyeck around the notion of
polymorphism in programming languages. To finish, | mensome other topics which
are of interest in the development of the theory and appbiaif type systems in computer
science, together with some pointers to the literature.

5.1 Dependent types

A tautology checker

fun taut n f = if n = Othen f else
(taut(n — 1)(f true))
andalso (taut(n — 1)(f false))
Defining types

{0 AryBoolOp L ool

(n+ 1) AryBoolOp © bool — (n AryBoolOp)

then taut n has type (n AryBoolOp) — bool, i.e. the result type of
the function taut depends upon the value of its argument.

Slide 57

Consider programming a functiafaut that takes inn-ary boolean operations (in ‘curried’
form)
f = bool — bool — - - - bool— bool

~
n arguments

and returngrue if f is a tautology, i.e. has valueue for all of its 2" possible arguments,
and returngalse otherwise. One might try to programut in Standard ML as on Slide 57.
This is algorithmically correct, but does not type-checkMih. Why? Intuitively, the
type of taut n for each natural numbet = 0,1,2,... is the typen AryBoolOp of ‘n-
ary curried boolean operations’ defined (by inductiongnon Slide 57. Thusaut is
really a dependently typed functierthe type of its result depends on tkalue of the
argument supplied to it—and so it is rejected by the ML typeaker, because ML does

63

64 5 FURTHER TOPICS

not permit such dependence in its types. Slide 58 programgatitology-checker in Agda
(wiki.portal.chalmers.se/agda/agda.php), a popular dependently typed functional
programming language with syntax reminiscent of Haskai(haskell. org).

The tautology checker in Agda

data Bool : Set where
True : Bool
Fal se : Bool

and : Bool -> Bool -> Bool
True and True = True

True and Fal se = Fal se

Fal se and _ = Fal se

data Nat : Set where
Zero : Nat
Succ : Nat -> Nat

_AryBool Op : Nat -> Set
Zero AryBool Op = Bool
(Succ n) AryBool Op = Bool -> n AryBool Op

taut : (n : Nat) -> n AryBool Op -> Boo
taut Zero f = f
taut (Succ n) f = taut n (f True) and taut n (f Fal se)

Slide 58

In general alependent typis a family of types indexed by individual values of a data&typ
(In the above example the family of typesdryBoolOp is indexed by values of a type of
numbers.) Some typing rules for dependent function typeg&en on Slide 59. Note that
the usual typing rules for function types— 7’ are the special case where the typdas no
dependency on values.

Type systems featuring dependent types are able to expredsmore refined properties
of programs than ones without this feature. So why do theygebuused in programming
languages? The answer lies in the fact that type-checkitiy ddgpendent types naturally
involves checking equalities between the data values upuohwthe types depend. For
example, if we add to the Agda code in Slide 58 a definition efatidition function

plus : Nat -> Nat -> Nat
n plus Zero = n
n plus (Succ n’) = Succ(n plus n’)

then terms of type&((Succ Zero)plus(Succ Zero))AryBoolOp are also terms of type
(Succ(Succ(Zero)))AryBoolOp.

5.1 Dependent types 65

Dependent function types (z : 7) — 7’

Do:7HM:7
FEAXe:7(M):(x:7)—>7

ifx ¢ dom (") U fo(T")

'tM:(z:7)—=7 I'EM 7
MM : 7'M/ x]

7/ may ‘depend’ on , i.e. have free occurrences of .

(Free occurrences of x in 7’ are bound in (z : 7) — 7))

Slide 59

In a Turing-powerful language (which Adga is not) one wowgect such value-equality
to be undecidable and hence static type-checking beconpessible. How to get round this
problem is an active area of research. For example the Cayanguage (Augustsson 1998)
takes a general-purpose, pragmatic, but incomplete apiproghereas (Xi and Pfenning
1998) uses dependent types for a specific task, namely statimation of run-time array
bound checking, by resticting dependency to a language tefjém expressions where
checking equality reduces to solving linear programmirapfgms.

