
Software Design
Models, Tools & Processes

Lecture 2: Inception Phase
Cecilia Mascolo

Inception Phase

•  This is the phase when most of the
“system requirements” are identified.
– Discover and reach agreement on what the

system has to do with the customer.
– Create a high level specification of what the

system should do.

Development Process

P	
 r	
 e	
 l	
 i	
 m	
 i	
 n	
 a	
 r	
 y	

I	
 t	
 e	
 r	
 a	
 t	
 i	
 o	
 n	
 (
 s	
)	

i	
 t	
 e	
 r	
 .	

#	
 1	

i	
 t	
 e	
 r	
 .	

#	
 2	

i	
 t	
 e	
 r	
 .	

#	
 n	

i	
 t	
 e	
 r	
 .	

#	
 n	
 +	
 1	

i	
 t	
 e	
 r	
 .	

#	
 n	
 +	
 2	

i	
 t	
 e	
 r	
 .	

#	
 m	

i	
 t	
 e	
 r	
 .	

#	
 m	
 +	
 1	

I	
 n	
 c	
 e	
 p	
 t	
 i	
 o	
 n	
 E	
 l	
 a	
 b	
 o	
 r	
 a	
 t	
 i	
 o	
 n	
 C	
 o	
 n	
 s	
 t	
 r	
 u	
 c	
 t	
 i	
 o	
 n	
 T	
 r	
 a	
 n	
 s	
 i	
 t	
 i	
 o	
 n	

Requirements	

Design	

Implementa2on	

Test	

Analysis	

What are requirements?
1. “A condition or capability needed by a user to solve a

problem or achieve an objective.

2. A condition or capability that must be met or possessed

by a system or system component to satisfy a contract,
standard, specification, or other formally imposed
document.

3. A documented representation of a condition or capability

as in 1 or 2.”

[IEEE	
 Glossary]	

Why are requirements important?

•  “The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the detailed
technical requirements, including all the interfaces to
people, to machines, & to other software systems. No
other part of the work so cripples the resulting system if
done wrong. No other part is more difficult to rectify
later.”

[Fred	
 Brooks	
 in	
 “The	
 Mythical	
 Man	
 Month”]	

The economics of requirements
Relative cost to fix an error [Boehm 1980]

Phase in which found Cost ratio
requirements 1
design 3-6
coding 10
development testing 15-40
acceptance testing 30-70
operation 40-1000

… & these figures are considered conservative!

Example
•  Problem statement

“You have been contracted to develop a computer system for a
university library. The library currently uses a 1960s program,
written in an obsolete language, for some simple bookkeeping
tasks, & a card index, for user browsing. You are asked to build
an interactive system which handles both of these aspects
online.”

•  Your task is to determine a baseline set of information
you can use to start designing your system

Writing a requirements document

•  Requirements document, requirements specification
document, requirements specification etc.

•  Statement of organised user/system requirements -
generally written in natural language

•  We need this to start software development with USDP

<unique	
 id>	
 The	
 <system	
 name>	
 shall	
 <funcLon	
 to	
 perform>	

	

“23.	
 The	
 Library	
 System	
 shall	
 validate	
 the	
 library	
 card”	

Note	
 that	
 this	
 is	
 not	
 a	
 formal	
 deliverable	
 in	
 USDP	

Functional & non-functional
requirements

•  Functional - what the system should do
–  e.g. the library system shall provide a facility for identifying the

identity of a library user
–  e.g. the library system shall provide a reminder when a book is

overdue

•  Non-functional - a constraint on how the functional
requirements can be implemented
–  e.g. the library system shall authenticate a library customer in

five seconds or less
–  e.g. the library system shall communicate with borrowers using

Email

Requirements prioritisation
MoSCoW criteria

•  M: Must have - mandatory requirements that are
fundamental to the system

•  S: Should have - important requirements that could be
omitted

•  C: Could have - optional requirements

•  W: Want to have - these requirements really can wait
(i.e. bells & whistles)

Exercise
•  Determine a set of functional requirements for the library

system
–  Consider the problem statement
–  Interview each other in your group about how you use the library

