
Software Design
Models, Tools & Processes

Lecture 3: Elaboration Phase
Cecilia Mascolo

USDP context

P	 r	 e	 l	 i	 m	 i	 n	 a	 r	 y	
I	 t	 e	 r	 a	 t	 i	 o	 n	 (s)	

i	 t	 e	 r	 .	
#	 1	

i	 t	 e	 r	 .	
#	 2	

i	 t	 e	 r	 .	
#	 n	

i	 t	 e	 r	 .	
#	 n	 +	 1	

i	 t	 e	 r	 .	
#	 n	 +	 2	

i	 t	 e	 r	 .	
#	 m	

i	 t	 e	 r	 .	
#	 m	 +	 1	

I	 n	 c	 e	 p	 t	 i	 o	 n	 E	 l	 a	 b	 o	 r	 a	 t	 i	 o	 n	 C	 o	 n	 s	 t	 r	 u	 c	 t	 i	 o	 n	 T	 r	 a	 n	 s	 i	 t	 i	 o	 n	

Requirements	

Design	

Implementa2on	

Test	

Analysis	

Pioneers – Peter Chen
•  Entity-Relationship Modeling

–  1976, Massachusetts Institute of Technology
•  User-oriented response to Codd’s relational

database model
– Define attributes and values
– Relations as associations between things
– Things play a role in the relation.

•  E-R Diagrams showed entity (box), relation
(diamond), role (links).

•  Object-oriented Class Diagrams show class
(box) and association (links)

UML history & status

Booch	 method	 Rumbaugh’s	 OMT	

Unified	 Method	 0.8	 OOPSLA	 ´95	

OOSE	 Other	 methods	

UML	 0.9	 &	 0.91	 Web	 -‐	 June	 ´96	 	
	 	 	 	 	 	 	 	 	 	 	 Sept	 ´96	

public	
feedback	 OMG	 Acceptance,	 Nov	 1997	

UML	 2	

UML	 1.0,	 1.1	 UML	 partners	 experience	

Derived	 from	 [Booch	 1999]	
&	 [Jacobson	 1999]	

April	 1999,	 following	 OMG	 feedback	 UML	 1.4	

	 nearly	 complete	

Review of objects and classes
•  objects

–  represent ‘things’ in some problem domain
(example: “the red car down in the car park”)

•  classes
–  represent all objects of a kind (example: “car”)

•  operations
–  actions invoked on objects (Java “methods”)

•  instance
–  can create many instances from a single class

•  state
–  all the attributes (field values) of an instance

Premise

•  It is possible to model a software system
(or other system) as a collection of
collaborating objects

Sta2c	
structure	

Dynamic	
behaviour	

Modelling elements
•  Structural elements

–  Class, interface, collaboration, use case, active class,
component, node

•  Behavioral elements
–  Interaction, state machine

•  Grouping elements
–  Package, subsystem

–  Capture the requirements of a system
•  Other elements

–  Note

Adopted	 from	 [Booch	 1999]	

Relationships

•  Dependency

•  Association

•  Generalisation

•  Realisation

Taken	 from	 [Booch	 1999]	

Diagrams
•  A diagram is a view into a model

–  Presented from the aspect of a particular stakeholder
–  Provides a partial representation of the system
–  Is semantically consistent with other views

•  In UML, there are nine standard diagrams
–  Static views: use case, class, object, component, deployment
–  Dynamic views: sequence, collaboration, statechart, activity

Taken	 from	 [Booch	 1999]	

UML models, views & diagrams

Use Case
Diagrams

Scenario
Diagrams Scenario

Diagrams Communication
Diagrams

State
Diagrams State

Diagrams Component
Diagrams

Component
Diagrams Component

Diagrams Deployment
Diagrams

State
Diagrams State

Diagrams Object
Diagrams

Scenario
Diagrams Scenario

Diagrams State
Diagrams

Sequence
Diagrams

State
Diagrams State

Diagrams Class
Diagrams

Activity
Diagrams

Models

Taken	 from	 [Booch	 1999]	

Class diagram

•  Captures the vocabulary of a system

Taken	 from	 [Booch	 1999]	

Class diagram (cont…)

•  Built & refined throughout development

•  Purpose
– Name & model concepts in the system
– Specify collaborations

•  Developed by analysts, designers &
implementers

Taken	 from	 [Booch	 1999]	

Deriving objects from a scenario

•  The nouns in a description refer to
‘things’.
– A source of classes and objects.