Type theories with dependent types have been used extBnsiv®mputer systems for
formalising mathematics, for proof construction, and feecking the correctness of proofs.
Coq (coq.inria.fr) is an increasingly popular example of such a system. Inrdspect
Martin-Lof’s intuitionistic type theorywhich first popularised the notion of ‘dependent type’)
has been highly influential; see Nordstrom, Petersson Sanith 1990 for an introduction.
The Agda language is based upon it (and as it say on its honse Bagla is a proof assistant’
as well as a dependently typed functional programming laggyu

66 5 FURTHER TOPICS

Curry-Howard correspondence

Logic < Type system
propositions, ¢ & types, 7
(constructive) proofs, p <> expressions, M
‘p is a proof of ¢’ < ‘M is an expression of type 7’
simplification of proofs < reduction of expressions

Slide 60

5.2 Curry-Howard correspondence

The concept of ‘type’ first arose in the logical foundatioisrathematics. Russell (1903)
circumvented the paradox he discovered in Frege’s setyhisostratifying the universe of
untyped sets into levels, or types. Church (1940) proposgpead, higher order logic based
on functions rather than sets and which is capable of fosmmgilarge areas of mathematics.
A version of this logic is the one underlying the HOL systenof@n and Melham 1993).
See (Lamport and Paulson 1999) for a stimulating discussitre pros and cons of untyped
logics (typically, set theory) versus typed logics for magising mathematics.

The interplay between logic and types has often been medmtehe correspondence
between certain systems of constructive logic and ceryg@ied lambda calculi first noted by
the logician Curry in the 1950s and brought to the attentiboomputer scientists by the
work of Howard in the 1980s. As a result, this connection leetvlogic and type systems
is often known as th€urry-Howard correspondeng@and also as the ‘proposition as types’
idea); it is sketched on Slide 60. To see how the Curry-Howardespondence works, we
will look at a specific instance, namely the correspondemteden the PLC type system of
Section 4 and the logic known agcond-order intuitionistic propositional calcul(@IPC),
which is defined on Slide 61.

5.2 Curry-Howard correspondence

Second-order intuitionistic propositional calculus (2IP Q)

2IPC propositions: [¢ ::=p | ¢ — ¢ | Vp (¢) |, where p ranges over
an infinite set of propositional variables.

2IPC sequents: | ® F ¢ |, where P is a finite set of 2IPC propositions
and ¢ is a 2IPC proposition.

® - ¢ is provable if it is in the set of sequents inductively generated by:

() dFo¢ ifped

B¢ ¢ Do ¢ Do
(o) —— (—E)
dFp— F
D HEVp(e)
Vi) ————ifp ¢ fu(P) (VE) —————
®HVp(e) ® - ¢[¢' /)]
Slide 61

67

Note that if we identify propositional variables with PLQigpe variables, then 2IPC
propositionsare just PLC types. Every proof of a 2IPC sequd@nt- ¢ can be described
by a PLC expressiod/ satisfyingl' - M : ¢, once we have fixed a labelling = {z; :

¢17~'~7$

n @ ¢n} Of the propositions inb = {¢1,..., ¢, } with variablesz, ..

. M

is built up by recursion on the structure of the proof of thguemt using the following
transformations:

(Id) ®,0F ¢ = ()T :Px:pkx:0
- O, ok ¢ . T:®.x: b M:
Ok ¢— o T RNz (M) b ¢
Oop—¢ DFo T:PFM:¢p—¢ T:PFMy:¢
(—E) — (app) —
O+ ¢ T:DF M M,y: ¢
+ T: :
oy o geny 2T MO
dHVYp(o) T:®FAp(M):Vp(o)
PV T:dFM:V
vE) p(9) L (spec) p ()
O+ lo'/p] T:0F Mg :p[¢'/p]

This is illustrated on Slide 62. The example on that slidesuke fact that the logical

68 5 FURTHER TOPICS

operation of conjunction can be defined in 2IPC. Slide 65gs8ame other logical operators
that are definable in 2IPC. Compare it with Figure 5: the regmof PLC for expressing
datatypes is mirrored under the Curry-Howard correspoceléy the richness of 2IPC for
expressing logical constructions.

A 2IPC proof
(1d)
{p&a,p,a} Fp
—1) (Id)
{p&aqptta—p N {p&atbVr(p—q—r)—r) VE)
{p&atrp—q—p {p&atrp—qg—p)—p
(—E)
{p&attp
Orrkasp)
(VI)
{}FYep & q—p) o)
{}FVp.ap& qg—p)
where p & ¢ is an abbreviation for Vr ((p — ¢ — 1) — 1).
The PLC expression corresponding to this proof is:
Ap,g(Az:p&q(zp(Az:p,y:q(2)))).

Slide 62

The Curry-Howard correspondence gives us a different petsfe on the typing judge-
mentl’ = M : o, outlined on Slide 63. As well as the undecidablity resulhti@ed on that
slide, it should be noted that 2IPC izanstructiverather than &lassicallogic, in the sense
that theLaw of Excluded Middlés not provable in 2IPC—see Slide 64. The Law of Excluded
Middle is so familiar that, when reasoning in classical togve may hardly be aware we are
using it. Slide 66 gives an example of a proof in classicaldtigat perhaps leaves a bad taste
in the mouth: it proves that there are irrational numberssehexponential is rational, but it
does not give any explicit example of such numbers.

