
Introductory Logic
Lecture 1: Background Knowledge – Revision

Alan Mycroft

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/˜am21

MPhil in ACS – 2011/12

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 1 / 1

Course outline

A primer course on mathematical logic to prepare students for
research in Theoretical Computer Science.
Concentrates on logic for modelling. Model theory rather that
proof theory.
(Compare the course on Automated Reasoning which—put
crudely—uses logical formulae as a data structure in a tool and
inference steps as syntactic manipulations of this).
E.g. did you know there are countable models of the reals?
Book: Enderton “A Mathematical Introduction to Logic" (2nd ed.).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 2 / 1

Lecture Outline

Sets, set operations
Cardinality, infinities, countability
Effectiveness, recursive enumerability, recursive sets

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 3 / 1

Sets

A set is a collection of elements. Notation:
{1,4,9}
{5, {7,8}, {{{2}},−57.34}}
{0,1,2,3, . . .} (be careful here)
{} (a.k.a. ∅).
{x | P(x)} where P is a formula (see later) involving x .

Just saying sets are like this is wrong. Russell’s Paradox.
Consider S = {x | x 6∈ x}. Then ask “Is S ∈ S?" (contradiction
whether you suppose yes, or no).
There is no “set of all sets” even if there is a set of all real
numbers.

Be careful when saying things formally!

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 4 / 1

Sets more carefully

To avoid Russell’s paradox we need to be more careful.
Finite sets, written down are OK, e.g. {1,4,9}.
Unless you’re very formal then writing {0,2,4,6, . . .} is OK. Note
that this is an infinite set, all of whose elements are finite (but
unbounded).
Sets can be made from other sets by construction. So
{x ∈ S | P(x)} is always when S is already a set.

Define relations on sets:
X ⊆ Y means (for all x) x ∈ X ⇒ x ∈ Y .
X ⊇ Y means Y ⊆ X
X = Y means X ⊆ Y and X ⊇ Y .

At the moment ‘means’, ‘forall’, ‘⇒’, ‘and’ are rather informal. We’ll use
symbols ∧, ∨, ¬, ∀, ∃,⇒ but only define them later.
Note that for all sets X we have ∅ ⊆ X (vacuous reasoning).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 5 / 1

Definition and Equality

Beware the use of ‘=’ both as equality and as a definition. E.g. the
following is ugly:

(X = Y) = (X ⊆ Y ∧ X ⊇ Y)

You might prefer ‘iff’ (if and only if) for definition for things which are
true or false. (Other symbols include def

= , ∆
= especially on values or

sometimes ≡).

But the key idea is that equality ‘=’ is an operator within the formal
system I’m talking about, whereas definition ‘iff’ is part of the human
language we use to talk about the system. (Later we will say object-
and meta-language).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 6 / 1

Operations on sets

X ∩ Y = {x | x ∈ X ∧ x ∈ Y}
X ∪ Y = {x | x ∈ X ∨ x ∈ Y}
X \ Y = {x | x ∈ X ∧ x 6∈ Y} (some authors use X − Y).
X × Y = {(x , y) | x ∈ X ∧ y ∈ Y} (cartesian product); this also
explains e.g. R3 for 3-tuples of reals.
X + Y = X × {0} ∪ Y × {1} (disjoint union)
X → Y , the set of functions from set X to set Y (see later)
R(X ,Y) (slightly non-standard), the set of relations between X
and Y .
P(X) = {Y | Y ⊆ X} (power set)

We do not define X c the complement of X (all the things not in X)
unless it’s very clear that this is really U \ X for some local ‘universe’ of
discourse.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 7 / 1

‘Big’ operations on sets

We also have iterated operations on sets:
⋂

,
⋃

.
Recall

i=n∑
i=1

i =
∑

i∈{1,...,n}

i =
n(n + 1)

2
noting

∑
i∈{}

i = 0

When S is a set of sets, we similarly have⋃
S = {x | x ∈ some X ∈ S}.⋂
S = {x | x ∈ every X ∈ S}. This second case is only valid

when S 6= {} (because otherwise this would be the set of all sets
which doesn’t exist).

Notation: we generalise this notation (as in
∑

above) to e.g.⋃
X∈S

X =
⋃
S often a more-convenient form

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 8 / 1

Common names for sets

N = {0,1,2, . . . } the natural numbers (computer scientists and
many logicians start at zero – see next slide)
Z = {0,1,−1,2,−2, . . . } the integers
Q, the rational numbers (fractions), you might try defining them as
{(x , y)|x ∈ Z,∈ N \ {0}} but note that (1,2)[= 1

2] = (2,4)[= 2
4]

R, the real numbers
Q, complex numbers (these just are R× R).
B = {true, false}

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 9 / 1

Making sets by induction

We can also define a set as “the smallest set having a given set of
elements”.
For example, suppose we say that: “0 ∈ S” and “whenever x ∈ S then
x + 1 ∈ S” then this property is satisfied by N,Z,R and more.
But N is the smallest such set.
We can define many sets, including N, by “the smallest set such that”.
But beware: we need to be careful about what the construction rules
say to avoid Russell’s paradox.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 10 / 1

Sets can define everything

Just like a database is a data-structure built up out of tables built of
values build of bits, so everything can be defined as a set.
Here are (common ways) of doing this (note I’m using ‘=’ as a
definition)

