
Software Design
Models, Tools & Processes *

Lecture 1: Software Design and
Software Development Process

Cecilia Mascolo

*	 Thanks	 to	 Alan	 Blackwell	 and	 Jim	
Arlow	 for	 le7ng	 me	 use	 some	 of	 their	
slides.	
	

About Me
•  Reader in Mobile Systems

–  Systems Research Group
•  Research on Mobile, Social and Sensor Systems
•  More specifically, mobility modelling

–  Instrumentation (sensing and mobile sensing)
–  Analysis (social and complex networks)
–  Exploitation (eg, recommender systems)

Software Design

•  Software Design is about modelling software
systems

•  “A system is an organised or complex whole: an
assemblage or combination of things or parts
forming a complex or unitary whole.” (Kast &
Rosenzweig)

•  “A system is a set of interrelated elements” (Ackoff)
Library	 System	

BooksDB	
UsersDB	
UserInterface	

Everyday Words

 “it is in the system”, “the system failed”,
“rage against the system”, “you can’t buck
the system”, “the system is down”, “the
economic system”, “in-car stereo system”,
“biological system”, “paperwork system”,
“the financial environment”, “closed
system”, “open system”, “dynamic
system”, “in equilibrium”

We	 use	 these	 “system	 words”	
a	 lot.	 What	 do	 they	 mean	

Organisation
•  The predominant mode of organisation is

hierarchical. Systems are composed of sub-
systems, sub-systems are composed of sub-sub-
systems and so on.

•  In very complex cases we talk of “systems of
systems”

Example:	 Robot	 and	 its	 components	 	

State

•  The state of a system at a moment in time
is the set of values of relevant properties
which that system has at that time.

•  Any system has an unlimited set of
properties - only some of which are
relevant for any particular set of purposes.

Examples:	 mass=10g,	 colour=red	

Environment
•  The environment of a system is the set

of elements (and their relevant
properties) which are NOT part of the
system - but a change in any of which
can produce a change in the state of
the system

System	

Environment	

Boundary	

Environment

•  The choice of the boundary is subjective.
Different people may divide a domain of
discourse into different systems and
environments.

An	 architect	 views	 a	 house	 as	 the	 system	 comprised	 of	
mechanical,	 electrical,	 heaOng	 and	 water	 sub-‐systems.	
The	 electrical	 supply	 system	 is	 in	 the	 environment.	
The	 electrician	 may	 view	 the	 electrical	 sub-‐system	
together	 with	 the	 electrical	 supply	 system	 as	 the	 system	
with	 the	 house	 as	 its	 environment.	

Environment

•  Setting boundaries is very important when
analysing and designing a system. It limits
your investigation and problem solving
“space”.

Example:	 Imagine	 you	 are	 designing	 a	 new	 electrical	 car.	
Are	 the	 repair	 shops,	 refuelling	 staOons	 and	 parts	 supply	
part	 of	 the	 system	 you	 are	 designing	 or	 not?	 How	 much	
Do	 they	 affect	 the	 design	 of	 the	 car?	 Can	 you	 change	
them?	 How	 much	 would	 changes	 in	 them	 affect	 your	
design	 (robustness)?	

Closed and Open

•  Systems can be considered closed or
open.

•  Closed systems do not interact with their
environment.

•  Open systems have a dynamic
relationship with their environment,
receiving inputs, transforming these inputs
and exporting outputs.

Inputs and Outputs

•  A general view of a system

Input(s)	 Output(s)	
TransformaOon	

Modelling

•  Modelling a system means identifying its
main characteristics, states and behaviour
using a notation

•  You “modelled” the Library System using
Java
– …a very detailed model…

•  There are better techniques to build models

Model
•  A model is a description from which detail

has been removed in a systematic manner
and for a particular purpose.

•  A simplification of reality intended to
promote understanding.

•  Models are the most important
engineering tool, they allow us to
understand and analyse large and
complex problems.

Examples:	 an	 architectural	 plan,	
a	 chemical	 plant	 diagram	

Model

Model

Acrolein	
Plant	

hot	 water	 &	 steam	

gas	 purge	

liquid	 purge	

acrolein	 product	 propylene	
and	 air	 feed	

Model

Reactor	 Heat	
Interchanger	

AbsorpOon	
Column	

Waste	 Heat	
Removal	
System	

DisOllaOon	
Column	

propylene	
and	 air	 feed	

gas	 recycle	

reactor	
feed	

acrolein	 plus	
other	 gases	

hot	 water	
steam	

acrolein	 plus	
remainder	 of	 other	
gases	

water	 recycle	
gas	 purge	

water	 recycle	

liquid	 purge	

acrolein	 product	

Language

•  Models are built in a language appropriate
to the expression and analysis of
properties of particular interest.

process	

flow	 (material,	 energy,	 informaOon)	

System	 Block	 Diagram	

	 scale	
	 projecOon	
	 geometry	

Architectural	 Plan	

	

Abstraction

•  Abstraction is the process of removing
detail from a model, of making the model
more abstract.