The Curry-Howard correspondence cuts both ways: in onetthreit has proved very
helpful to use lambda terms as notations for proofs in meskdnproof assistants (such
as Coq); in the other it has helped to suggest new type sysfemsrogramming and
specification languages. Two examples of the second kingmfcation are the transfer of
ideas from Girard’dinear logic (Girard 1987) into systems difiear typesin usage analyses
(see Chirimar, Gunter, and Riecke (1996), for example);thedise of type systems based
on modal logicsfor analysingpartial evaluationandrun-time code generatio(Davis and
Pfenning 1996).

5.2 Curry-Howard correspondence

Type-inference versus proof search

Type-inference: ‘given I' and M, is there a type o such that
I'EM:o?

(For PLC/2IPC this is decidable.)

Proof-search: ‘given I" and o, is there a proof term M such that
I'EM:o?

(For PLC/2IPC this is undecidable.)

Slide 63

2IPC is a constructive logic

For example, there is no proof of the Law of Excluded Middle
Vp(pV-p)
Using the definitions on Slide 65, this is an abbreviation for

Vp,q((p—q)— ((p—=>Vr(r) —q) —q)

(The fact that there is no closed PLC term of type V p (p V —p) can be proved
using the technique developed in the Tripos question 13 on paper 9 in 2000.)

Slide 64

69

70

5 FURTHER TOPICS

Logical operations definable in 2IPC

o Truth: true = Vp(p—p).

e Falsity: false def Vp(p).

e Conjunction: ¢ & ¢’ o p((¢ = ¢ = p)—=p)
(where p & fo (e, ¢')).

def

e Disjunction: ¢ V ¢/ = Vp ((¢p — p) — (¢ = p) — p) (where

p ¢ fo(d,¢)).

f
e Negation: —¢ e ¢ — false.

e Existential quantification: 3 p (¢) def Vo' (Vp(p—p') =)

(where p’ ¢ fu(¢,p)).

Slide 65

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that b% is
rational.

Proof. Either \/2\/2 is rational, or it is not (LEM!).

If it is, we can take a = b = /2, since /2 is irrational by a well-known
theorem attributed to Euclid.

If it is not, we can take a = /2 and b = \/2\/2, since then
bt = (2V2)\V2 = \2VPVE = 92 = 9,
QED

Slide 66

5.3 Concurrency and distributed systems 71

5.3 Concurrency and distributed systems

The typing of languages involving concurrent threads of gotation and associated notions
of mobility and distribution is so current a topic of resdatisat it is difficult to give pointers
to well-digested accounts. A basic motivation for the uséypé systems here is the same
as for more traditional languages: to avoid unsafe or unalelsi behaviour via static checks.
However the kinds of unsafe behaviour are now much more doatpt, or at least, less
well-understood. For example, there are type systems wdanlensure that locks are used
correctly (Flanagan and Abadi 1999); and in distributed (@ossibly mobile) settings, there
are a number of type systems which further classify valuehéylace at which they reside
in a network and/or the resources to which they have accddsnnessy and Riely 2002),
for example. This is not only a very interesting and a venylehging area, but also one of
rather immediate practical concern.

5.4 Security

Extending the idea mentioned in the Introduction of compilensuring whole-language
safety through static type-checking, type systems aredhedation of several systems for
deciding whether compiled code obtained from a potentiafiyustworthy source is safe to
execute. Both Sun’s Java Virtual Machine (JVM) and MicrésoNET Common Language
Run-time (CLR) include type-checkers (eerifierg, which are run before compiled code
is executed. A nice overview of the internals of JVM verifioathas been written by
Leroy (2003). The correctness of higher-level securityrapens (such as the management
of explicit permissions to perform potentially-unsafe gimns) relies on the typability of
any untrusted code which will be allowed to execute. Typdesys are also being used
to formalise and check properties which are more secupiégific. One line of research
classifies the inputs and outputs of a program as either $eghrity or low-security. A type
system can then be used to ensure that high-security infammeannot affect low-security
outputs (imagine downloading a banking application whiels ko communicate over the
network to retrieve current tax rates, etc., but which yoshnd be sure will not leak any of
your personal information). See Volpano, Smith, and In{it@96) for example.