•  The verbs refer to actions.
– A source of interactions between objects.
– Actions describe object behavior, and hence

required methods.

Example of context description
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Nouns
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Verbs
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Extracted nouns & verbs

Cinema booking system
Stores (seat bookings)
Stores (telephone number)

Seat booking

Theatre
Has (seats)

Seat

Row

Customer
Reserves (seats)
Is given (row number, seat number)
Requests (seat booking)

Row number

Seat number Show
Is scheduled (in theatre)

Movie

Date Time

Telephone number

Scenario structure: CRC cards

•  First described by Kent Beck and Ward
Cunningham.
– Later innovators of “agile” programming,

and also the first wiki!
•  Use simple index cards, with each cards

recording:
– A class name.
– The class’s responsibilities.
– The class’s collaborators.

Typical CRC card

Class name Collaborators

Responsibilities

Partial example

CinemaBookingSystem Collaborators

Can find movies by Movie
title and day.
Stores collection of Collection
movies.
Retrieves and displays
movie details.
...

Dividing up a design model
•  Abstraction

–  Ignore details in order to focus on higher level
problems (e.g. aggregation, inheritance).

–  If classes correspond well to types in domain they will
be easy to understand, maintain and reuse.

•  Modularization
–  Divide model into parts that can be built and tested

separately, interacting in well-defined ways.
–  Allows different teams to work on each part
–  Clearly defined interfaces mean teams can work

independently & concurrently, with increased chance
of successful integration.

Class design from CRC cards

•  Scenario analysis helps to clarify
application structure.
– Each card maps to a class.
– Collaborations reveal class cooperation/object

interaction.
•  Responsibilities reveal public methods.

– And sometimes fields; e.g. “Stores
collection ...”

Refining class interfaces

•  Replay the scenarios in terms of method
calls, parameters and return values.

•  Note down the resulting method
signatures.

•  Create outline classes with public-method
stubs.

•  Careful design is a key to successful
implementation.

Dividing up a design model
•  Abstraction

–  Ignore details in order to focus on higher level
problems (e.g. aggregation, inheritance).

–  If classes correspond well to types in domain they will
be easy to understand, maintain and reuse.

•  Modularization
–  Divide model into parts that can be built and tested

separately, interacting in well-defined ways.
–  Allows different teams to work on each part
–  Clearly defined interfaces mean teams can work

independently & concurrently, with increased chance
of successful integration.

Pioneers – David Parnas
•  Information Hiding

–  1972, Carnegie Mellon University
•  How do you decide the points at which a

program should be split into pieces?
– Are small modules better?
– Are big modules better?
– What is the optimum boundary size?

•  Parnas proposed the best criterion for
modularization:
– Aim to hide design decisions within the module.

Information hiding in OO models
•  Data belonging to one object is hidden from

other objects.
– Know what an object can do, not how it does it.
–  Increases independence, essential for large

systems and later maintenance
•  Use Java visibility to hide implementation

– Only methods intended for interface to other
classes should be public.

– Fields should be private – accessible only within
the same class.

– Accessor methods provide information about
object state, but don’t change it.

– Mutator methods change an object’s state.

Cohesion in OO models
•  Aim for high cohesion:

–  Each component achieves only “one thing”
•  Method (functional) cohesion

–  Method only performs out one operation
–  Groups things that must be done together

•  Class (type) cohesion
–  Easy to understand & reuse as a domain concept

•  Causes of low, poor, cohesion
–  Sequence of operations with no necessary relation
–  Unrelated operations selected by control flags
–  No relation at all – just a bag of code

Summary

•  We have described the main activity of the
elaboration phase

•  We have introduced class diagrams as
well as CRC cards and the process of
identifying relevant classes.

