
© Zühlke 2012

Mike Hogg

Software Design

An Industrial Perspective

Lecture 7, Software Design, Part 1A CST

2. May 2012
Slide 1 of 32

© Zühlke 2012

Who am I?

Slide 2 of 32

Education
•Cambridge University 1992 -1996
•MEng Electrical and Information Science

Professional Qualifications

•Chartered Engineer (CEng)
•Member of IET

Summary of Experience

14 Years Software Development

Telecoms

Large Scale

1997 -2000

11 Years Leadership Responsibilities

Semiconductors

Start-up

2000

Large Scale

2000 - 2004

Networks

Start-up

2004-2007

Finance & Gov

Large Consultancy

2007 – 2010

Medical

Zuhlke!

2010 - Now

2. May 2012 Software Design | Mike Hogg

© Zühlke 2012

Who are Zuhlke?

• Software Solutions, Product Innovation
and Consulting

• Over 7000 projects delivered

• Turnover of €51M (2010)

• 400 Employees

• Active in Austria, Germany, Switzerland
and UK

• Founded in 1968, owned by
management team since 2000

• ISO 9001 and 13485 certified

Slide 3 of 32 2. May 2012 Software Design | Mike Hogg

© Zühlke 2012

1. Development Lifecycles

2. Requirements

3. How much design do you need?

4. Lower level design

5. Other stuff

Agenda

2. May 2012 Software Design | Mike Hogg Slide 4 of 32

© Zühlke 2012

Software Design

Mike Hogg

Development Lifecycles

2. May 2012
Slide 5 of 32

Software Design | Mike Hogg

© Zühlke 2012

Agile Manifesto

Practices

Principles Agile

XP Scrum Kanban Etc.

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”

2. May 2012 Software Design | Mike Hogg Slide 6 of 32

© Zühlke 2012

Development Lifecycles - Phased

Software Design | Mike Hogg 2. May 2012 Slide 7 of 32

Requirements Design Code Test

Reqs Design Code Test Reqs Design Code Test

Waterfall

Large Iterations, Distinct Phases

Deploy

D
eploy?

D
eploy

 The world changes, requirements change
 Technical issues can be encountered late
 Big bang integration == painful

High risk!

Better Can get user feedback and change direction mid-course
 Scope to address highest technical risks earlier
 Incremental delivery
 Learning from first cycle benefits subsequent cycles

© Zühlke 2012

Development Lifecycles - Agile

Software Design | Mike Hogg 2. May 2012

Reqs

Design

Code

Test

Reqs

Design

Code

Test

Reqs

Design

Code

Test

Slide 8 of 32

D
eploy?

Reqs

Design

Code

Test

D
eploy?

D
eploy

D
eploy

Iterative, Indistinct Phases

Architectural
Framework

Walking
Skeleton
Prototype

Minimum
Viable
Product

Further
Features

 Working Software:
 Coding starts as early as feasible

 Customer Collaboration:
 Frequent releases, on-going scope conversation

 Respond to change:
 Scope not finalised until start of each iteration

© Zühlke 2012

Iterative working with Scrum

 The product is developed in a sequence of
self contained time-boxes called iterations
(Sprints)

 The product functionality grows
incrementally at each iteration

2. May 2012 Software Design | Mike Hogg Slide 9 of 32

2 – 4

Weeks

24 Hours

Product

Backlog

Sprint

Backlog

Sprint

 Tasks

Sprint Goal

Sprint Planning

 Meeting

Sprint Review

 Meeting

Sprint Retrospective

 Meeting

Daily

Scrum

Shippable

Increment

© Zühlke 2012

Software Design

Mike Hogg

Requirements

2. May 2012
Slide 10 of 32

Software Design | Mike Hogg

© Zühlke 2012

Requirements

 You need them

 “The most critical risk facing most projects is the risk of
developing the wrong product” – Mike Cohn

 They will never be perfect

 Writing requirements that are unambiguous and complete is
very hard or impossible (think of the Highway Code)

 ….and understanding them can be even harder

 They will always change (and change is good for all of us)

2. May 2012 Software Design | Mike Hogg Slide 11 of 32

© Zühlke 2012

Requirements

credited to Alex Gorbatchev on codinghorror.com
2. May 2012 Software Design | Mike Hogg Slide 12 of 32

© Zühlke 2012

Non-functional Requirements

Often overlooked:

 Performance

 Scalability

 Availability

 Security

 Disaster Recovery

 Accessibility

 Monitoring

 Management

 Auditability

 …other Runtime aspects

 Flexibility

 Extensibility

 Maintainability

 Interoperability

 Legal

 Regulatory

 Internationalisation

 …other Non-runtime

2. May 2012 Software Design | Mike Hogg Slide 13 of 32

http://www.codingthearchitecture.com/

It has to
be fast!

