
Concurrency and
security

Dr Robert N.M. Watson
Computer Laboratory

University of Cambridge

Part II Security
22 February 2012

• What is concurrency?

• How does it relate to security?

• System call wrappers case study

• Lessons learned

Outline

2

3

concurrent (adj):

Running together in space, as parallel
lines; going on side by side, as
proceedings; occurring together, as
events or circumstances; existing or
arising together; conjoint, associated.

Oxford English Dictionary, Second Edition

• Multiple computational processes
execute at the same time and may
interact with each other

• Concurrency leads to the
appearance of non-determinism

4

Concurrency

Finding concurrency

• Interleaved or
asynchronous
computation

• Parallel computing

• Distributed systems

5

Local concurrency

• Interleaved or
asynchronous
execution on a
single processor

• More efficient use
of computation
resources

• Mask I/O latency,
multitasking,
preemption

6

Shared memory
multiprocessing

• Multiple CPUs with
shared memory

• Possibly asymmetric
memory speed/topology

• Weaker memory model:
writes order weakened,
explicit synchronisation

• New programming
models

7

Message passing and
distributed systems

• Protocol-centric
approach with explicit
communication

• Synchronous or
asynchronous

• Explicit data consistency
management

• Distributed file systems,
databases, etc.

8

Concurrency research

• Produce more concurrency and parallelism

• Maximise performance

• Represent concurrency to the programmer

• Identify necessary and sufficient orderings

• Detect and eliminate incorrectness

• Manage additional visible failure modes

9

Practical concerns

• Performance

• Consistency of replicated data

• Liveliness of concurrency protocols

• Distributed system failure modes

10

Consistency models

• Semantics when accessing replicated data
concurrently from multiple processes

• Strong models support traditional
assumptions of non-concurrent access

• Weak models exchange consistency for
performance improvement

• Critical bugs arise if mishandled

11

ACID properties

• Database transaction properties

• Atomicity - all or nothing

• Consistency - no inconsistent final states

• Isolation - no inconsistent intermediate
states

• Durability - results are durable

12

Serialisability

• Results of concurrent transactions must be
equivalent to outcome of a possible serial
execution of the transactions

• Serialisable outcomes of {A, B, C}:

• A B C A C B B A C
B C A C A B C B A

• Strong model that is easy to reason about

13

Weaker consistency

• Strong models expose latency/contention

• Desirable to allow access to stale data

• Timeouts: DNS caches, NFS attribute
cache, x509 certificates, Kerberos tickets

• Weaker semantics: AFS last close, UNIX
passwd/group vs. in-kernel credentials

• Must reason carefully about results

14

Concurrency and
security

• Abbot, Bisbey/Hollingworth in 1970’s

• Inadequate synchronisation or
unexpected concurrency leads to
violation of security policy

• Race conditions

• Distributed systems, multicore
notebooks, ... this is an urgent issue

15

Concurrency
vulnerabilities

• When incorrect concurrency
management leads to vulnerability

• Violation of specifications

• Violation of user expectations

• Passive - leak information or privilege

• Active - allow adversary to extract
information, gain privilege, deny service...

16

Example passive
vulnerability

• Simultaneously executing
UNIX chmod with
update syntax

• chmod g-w file

• stat() and chmod()
syscalls can’t express
update atomically

• Both commands succeed
but only one takes effect

17

The challenge

• Reasoning about security and concurrency
almost identical

• “Weakest link” analysis

• Can’t exercise bugs deterministically in
testing due to state explosion

• Debuggers mask rather than reveal bugs

• Static and dynamic analysis tools limited

18

From concurrency bug
to security bug

• Vulnerabilities in security-critical interfaces

• Races on arguments and interpretation

• Atomic “check” and “access” not possible

• Data consistency vulnerabilities

• Stale or inconsistent security metadata

• Security metadata and data inconsistent

19

Learning by example

• Consider three vulnerability types briefly

• /tmp race conditions

• SMT covert channels

• Detailed study

• System call wrapper races

20

/tmp race conditions

• Bishop and Dilger, 1996

• UNIX file system APIs allow non-atomic
sequences resulting in vulnerability

• Unprivileged processes manipulate /tmp
and other shared locations

• Then race against privilege processes to
replace targets of open(), etc.