& consider what a system would need to do to support this

•  What you have to do
–  Express the functional requirements as shall statements with a

unique ID for traceability
–  Group your requirements into sensible sets (e.g. user interface,

borrowing, browsing)
–  Prioritise your requirements using MoSCoW

Example format

ID Functional requirements Priority
Collection
1 the system shall … M
2 the …
Borrowing
3
Browsing
4
Membership
5
User interface
6

Exercise
•  Now consider the non-functional requirements for the

library system

•  Add a section to your document for non-functional
requirements, & consider aspects like
–  Capacity
–  Availability
–  Reliability
–  Performance
–  Security
–  Compliance to standards

•  Again, give each a unique ID & a priority

Maintaining a project glossary
•  This is another document to start at

the beginning of a project & maintain
throughout its duration

•  The glossary captures the language of
the business domain & project - it
helps to provide a shared vocabulary
& resolve some misunderstandings

Key	
 term	
 	
 DefiniLon	
 	
 	

DefiniLon	
 1	
 Term	
 1	

Exercise

•  Try to build a list of words that are
important in the domain of the library and
briefly describe them

– Nouns
– Verbs

 Use Case Modelling

•  The use cases are the first
step of the UML
development process

•  From the requirement
document

•  Use cases help in
specifying what the system
does with respect to the
user

Actor	

Actor	

System	

Use	
 case	

Use	
 case	

What is use case modelling?
•  Basis of a user-oriented approach to system

development
–  Identify the users of the system (actors)
–  Identify the tasks they must undertake with the system (use

cases) & prioritise
–  Relate users & tasks (relationships)

•  Use case models therefore contain actors, use cases &
relationships

•  Use case modelling is considered a form of requirements
engineering, as it complements more traditional
approaches

Helps	
 idenLfy	
 the	

system	
 boundary	

Establishing traceability
•  Use case models document requirements in a

complementary way to traditional requirements
documents

•  Items in these requirements documents should be linked
to items in the use case models to ensure coverage, to
help assess completeness of the requirements & to
ensure consistency

•  Establishing this link enables requirements traceability
•  This is essential for change management & is typically

tool supported

Requirement Tracing

UC1 UC2 UC3

R1 x x

R2 x

R3 x x

Use case driven

Use	
 case	

Analysis	
 Design	
 	
 Test	

Describes	
 the	

domain	

Verifies	
 	

Implements	
 	
 	

Implement/deploy	
 	

Implements	
 	
 	

Adapted	
 from	
 [Muller	
 1997]	
 p160	

What are actors?
•  Who or what uses the system

–  An actor is anything that interacts directly with the system (e.g. a
person, a system)

–  An actor is a user of the system in a particular role

•  An actor is generally external to a system, though the
system may hold an internal representation of the actor
(e.g. BookBorrower)

•  Depicted as a stick person

•  Actors trigger use cases

BookBorrower	

How to find actors
•  Observe the direct users of the system - those people or

systems responsible for its installation, use or
maintenance (both who & what)
–  What roles do these users play in the interaction?
–  Who provides information to the system?
–  Who receives information from the system?

•  Same physical person may play the role of a number of
actors; many people may play the same role so act as
the same actor

•  Becomes clearer as use cases are developed

Describing actors

•  Describe each actor clearly & precisely in
a few lines of English
– Short name
– Short description

(semantics)
•  Actors may have attributes (not so used)

BookBorrower	

this	
 actor	
 represents	
 someone	

that	
 makes	
 use	
 of	
 the	
 library	
 	

for	
 borrowing	
 books	

Exercise

•  Take the existing requirements document
for the library system & identify all the
actors that interact with the system

•  Remember to specify the actors as roles
•  For each actor, write down the actor name

& provide a brief textual description
describing the semantics of the actor

Actor	
 	
 SemanLcs	
 	
 	

DescripLon	
 1	
 Name	
 1	

What are use cases?