5.5 Low-level languages

Traditionally, sophisticated type systems are usedhigh-level programming languages,
i.e. ones that abstract away from the low-level details otimree services. Low-level
languages such as C or assembler have made do with eitherpae ty type systems
which are both inexpressive and unsafe. In particular, feghkl, safe, typed languages
have been compiled into low-level, untyped, unsafe oneseReyears have seen a great
deal of research activity on typed assembly language (TAd)tgpe-preserving compilation
(Morrisett, Walker, Crary, and Glew 1999). The idea her@isdmpile an ML program, for
example, into a typed assembly language program in such ahaaghecking the types on
the assembly code gives the same safety guarantees as srfeogethe ML type system
with respect to a high-level operational semantics for MhisTis clearly similar to the use
of bytecode verification discussed above; the differendbas the intermediate languages

72 5 FURTHER TOPICS

of the JVM and CLR are fairly high-level, so verification igrsiar to type checking Java
or C' source (and therefore not too difficult) but the interprewedIT compiler which runs
after the verifier has to be part of the ‘trusted computing base R).(n the type-preserving
compilation approach, the types (and hence the type chefikethe low-level code tend
to be rather more complex—indeed they require the use of the & ‘impredicative’
polymorphism we studied in Section 4); but only the typeetiee need be part of the TCB:
bugs or maliciousness in the compiler are either benign @dyfAL programs which fail
to typecheck; see also work @moof-carrying codesuch as Necula (1997). An active area
of related work concerns designing C-like languages witl sgoe systems (and which may
be compiled to TAL). Examples include CCured (Necula, MéRemd Weimer 2002) and
Cyclone (Jim, Morrisett, Grossman, Hicks, Cheney, and W&QR). These languages vary
in their degree of compatibility with legacy C code and in¢téent to which safety is ensured
by static, rather than dynamic, checks.

5.6 Database query languages

Schema for relational databases or DTDs for XML documersi&ind of type. The last few
years have seen a great deal of research on integratingioygbsse sorts of data into the type
systems of (new and existing) programming languages. Tagsriany potential advantages,
such as being able to check statically that a program whehstorms XML documents
always produces valid output (e.g. well-formed HTML) fromlid input. Languages such
as XDuce, CDuce (Benzaken, Castagna, and Frisch 2003) aate Xtve types which
can express regular expressions over tree-structured ldaguage inclusion thus induces
a subtype relation, and type inference and checking invobraputing with these regular
expressions.

References

Aho, A. V., R. Sethi, and J. D. Ullman (1986Fompilers. Principles, Techniques, and
Tools Addison Wesley.

Augustsson, L. (1998). Cayenne—a language with depenggpes.t In ACM SIG-
PLAN International Conference on Functional ProgramminGfFP 1998, Balti-
more,Maryland, USAACM Press.

Benzaken, V., G. Castagna, and A. Frisch (2003). CDuce: An_Xkntric general-
purpose language. IRroceedings of the 8th ACM International Conference on
Functional Programming (ICFP’03), Uppsala, Swedep. 51-64.

Cardelli, L. (1987). Basic polymorphic typecheckirgcience of Computer Program-
ming 8 147-172.

Cardelli, L. (1997). Type systems. @RC Handbook of Computer Science and Engineer-
ing, Chapter 103, pp. 2208-2236. CRC Press.

Chirimar, J., C. A. Gunter, and J. G. Riecke (1996). Refezamzinting as a computational
interpretation of linear logicJournal of Functional Programming(g), 195-244.

Church, A. (1940). A formulation of the simple theory of tgpdournal of Symbolic
Logic 5 56—68.

Damas, L. and R. Milner (1982). Principal type schemes focfiwonal programs. IRroc.
9th ACM Symposium on Principles of Programming Lanuagps207-212.

Davis, R. and F. Pfenning (1996). A modal analysis of stagedputation. INnACM
Symposium on Principles of Programming Languages, Str$teigy Beach, Florida
pp. 258-270. ACM Press.

Flanagan, C. and M. Abadi (1999). Types for safe lockin@tmEuropean Symposium on
Programming (ESOP '99) ecture Notes in Computer Science, pp. 91-108. Springer-
Verlag.

Girard, J.-Y. (1972).Interprétation fonctionelle etélimination des coupures dans
l'arithmetique d’ordre supgrieur. Ph. D. thesis, Université Paris VII. These de doc-
torat d’état.

Girard, J.-Y. (1987). Linear logid heoretical Computer Science,363-101.

Girard, J.-Y. (1989)Proofs and TypesCambridge University Press. Translated and with
appendices by Y. Lafont and P. Taylor.

Gordon, M. J. C. and T. F. Melham (1993jtroduction to HOL. A theorem proving
environment for higher order logic€ambridge University Press.

Harper, R. (1994). A simplified account of polymorphic refecesInformation Process-
ing Letters 51201-206.