We
need it

in
French!

http://www.codingthearchitecture.com/

© Zühlke 2012

User Stories

2. May 2012 Software Design | Mike Hogg Slide 14 of 32

• A way of capturing requirements through simple
concrete examples

• User stories are non-technical in nature
– describe something the system should do
– not how it should do it

• Equally understandable by all stakeholders
– BA, QA, Product Owner, Developer, User

• Used in testing, estimation, prioritisation, planning
– In fact, everywhere conversations about project take place

• A user story captures the essence of a
requirement by giving an example

• Can be great as backlog items in Scrum

Time table
As a spectator
I want a daily time
table of matches at
Wimbledon
So that I can attend
the matches that
interest me

© Zühlke 2012

When a User Story is too big

When fleshing out a story, it may turn out to be at too
high a level – it needs breaking down into shorter
stories to fit into an iteration.

Such stories are known as epics.

2. May 2012 Software Design | Mike Hogg Slide 15 of 32

© Zühlke 2012

Software Design

Mike Hogg

How much design do you
need?

2. May 2012
Slide 16 of 32

Software Design | Mike Hogg

© Zühlke 2012

The Design Spectrum

2. May 2012 Slide 17 of 32

BDUF Agile Cowboy

 How detailed a design?
 All classes and algorithms vs Key elements only

 Do complete design first?

 Big Design Up Front vs Incremental vs Evolutionary

 How to capture the design?
 Full UML model vs self documenting code

 Model Driven Development (MDD)

Software Design | Mike Hogg

© Zühlke 2012

Design Essentials

 Technology decisions

 Language, frameworks/libraries, deployment

 Decomposition to modules/components

 High cohesion; modules have clear and focussed
responsibilities

 Good Abstraction; implementation details hidden

 Enables use in a variety of configurations

 Define common cross-cutting concerns

 Do not want multiple different mechanisms for
logging, error handling, audit, security,
persistence, configuration, initialisation etc.

2. May 2012 Software Design | Mike Hogg Slide 18 of 32

© Zühlke 2012

Who is the design for?

2. May 2012 Software Design | Mike Hogg Slide 19 of 32

Agreement between a small
team of developers?

A high level decomposition showing modules and key
interactions may be sufficient; use simple UML and a
whiteboard

Stakeholder approval? A functional design clearly explaining responsibilities of
each module and how non—functionals are addressed is
recommended

Maintenance developers? Will look at the code rather than detailed documentation.
Would benefit from an overview, extension examples and
having attention drawn to key areas

Deployment teams? Description of any configurability, via run-time parameters,
configuration files, or user interface is essential.
Dependencies, logging and debug mechanisms also
important

Agreement between teams on
a large multi-partner project?

Better fully document all code interfaces on the boundary
between partners and put under version control. Full API
and behaviour needed. Painful

© Zühlke 2012

Design Patterns

 Reusable solution to a commonly occurring problem

 Useful for defining a common vocabulary

 Some patterns we seem to use a lot:

2. May 2012 Software Design | Mike Hogg Slide 20 of 32

Observer Event notification mechanism; observers register
with a publisher who calls them back (notifies) on a
specific state change

Iterator Access a container’s objects sequentially. Java and
C++ collections provide iterators

State & Strategy Change the behaviour of an object while
maintaining the same interface

Factory patterns Create an instance of an object letting the factory
decide the appropriate concrete type

© Zühlke 2012

Design Capture Example – Whiteboards

2. May 2012 Software Design | Mike Hogg Slide 21 of 32

© Zühlke 2012

Design Capture Example – Simple UML

2. May 2012 Software Design | Mike Hogg Slide 22 of 32

© Zühlke 2012

Design Capture Example - Text

2. May 2012 Software Design | Mike Hogg Slide 23 of 32

© Zühlke 2012

Software Design

Mike Hogg

Low Level Design

2. May 2012
Slide 24 of 32

Software Design | Mike Hogg

© Zühlke 2012

Low Level Design

 Is more often than not code

 Exception may be extremely complex or time critical algorithms

 Self-documenting code uses human-readable names for classes,
methods, variables, etc
 Avoid abbreviations and generic names
 IDE name completion means no penalty in long names