•  Things actors do with the system
–  A task which an actor needs to perform with the help of the

system (e.g. Borrow copy of book)
–  A specific kind of system use - a “case of use”

•  Describes the behaviour of a system from a user’s
standpoint by using actions & reactions (design
independent)

•  Represented as ellipses, internal to the system

•  Triggered by an actor Borrow	
 copy	
 of	

book	

How to find use cases
•  Start with the list of actors & consider

–  What they need from the system (i.e. what use cases there are
which have value for them)

–  Any other interactions they expect to have with the system (i.e.
which use cases they might take part in for someone else’s
benefit)

•  How do you know what is a use case?
–  Estimate frequency of use, examine difference between cases,

distinguish between 'basic' & 'alternative' courses of events &
create new use cases where necessary

•  Leads to the identification of new actors…

Describing use cases
•  Shown as a named ellipse

representing the kind of task that has
to be done with support from the
system under development

•  Semantics detailed in text - third-
person, active-voice

Borrow	
 copy	
 of	
 book	

A	
 BookBorrower	
 presents	
 a	
 book.	
 The	
 system	
 checks	
 that	
 	

the	
 potenLal	
 borrower	
 is	
 a	
 member	
 of	
 the	
 library,	
 &	
 that	

s/he	
 does	
 not	
 already	
 have	
 the	
 maximum	
 number	
 of	
 books	

on	
 loan.	
 This	
 maximum	
 is	
 six	
 unless	
 the	
 member	
 is	
 a	
 staff	
 	

member,	
 in	
 which	
 case	
 it	
 is	
 twelve.	
 If	
 both	
 checks	
 succeed,	

the	
 system	
 records	
 that	
 this	
 library	
 member	
 has	
 this	
 copy	

of	
 the	
 book	
 on	
 loan.	
 Otherwise	
 it	
 refuses	
 the	
 loan.	
 	

Exercise
•  Take the existing requirements document for the library

system & your list of actors, then identify all the use
cases for the system

•  Remember to specify the use cases as active tasks

•  For each use case, write down the use case name &
provide a brief textual description describing the
semantics of the use case

Use	
 case	
 	
 SemanLcs	
 	
 	

DescripLon	
 1	
 Name	
 1	

How to construct a
use case diagram

•  Characterises the behaviour of whole
system (i.e. shows all the use cases at the
top level & their actors)

•  Helps to visualise context & boundary of
the system

System	

Use	
 case	

Use	
 case	

Actor	

Actor	

We	
 are	
 now	
 adding	
 	

communicaLon	
 	

relaLonships	

between	
 the	
 actors	
 	

&	
 the	
 use	
 cases	
 	

(i.e.	
 idenLfying	
 beneficiaries)	

Example use case diagram

Taken	
 from	
 [Booch	
 1999]	

Exercise
•  Use the UML notation for both actors & use

cases to create a use case diagram that
indicates the relationships between the actors &
the use cases in our library system

Library	
 System	

Borrow	
 copy	

of	
 book	

Update	

catalogue	

BookBorrower	

Librarian	
 	

Return	
 copy	

of	
 book	

Detailing a use case
•  This involves writing a specification for the use case

•  Requires an outline use case model and the additional
requirements documents

•  There are some good practice guides
–  Preconditions: the system state before the use case can begin

(i.e. things that must be true)
–  Flow of events: the steps in the use case (i.e. something does

some action)
–  Postconditions: the system state after the use case has

completed (i.e. things that must be true)

Example specification
	
 	
 	
 	
 Borrow	
 copy	
 of	
 book	

	

Precondi6ons	

1.	
 The	
 BookBorrower	
 is	
 a	
 member	
 of	
 the	
 library	

2.	
 The	
 BookBorrower	
 had	
 not	
 got	
 more	
 than	
 their	
 permifed	
 number	
 of	
 Books	
 on	
 loan	

	

Flow	
 of	
 events	

1.	
 The	
 use	
 case	
 starts	
 when	
 the	
 BookBorrower	
 afempts	
 to	
 borrow	
 the	
 copy	
 of	
 the	
 book	

2.	
 The	
 librarian	
 checks	
 it	
 is	
 ok	
 to	
 borrow	
 the	
 book	

3.	
 If	
 …..	

…….	

	

Postcondi6ons	

1.	
 The	
 system	
 has	
 updated	
 the	
 number	
 of	
 Books	
 the	
 BookBorrower	
 has	
 on	
 loan	
 	
 	

Indicates	
 an	
 alternaLve	
 path	
 of	
 acLon	

Summary

•  Use case modelling sets out all the actors, use
cases & the relationships between them, setting the
boundaries of the system to be built

•  An actor is a role that interacts directly with the
system by exchanging information

•  A use case is a coherent unit of functionality that
the system can perform by interacting with outside
actors

•  A use case diagram captures all the top-level
functionality of the system as seen
by its users (i.e. the key use cases)