Harper, R. and C. Stone (1997). An interpretation of Stashddt in type theory.
Technical Report CMU-CS-97-147, Carnegie Mellon Univgr§iittsburgh, PA.

Hennessy, M. and J. Riely (2002). Resource access contsyistems of mobile agents.
Information and Computation 1782-120.

73

74 REFERENCES

Hindley, J. R. (1969). The principal type scheme of an objactombinatory logic.
Transations of the American Mathematical Society, 285-40.

Jim, T., G. Morrisett, D. Grossman, M. Hicks, J. Cheney, antVg&ng (2002). Cyclone:
A safe dialect of C. IWSENIX Annual Technical Conferengm. 275-288.

Lamport, L. and L. C. Paulson (1999). Should your specificaliinguage be typed®CM
Transactions on Programming Languages and Systerf&),Z02-526.

Leroy, X. (2003). Java bytecode verification: AlgorithmsldarmalizationsJournal of
Automated Reasoning 3P35-269.

Mairson, H. G. (1990). Deciding ML typability is completerfdeterministic exponential
time. InProc. 17th ACM Symposium on Principles of Programming Laiggs pp.
382-401.

Milner, R., M. Tofte, and R. Harper (1990)he Definition of Standard MIMIT Press.

Milner, R., M. Tofte, R. Harper, and D. MacQueen (199M)e Definition of Standard ML
(Revised)MIT Press.

Mitchell, J. C. (1996) Foundations for Programming Languagdundations of Com-
puting series. MIT Press.

Morrisett, G., D. Walker, K. Crary, and N. Glew (1999). Froys&m F to typed assembly
language ACM Transactions on Programming Languages and Systeif®y,X=28—
569.

Necula, G. (1997). Proof-carrying code. 2dth Annual ACM Symposium on Principles
of Programming Languages (PORIACM Press.

Necula, G., S. McPeak, and W. Weimer (2002). CCured: Type+sdrofitting of legacy
code. In29th Annual ACM Symposium on Principles of Programming uaggs
(POPL), pp. 128-139.

Nordstrom, B., K. Petersson, and J. M. Smith (1980hgramming in Martin-Ibf’s Type
Theory Oxford University Press.

Pierce, B. C. (2002)Types and Programming Languag®4lT Press.

Rémy, D. (2002). Using, understanding, and unravellirgdbaml language: From prac-
tice to theory and vice versa. In G. Barthe, P. Dybjer, an@di8a (Eds.)Applied Se-
mantics, Advanced Lectureflume 2395 ot ecture Notes in Computer Science, Tu-
torial, pp. 413-537. Springer-Verlag. International Summer SEHRPPSEM 2000,
Caminha, Portugal, September 9-15, 2000.

Reynolds, J. C. (1974). Towards a theory of type structurePdris Colloquium on
Programming Volume 19 of Lecture Notes in Computer Sciengep. 408—-425.
Springer-Verlag, Berlin.

Robinson, J. A. (1965). A machine oriented logic based omeakelution principleJour.
ACM 12 23-41.

Russell, B. (1903)The Principles of Mathematic€ambridge.

Rydeheard, D. E. and R. M. Burstall (198&omputational Category Thearferies in
Computer Science. Prentice Hall International.

REFERENCES 75

Strachey, C. (1967). Fundamental concepts in programmamguages. Lecture notes for
the International Summer School in Computer Programmingpe@hagen.

Tofte, M. (1990). Type inference for polymorphic referesidaformation and Computa-
tion 89, 1-34.

Tofte, M. and J.-P. Talpin (1997). Region-based memory mament.Information and
Computation 13@2), 109-176.

Volpano, D., G. Smith, and C. Irvine (1996). A sound type egsfor secure flow analysis.
Journal of Computer Security(d), 167-187.

Wells, J. B. (1994). Typability and type-checking in the @ed-order\-calculus are
equivalent and undecidable. Rroceedings, 9th Annual IEEE Symposium on Logic
in Computer Scieng¢daris, France, pp. 176-185. IEEE Computer Society Press.

Wright, A. K. (1995). Simple imperative polymorphisilSP and Symbolic Computa-
tion 8, 343-355.

Wright, A. K. and M. Felleisen (1994). A syntactic approachyipe soundnestnforma-
tion and Computation 11538-94.

Xi, H. and F. Pfenning (1998). Eliminating array bound chegkthrough dependent
types. InProc. ACM-SIGPLAN Conference on Programming Language ddeand
Implementation, Montreal, Canadpp. 249-257. ACM Press.

76

REFERENCES