•  Reification is the opposite of abstraction, it
is the process of adding detail to a model,
of making the model more concrete.

Model Building

•  Building a system can be seen as a
process of reification. In other words
moving from a very abstract statement of
what is wanted to a concrete
implementation.

•  In doing this you move through a sequence
of intermediate descriptions which become
more and more concrete.

•  These intermediate descriptions are
models. The process of building a system
can be seen as the process of building a
series of progressively more detailed
models.

Exercise

•  Build a system block diagram model of
central heating system
– First do a high level diagram with a single

block showing inputs and outputs
– Then break down the system into sub-

systems and look at the flows between
them

– Next select one of these sub-systems and
break it down into sub-sub-systems

Some Questions
to Ask Yourself

•  Do you understand how central heating
systems work? Has building the model
helped?

•  If given the model by somebody else
would you understand what a central
heating system was and how it operated?

•  Have you set the “right” boundary?
•  Have you used the block diagram

language correctly?

Modelling

Reason	 for	 modelling	

What	 to	 model	 How	 to	 model	

to	 experiment	
to	 clarify	
to	 understand	
to	 analyse	
to	 evaluate	

structure	
transformaOons	
inputs	 and	 outputs	
state	

textual	
graphical	
mathemaOcal	

Design and process

•  Design is a process, not a set of known
facts
– process of learning about a problem
– process of describing a solution
– at first with many gaps …
– eventually in sufficient detail to build the

solution

Older terminology: the “waterfall”

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

Modern alternative: the “spiral”

Initial plan

Prototype
1

Development
plan

Prototype
2

Requirements

Plan next phases

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Code

Test

Integrate
Implement

Incremental Model

analysis	 design	 code	 test	

deliver	 1st	
increment	

analysis	 design	 code	 test	

deliver	 2nd	
increment	

analysis	 design	 code	 test	

concepOon	

architecture	

feedback	

feedback	

structure	

Unified Software
Development Process (USDP)

•  USDP is the development process
associated to UML (Unified Modelling
Language described later)

•  USDP is based on Incremental Process
•  Each iteration is like a mini-project that

delivers a part of the system
–  It is use case driven
– Architecture centric
–  Iterative and incremental

USDP basics

•  Iterative & incremental
–  Iterations & baselines
– Phases & milestones
– Workflows

•  Architecture-centric

•  Use-case driven & risk confronting

Management	
Environment	

Business	 Modeling	

Implementa5on	
Test	

Analysis	 &	 Design	

Preliminary	 	
IteraOon(s)	

	 Iter.	
#1	

Phases	
Process	 Workflows	

Itera5ons	

Suppor5ng	 Workflows	

	 Iter.	
#2	

	 Iter.	
#n	

	 Iter.	
#n+1	

	 Iter.	
#n+2	

	 Iter.	
#m	

	 Iter.	
#m+1	

Deployment	

Configura5on	 Mgmt	

Requirements	

Elabora5on	 Transi5on	 Incep5on	 Construc5on	

Adapted	 from	 [Jacobson	 1999]	

Overall	 structure	 of	 the	 USDP	 lifecycle	

Lifecycle phases & milestones

7me	

IncepOon	 ElaboraOon	 ConstrucOon	 TransiOon	

♦ Incep5on	 	 Define	 scope	 of	 project	 &	 develop	 business	 case	
♦ Elabora5on	 	 Plan	 project,	 specify	 features	 &	 baseline	
architecture	

♦ Construc5on	 	 Build	 product	
♦ Transi5on	 	 TransiOon	 product	 to	 its	 users	

Life-‐cycle	
objec7ves	 	

	

Life-‐cycle	 	
architecture	 	

	

Ini7al	 opera7onal	
capability	 	

	

Product	 	
Release	

Adapted	 from	 [Booch	 1999]	

Milestone acceptance criteria
•  Lifecycle objectives - system scope, key requirements,

outline architecture, risk assessment, business case,
feasibility, agreed project objectives with stakeholders

•  Lifecycle architecture - executable architectural
baseline, updated risk assessment, project plan to
support bidding process, business case verified against
plan, continued stakeholder agreement

•  Initial operational capability - product ready for beta
test in user environment

•  Product release - completed beta & acceptance tests,
defects fixed & in the user community

Phases & iterations

Arch	
IteraOon	

...	 Dev	 	
IteraOon	

Dev	 	
IteraOon	

...	 Trans	
IteraOon	

...	

Release	
	

Release	
	

Release	
	

Release	
	

Release	
	

Release	
	

Release	
	

Release	
	

Prelim	
IteraOon	

...	