21

/tmp races (cont)

22

SMT side channels

• Percival 2005, Bernstein 2005, Osvik 2005

• Covert/side channel channels historically
considered an academic research topic

• Symmetric multithreading, Hyper-threading,
and multicore processors share caches

• Possible to extract RSA, AES key material
by analysing cache misses on shared cache

23

SMT covert channels

24

System call wrapper
vulnerabilities

• Our main case study: system call wrappers

• Widely-used security extension technique

• No OS kernel source code required

• Pre- and post-conditions on system calls

• Application sand-boxing and monitoring

• Frameworks: GSWTK, Systrace, CerbNG

25

System call wrappers as
a reference monitor

26

Are wrappers a
reference monitor?

27

• Reference monitors (Anderson 1972)

• Tamper-proof: in kernel address space

• Non-bypassable: can inspect all syscalls

• Small enough to test and analyse: security
code neatly encapsulated in one place

• Perhaps they count?

Or not

• No time axis in neat picture

• System calls are not atomic

• Wrappers definitely not atomic with
system calls

• Opportunity for race conditions on copying
and interpretation of arguments and results

28

Race conditions to
consider

• Syntactic races - indirect arguments are
copied on demand, so wrappers do their
own copy and may see different values

• Semantic races - even if argument
values are the same, interpretations may
change between the wrapper and kernel

29

Types of system call
wrapper races

• TOCTTOU - time-of-check-to-time-of-use

• TOATTOU - time-of-audit-to-time-of-use

• TORTTOU - time-of-replacement-to-time-
of-use

30

Goals of the attacker

• Bypass wrapper to perform controlled
audited, or modified system calls

 open(“/sensitive/file”, O_RDWR)
 write(fd, virusptr, viruslen)
 connect(s, controlledaddr, addrlen)

• Can attack indirect arguments: paths, I/O
data, socket addresses, group lists, ...

31

Racing in user memory

• User process, using concurrency, will
replace argument memory in address space
between wrapper and kernel processing

• Uniprocessor - force page fault or blocking
so kernel yields to attacking process/thread

• Multiprocessor - execute on second CPU
or use uniprocessor techniques

32

Practical attacks

• Consider attacks on three wrapper
frameworks implementing many policies

• Systrace [sudo, sysjail, native policies]

• GWSTK [demo policies and IDwrappers]

• CerbNG [demo policies]

• Attacks are policy-specific rather than
framework-specific

33

Uniprocessor example

34

• Generic Software Wrappers Toolkit
(GSWTK) with IDwrappers

• Ko, Fraser, Badger, Kilpatrick 2000

• Flexible enforcement + IDS framework

• 16 of 23 demo wrappers vulnerable

• Employ page faults on indirect arguments

UP GSWTK exploit

35

Multiprocessor example

36

• Sysjail over Systrace

• Provos, 2003; Dzonsons 2006

• Systrace allows processes to instrument
system calls of other processes

• Sysjail implements FreeBSD’s “jail” model
on NetBSD and OpenBSD with Systrace

• Employ true parallelism to escape Sysjail

SMP Systrace exploit

37

Implementation notes

• OS paging systems vary significantly

• On SMP, race window sizes vary

• TSC a good way to time attacks

• Systrace experiences 500k cycyle+
windows due to many context switches;
others much faster

• Both techniques are extremely reliable

38

Defence against
wrapper races

• Serious vulnerabilities

• Bypass of audit, control, replacement

• Easily bypassed mitigation techniques

• Interposition requires reliable access to
syscall arguments, foiled by concurrency

• More synchronisation, message passing, or
just not using system call wrappers...

39

Lessons learned

• Concurrency bugs are a significant security
threat to complex software systems

• Developing and testing concurrent
programs is extremely difficult

• Static analysis and debugging tools are of
limited utility, languages are still immature

• SMP and distributed systems proliferating

40

Concurrency principles
for secure software

1. Concurrency is hard — avoid it

2. Strong consistency models are easier to
understand and implement than weak

3. Prefer multiple readers to multiple writers

4. Prefer deterministic invalidation to time
expiry of cached data

41

Principles II

5. Don’t rely on atomicity that can’t be
supported by the underlying platform

6. Message passing, while slower, enforces a
protocol-centric analysis and can make
reasoning and debugging easier

7. Document locking or message protocols
with assertions that see continuous testing

42

Principles III

8. Defending against side channels is difficult
(impossible), but critical for crypto

9. Remember that every narrow race window
can be widened in a way you don’t expect

10. Always test on slow hardware

43

