Software Design
Models, Tools & Processes

Lecture 3: Addendum
Cecilia Mascolo

Example object diagram

c: Company

d1 : Department d2 : Department

name = “Sales” ename = “R&D”
link

d3 : Department

name = “US Sales”

anonymous object
manager
p : Person / (
: Contactinformation

name = “Erin” ¢
employeelD = 4362 address = “1472 Miller St.”

title = “VP of Sales”

attribute value

object —¢

Taken from [Booch 1999] RAT'ONAL

S OF TWARE

Notation for objects —
an object icon

Object name Class name

Name / /

compartment } | ceciliasUMLBook : Book

Attribute } tltle Strlng = “Using UML”
compartment

Attrlbute name \
Operations not shown Attribute value

on object diagrams

Attribute type

Example object

objectName: className

attribute name: type = value

(same operations
for all instances
of a class)

objectName: className

trianglel: Polygon

centre = (0,0)

vertices = (0,0), (4,0), (4,3)
borderColour: black
fillColour: white

display (on: Surface)
rotate (angle: Integer)
erase ()

destroy ()

select (p: point): Boolean

trianglel: Polygon

Notation for classes - a class icon

/ Class name

Name
compartment }

Attribute }
compartment

Operation }
compartment

Book

E—

R

title : String <

copiesOnShelf() : Int
borrow(c:Copy)

\\

Attribute name

~ Attribute type

Operation signatures

Notation for objects - an object icon

Object name Class name

Name / /

compartment } myUMLBook : Book

Attribute }

tltle Strlng- ‘Using UML
compartment

Attrlbute name \
Attribute value

Operations not shown
on object diagrams Attribute type

Relating classes & objects

Book

title : String

copiesOnShelf() : Int
borrow(c:Copy)

A

i <<instantiate>>

myUMLBook : Book

title = “Using UML”

Constructors

Creates instances of classes

Visibility Book Initial

adornment value
T +title : String //

+ public +available : Boolean = true

- private

protected +create() <

+copiesOnShelf() : Int
+borrow(c:Copy)

Relationships

* Relationships are connections between modelling
elements - can be uni- or bi-directional

* Helps clarify understanding of the domain, describing
how objects work together, & acts as a sanity check for

good modelling

* We will look at
— Links - relationships between objects
— Associations - relationships between classes

Links

Objects send messages to one another to invoke
operations

To send messages, objects must have some way to
reference other objects

When an object has a reference to another object, a link
exists between the objects

Links are instances of associations of class diagrams

Associations

« Associations express relationships between classes.
Class A and class B are associated if
— Object of class A sends a message to object of class B
— Object of class A creates an object of class B
— Object of class A has attribute whose values are objects of class B

— Object of class A receives message with object of class B as
argument

« Real-world associations (e.g. a library member borrows a
copy of a book)

LibraryMember Book
borrows

Notation

A4

‘ association name ’

[+ single directional arrow]

bidirectional / binary

unidirectional

aggregation

composition

supplementary

role name
multiplicity

role name characteristics

multiplicity

Links Instantiate associations

* Links depend on associations

LibraryMember

borrows

A

<<instahtiate>>

cecilia:LibraryMember

A

<<instamtiate>>

Book

<<instantiate>>

borrows

usingUML: Book

Association level

Link level

Multiplicity of an association

Number of objects that can

participate in a relationship| 2%
at any point in time 1
is copy of)
borrows/returns -
LibraryMember 01 0" Copy
0..*
- borrows/returns
borrows/returns

MemberOfStaff | 0 Journal

: D\A///f:’i
Exercise)

« Using your initial analysis class diagram for the library
system, identify & add associations between the classes
(NOTE: this is only meant to be a first approximation)

— Consider the interactions in your earlier use cases
— Consider the CRC cards you produced & the listed collaborators

« Add associations to your class diagram & provide each with:
(a) a name; (b) multiplicity; & (c) navigability

* Your analysis model should now show classes, attributes,
operations, named associations, multiplicity & navigability

Generalisation & inheritance

* Arelationship between classes Book

« Substitution principle

* Implemented by inheritance s copy of

1..*
borrows/returns
LibraryMember 7~ 0.+ Copy
borrows/returns

MemberOfStaff | 0 Journal

Example

SUPERCLASS

Staff Member

N AN Z

Librarian

Lecturer

Researcher

SUBCLASS

SUBCLASS

SUBCLASS

Handler

N

AN

KeyboardHandler

MouseHandler

JoystickHandler

Part-of associations

* Aggregation

— The part objects can feature simultaneously in

any number of other objects

Course

<

1.%

« Composition

Module

— The whole strongly owns its parts, so they

cannot feature elsewhere

Board

¢

1

Square

Derived associations

* Do you always need to show all
associations?

e Sometimes associations that are not

explicit can be deduced from the diagram

is takin
Student 2 Module

/teaches student teaches module A

Lecturer

Association classes

Used when it is required to add data to particular
links (l.e. attributes not easily placed in original

classes)
» Class icon & the association line must have the
same name (as the same thing!)

is taking
Student . - Module
Only used when
there is one
UNlQUE link is taking
between 2 Association class

specific objects mark : int

Dependencies

* Arelationship between two elements
where a change to one element may affect
information needed by the other element

* There are different kind of dependencies

— Most used one is the one where you specify
that one class is using definitions from
another class

/f(“

. \/\/// [=)3
Exercise e’)

« Examine your updated analysis model (i.e. the one that
shows classes, attributes, operations, named
associations, multiplicity & navigability)

« Update your model if there is anywhere you can apply
— Inheritance
— Association classes
— Qualified associations
— Other dependencies

« NOTE: modelling is an extremely iterative activity
(hence why tool support is so desirable!)