2. May 2012 Slide 25 of 32

int process(int a[], int len) {

 int sum = 0;

 for(int i=0; i < len; i++) sum += a[i];

 sum = sum/len;

 return sum;

}
int calculateAverage(int values[], int arrayLength) {

 int sum = 0;

 for(int index=0; index < arrayLength; index++) {

 sum += values[index];

 }

 int average = sum/arrayLength;

 return average;

}
Software Design | Mike Hogg

© Zühlke 2012

Documentation Generators

 Generate documentation from code annotations
 Examples: Javadoc, Doxygen

 Can be useful - lower risk of going stale, but easily abused

2. May 2012 Software Design | Mike Hogg Slide 26 of 32

/*! \brief Starts the timer.

 * \param sec timer seconds

 * \param msec timer milliseconds

 * \return void

 */

void StartTimer(unsigned long sec, unsigned long msec);

/*! \brief Starts the Hardware Timer. The abstract method TimerTick

 * will be called every sec * 1000 + msec milliseconds until the

 * StopTimer method is called

 * \param sec timer period, seconds component

 * \param msec timer period, milliseconds component

 * \return void

 */

void StartTimer(unsigned long sec, unsigned long msec);

© Zühlke 2012

SOLID OO Design Principles

S Single
Responsibility

An object should have a single responsibility. A
responsibility can be viewed as a reason to change; a class
should have one, and only one reason to change.

O Open/closed Objects should be open for extension but closed for
modification. Commonly met by using abstract base classes
which retain interface but allow extension of functionality

L Liskov
Substitution

An object instance should be replaceable with a subtype
instance without altering program correctness. For instance
a Square deriving from a Rectangle may violate LSP

I Interface
segregation

Many client specific interfaces are better than one general
purpose one. No client should be forced to depend on
methods that it does not use

D Dependency
inversion

Depend upon abstractions, do not depend upon concrete
objects. High level components should not depend on low
level components; wire their dependencies at runtime

2. May 2012 Software Design | Mike Hogg Slide 27 of 32

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© Zühlke 2012

Software Design

Mike Hogg

Other stuff

2. May 2012
Slide 28 of 32

Software Design | Mike Hogg

© Zühlke 2012

Important Tools

 An IDE
 Look for name completion, refactoring support, etc
 We use Eclipse

 Version Control system
 Daily check-ins are standard practice
 We use Subversion

 Continuous Integration Server
 Builds and runs tests for all dependent modules on check-in
 We use Jenkins

 Backlog visible to all
 Various task tracking / collaboration tools available
 We’ve written our own, or we use Excel

 Unit test framework
 We use Junit and cxxtest amongst others

2. May 2012 Slide 29 of 32 Software Design | Mike Hogg

© Zühlke 2012

Keep Code Tidy

 Team all use same (simple) coding standards
 Code structure – braces, tabbing etc
 Naming conventions
 File and directory organisation
 Principles of note, etc

 Purge cruft and commented out code

 Don’t write code you don’t need just yet

 Think twice about making code common until you
need it in two places

 Fix all code warnings

 Avoid TODOs where at all possible. Fix it now

 All code should have unit tests

2. May 2012 Software Design | Mike Hogg Slide 30 of 32

© Zühlke 2012

Elegance in Simplicity

 Writing horribly complex code is easy

 Nobody should ever be measured by lines of code
written!

 Writing simple, easy to follow code is hard

 Simple as in economic, elegant and easy to follow

 Simple as in singularity of purpose

 Simple as in obviousness of behaviour

 Not simplistic, as in lacking in functionality

 It is worth the investment

2. May 2012 Software Design | Mike Hogg Slide 31 of 32

© Zühlke 2012

Thank you for listening

Mike Hogg

Embedded and Mobile Systems

Business Unit Lead

Zuhlke Engineering Ltd

43 Whitfield Street

London W1T 4HD

United Kingdom

Phone: 0870 777 2337

https://ikm.zuehlke.com/organisation/group/bd/pictures/Presentation Pictures/Europa_Karte_Zuehlke_Locations_medium.jpg