(x , y) = {x , {x , y}} (exercise: why does this mean that
(x , y) = (x ′, y ′) iff x = x ′ ∧ y = y ′?)
0 = {},1 = {0},2 = {0,1}, etc.
(informally) a real number, like π can be defined a set of rationals
below it and tending to it: {3,3.1,3.14,3.14159} and a rational is
just a pair of integers

Note that even if we do define (say) tuples as a pair of sets, then we try
to avoid using the actual definition as much as possible and
concentrate on the defined set’s properties. Think hidden
implementation details in object-oriented programming or abstract data
types.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 11 / 1

Sets: number of members

For a finite set (and later for infinite sets) write |X | (or card(X) for the
number of elements of X .
Note that we have:

|{}| = 0
X + Y	=	X	+	Y
X × Y	=	X	×	Y
X → Y	=	Y		X

max(|X |, |Y |) ≤ |X ∪ Y | ≤ |X |+ |Y |
0 ≤ |X ∩ Y | ≤ min(|X |, |Y |)

Defining sizes of infinite sets requires a bit more care . . .

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 12 / 1

Relations, Functions

Write R(X ,Y) for the set of relations between X and Y .
[Non-standard, but useful, notation] Its members relate elements of X
to those of Y . Note that a relation is just a set of pairs (think city pairs
and with airline links). There are operations on relations, e.g.
composition but we’ll not use them here.

Hence R(X ,Y) = P(X × Y). Every possible set of pairs is a relation.

A function is just a special case of a relation which has exactly relates
every x ∈ X to exactly one y ∈ Y , so

X → Y = {f ∈ R(X ,Y) | ∀x ∈ X ∃!y ∈ Y (x , y) ∈ f}

Here I’ve written ∃! for “there exists a unique”. While this is often
convenient, it’s important to know how to do it properly (next slide).
We write f (x) for this unique element.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 13 / 1

Functions, bijections

Write X → Y for the set of functions from X to Y . A relation
f ∈ R(X ,Y) is a function if:

(∀x ∈ X)(∃y ∈ Y) (x , y) ∈ f
(∀x ∈ X)(∀y , y ′ ∈ Y) (x , y) ∈ f ∧ (x , y ′) ∈ f ⇒ y = y ′

Note the slight mathematical ‘coding’ in the last rule expressing
uniqueness of the image of f .

A function f is injective iff (∀x , x ′ ∈ X) f (x) = f (x ′)⇒ x = x ′

A function f is surjective iff (∀y ∈ Y)(∃x ∈ X) f (x) = y .
A function is bijective if (iff!) it is injective and surjective.

Existence of a bijection in X → Y means that X and Y have the same
number of elements (which we use to define the size of infinite sets).

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 14 / 1

Countability

A set S is countable if there is a bijection N→ S.

There are uncountable sets: one is R.

Cantor’s theorem: for every set S there is no bijection between S and
P(S). This means that there are an infinite number of different sizes of
infinite sets – as N,P(N),P(P(N)),P(P(P(N))), . . . are all of different
cardinality.

In this course, we just distinguish three sizes of sets: finite sets
(including the empty set), countably infinite sets, and uncountable sets.
Beware: some books use ‘countable’ for ‘countably infinite’ and some
for ‘finite or countably infinite’.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 15 / 1

Beware infinity

Various unexpected things happen for infinite sets (intuitively because
we have to describe them with only a finite number of symbols and so
there are hence things we cannot say precisely).
For example, for finite sets X , Y of the same cardinality every injection
X → Y is a surjection and vice-versa.
But f (x) = x + 1 is an injection N→ N which is not a surjection.

Similarly (details off this course) if we have a finite set ordered with <,
then every time I find an finite ascending chain x1 < x2 < · · · < xn of
size n then I can find a descending chain y1 > y2 > · · · > yn of the
same length. But N has many infinite ascending chains, but no infinite
descending chain!

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 16 / 1

Recursive Enumerability

Just because a set S is countable (there is a bijection f : N→ S) does
not necessarily mean that f is calculable by an (idealised) computer.

We say a set is effectively enumerable or recursively enumerable if the
f corresponds to a computable function.

For example, every subset of N is countable (exercise). It’s easy to
effectively enumerate the halting Turing machines too. But it’s
impossible to effectively enumerate the non-halting Turing machines.

Given a subset S of a countable set such as N it’s clear that its
complement N \ S is also a subset of N and hence countable. It’s also
simple to define a mathematical function χS : N→ {0,1} which has
χS(x) = 1 iff x ∈ S.

But these are less easy to do by machine . . .

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 17 / 1

Recursive Sets, Kleene’s Theorem

A subset S of N is recursive [unusual use of the word at first] if there is
a computable function N→ B giving membership of S (like χ above).

Theorem (Kleene): a set is recursive iff both it and its complement are
recursively enumerable.

The way to think about this is: that an effective enumeration of S is a
machine which emits the elements of S in order, and similarly we have
a machine which emits the elements of N \ S in order. So to test
(effectively) whether x is a member of S we run both machines in
parallel, and stop (and say ‘yes’ or ‘no’ as appropriate) when the
member appears in either output list. We know this always terminates.

Alan Mycroft (University of Cambridge) Introductory Logic – Lecture 1 MPhil in ACS – 2011/12 18 / 1