IncepOon	 ElaboraOon	 ConstrucOon	 TransiOon	

An	 iteraOon	 is	 a	 sequence	 of	 acOviOes	 with	 an	
established	 plan	 &	 evaluaOon	 criteria,	
resulOng	 in	 an	 executable	 release	

Adapted	 from	 [Booch	 1999]	

Iterations

•  Iteration is key to USDP

•  Each iteration is like a mini-project
–  Planning; analysis & design; integration & test; release
–  Results in an increment

•  5 core workflows during each iteration
–  Requirements; analysis; design; implementation; test

•  Final product release may follow a sequence of
iterations (which may even overlap!)

Increments

•  Each iteration results in the release of
various artefacts - this is called a baseline

•  Baselines assist with review & approvals
procedures

•  An increment is actually the difference
between 2 successive baselines

P	 r	 e	 l	 i	 m	 i	 n	 a	 r	 y	
I	 t	 e	 r	 a	 t	 i	 o	 n	 (s)	

i	 t	 e	 r	 .	
#	 1	

i	 t	 e	 r	 .	
#	 2	

i	 t	 e	 r	 .	
#	 n	

i	 t	 e	 r	 .	
#	 n	 +	 1	

i	 t	 e	 r	 .	
#	 n	 +	 2	

i	 t	 e	 r	 .	
#	 m	

i	 t	 e	 r	 .	
#	 m	 +	 1	

I	 n	 c	 e	 p	 t	 i	 o	 n	 E	 l	 a	 b	 o	 r	 a	 t	 i	 o	 n	 C	 o	 n	 s	 t	 r	 u	 c	 t	 i	 o	 n	 T	 r	 a	 n	 s	 i	 t	 i	 o	 n	 C	 o	 r	 e	 	 	 W	 o	 r	 k	 f	 l	 o	 w	 s	

A	 n	 	 	 i	 t	 e	 r	 a	 t	 i	 o	 n	 	 	 i	 n	 	 	 t	 h	 e	
e	 l	 a	 b	 o	 r	 a	 t	 i	 o	 n	 	 	 p	 h	 a	 s	 e	

Requirements	

Design	

Implementa5on	

Test	

Analysis	

Phases,	 iteraOons	 &	 workflows	

Phases	

Itera5ons	 Adopted	 from	 [Jacobson	 1999]	

Learning by building models
•  The software design process involves gaining

knowledge about a problem, and about its
technical solution.

•  We describe both the problem and the
solution in a series of design models.

•  Testing, manipulating and transforming those
models helps us gather more knowledge.

•  One of the most detailed models is written in
a programming language.
– Getting a working program is almost a side-effect

of describing it!

Outline for the rest of the course
•  Roughly follows stages of the (UML-related)

Rational Unified Process
–  Inception

•  structured description of what system must do
–  Elaboration

•  defining classes, data and system structure
–  Construction

•  object interaction, behaviour and state
–  Transition

•  testing and optimisation
•  Plus allowance for iteration

–  at every stage, and through all stages

Unified Modeling Language
•  Use Case diagrams - interactions with / interfaces to

the system.
•  Class diagrams - type structure of the system.
•  Collaboration diagrams - interaction between

instances
•  Sequence diagrams - temporal structure of interaction
•  Activity diagrams - ordering of operations
•  Statechart diagrams - behaviour of individual objects
•  Component and Deployment diagrams - system

organisation

Books

 UML Distilled: A brief guide to the standard object modeling language
Martin Fowler, Addison-Wesley 2003 (3rd edition)

Some concepts from here:
UML 2 and the Unified Process: Practical Object-Oriented Analysis
and Design. Jim Arlow, Ila Neustadt. Addison-Wesley. 2005.

Exam questions
•  This syllabus appeared under this name for

the first time in 2006
– See relevant questions 2006-2009

•  But syllabus was previously introduced as:
– Software Engineering II 2005, Paper 2, Q8

•  Some components had previously been
taught elsewhere in the Tripos:
– Programming in Java 2004, Paper 1, Q10
– Software Engineering and Design 2003 Paper 10,

Q12 and 2004 Paper 11, Q11
– Additional Topics 2000, Paper 7, Q13

Supervision exercises
•  Use design briefs from Part 1b Group Design

Projects
–  http://www.cl.cam.ac.uk/teaching/

group-projects/design-briefs.html
•  Choose a specific project to work on
•  Carry out initial design phases, up to the point

where you could start writing source code
–  Supervision 1: Inception phase + early elaboration
–  Supervision 2: Iterate and refine elaboration phase

Summary
•  Systems provides a framework of concepts for thinking

and talking about complex technical and social
phenomena.

•  Software is an important part of many large and complex
real-world systems.

•  Modelling requires disciplined simplification and the
careful application of a modelling language.

•  It is not enough to think about what you want to model
you need to think about how you are going to use that
model.

•  Development Processes help structuring the activity of
building software systems.

