M.Phil in Advanced Computer Science 2011-12
Module R07: Introductory Logic (AM)

Exercises

Many of these exercises explore around points discussed in lectures; and
are perhaps slightly nastier than an exam question.

[The symbol‘*’ against a question shows a rather more open-ended
question. ]

Question 1

(a) Define the idea of well-formed formula (wff) for propositional logic. “Well-
formed” historically meant that formulae (seen as strings) were properly
parethesised. What does it mean when we treat formulae as trees?

The idea of well-formed formula was to distinguish strings of characters which
represent formulae from malformed strings such as “) A ((”. It pre-dated computer
science.  Hence wvarious syntactic requirements were imposed (such as fully-
parenthesised formulae to avoid ambiguity for things like ANBVC'). These were then
informally relazed in examples by conventions. The theory of syntax and BNF in
computer science can be used to define the concrete syntazx of wffs including operator
precedence. When formulae are seen as trees the notion of wff just means the tree
15 an instance of the abstract syntax tree for

$u=A| NG| SV S| elc

where A is a propositional variable (posibly itself having syntax as a sequence of
characters and ¢ ranges over wffs. Note that here, as usual in BNF, repeated uses
of ¢ can represent different wff instances.

(b) What is a valuation? Explain what it means for a wff to be: valid, satisfiable,
unsatisfiable. If wif A is satisfiable then is = A unsatisfiable?

A waluation is a function from propositional variables to booleans (true,false). (It
need only be defined on propositional variables occurring in the formula of interest.)

A formula is valid if it evaluates to true (using standard truth tables for boolean
connectives) for all valuations. It is sasifiable if we replace ‘for all with ‘some” and
unsatisfiable if we replace ‘true’ with ‘false’

(¢) Explain the difference between = and F.



= ¢ means ¢ is valid as above. We generalise this to I' |= ¢ for a set of wffs T' to
mean that, whenever a valuation makes all the wffs in T' evaluate to true then it also
makes ¢ evaluate to true.

By contrast T b g ¢ means ¢ may be syntactically derived (‘proved’ or ‘deduced’) from
I’ using inference rules in R. We write = for g when the set of inference rules is
clear from context (e.g. when we have established that R is sound and complete).

(d) Suppose we use two axiom schemes (where A, B,C stand for any wff and
treating ‘—’ as right-associative): A - B — Aand (A —- B —- () — (A —
B) — (A — C) together with modus ponens.

(i) Given any wif A, can A — A be deduced?

Yes. Let’s write K for the first axiom, S for the second and I for A — A. People
familiar with functional programming will note that SKK = I as combinators (and
by Curry-Howard . .. ).

This is a short-cut to finding the deduction:
2R K
1

(ii*)Can you find a valid wif which is not deducible?

Yes, but tricky, e.g. DN (without which S and K would not be complete): (—¢p —
) = (¢ — ¥) — @)

(#i) Can you find a wff which is deducible but not valid?

No - these axioms are sound. ILe. (inductively) both axioms are valid and modus
ponens preserves validity.

(iv) Express this using words like ‘soundness’ and ‘completeness’.

Axioms S and K together with MP are sound but not complete

Question 2

(a) Summarise the ideas of first-order logic, including wffs, interpretations, model.
Bookwork.

(b) Explain the notion of semantic entailment I' = ¢.

Bookwork — explain the notion of evaluating a wff w.r.t. an interpretation (of
function symbols and predicate symbols); and and the values (taken from the universe
of discourse) of free individual variables.



(¢) Explain the difference between = and . To what extent are they identical or
equivalent concepts

Bookwork — parallels the FOL wversion above. They are are not identical (one is
‘truth’ (validity) and one is provability. However, by Gddel’s Completeness Theorem
there is a sound and complete set of inference rules R such that T Fr ¢ iff T = ¢
which makes them equivalent as meta-logical relations between sets of wffs and wffs.

Question 3

(a) Explain the notions of compactness, a set of clauses being consistent and a set
of clauses being satisfiable.

Compactness has various equivalent formulations, but a simple one is “If every finite
subset of ¥ has a model then so does X.”

One formulation of several: X is consistent if there is some wif ¢ for which ¥ = ¢
does not hold.

Y. is satisfiable if there is some interpretation which makes every element of ¥ true.

(b) Prove compactness for first-order logic assuming there is a sound and complete
set of axioms and inference rules.

Since consistency and satisfiability are equivalent statements for given soundness and
completeness, compactness is equivalent to “if every finite subset of ¥ is consistent
then so is 7. Le. “if ¥ is inconsistent then so is some finite subset”. But this is
necessarily true since a proof (&) of inconsistency of ¥ can only use a finite number
of its elements as proofs are finite.

Question 4
(a) Explain what it means for a theory to be complete.

For every ¢ we have I' = ¢ or I' = —¢.

b Does a theory bein complete mean that all its models are iSOHlOI'phiC? Give
g
reasons.

No: Skélem-Lowenheim says that if a theory has an infinite model then it has models
of all cardinalities, which therefore lack bijections (and hence isomorphisms).

(¢) Can a theory have exactly two models — one infinte one and one finite one?

Rather mis-formed question — previous question shows “one infinite model implies
an infinte number of distinct models”. However we could have a Peano-number-like
system which replaced Vx —(S(x) = 0) with (Vo —(S(x) = 0)) V (Vx (S(z) = 0))
which has a single finite model (with one element) and one countably infinite model



(the Peano numbers)

(d) To what extent can one write axioms which have models exactly when the
model has an odd number of elements.

Imperfectly! If a theory has arbitrarily large finite models then it has an infinite
model (and we don’t generally regard infinity as an odd number!).

However, we can write an axiom A meaning “does not have k elements”, e.g. for
k =3 we have

—dxFyIz(r A yANyF#zANx#cAVt{t=xVt=yVt=z))

The set of axioms {Ag, Ay, As, ...} then finitely aziomatises all odd models (by
forbidding even models) together with various infinite models.

Question 5*

Attempt to axiomatise set theory. You should define a binary relation which models
‘e’ but prefer to define other relations such as ‘C’ as abbreviations for wifs involving
‘e’

This is rather open-ended. 1’d start with a binary relation € of arity two, and
take inspiration from the Peano axiomatisation of numbers. One could either add
) as a constant (function or arity zero) or axiomatise if as e by: e Vo —(x €
e). The site http://wuw.mtnmath.com/whatth/node23.html gives the standard
axioms with explanation, but the sort of thing one needs is:

o VSVI' (Vo (r€S—axeT))—S=1T)

Then then S C T can be seen as an abbreviation of Vx (v € S — x € T) etc.

Question 6

(a) Explain the notion of deductive closure Con I' of a set of wifs I'.

Con I'={¢ | ('t ¢)}

(b*) Author X defines a theory © to be axiomatisable when there is a decidable
(a.k.a. recursive) set of wifs I such that © = Con I', while author Y defines it
to be axiomatisable when there is a recursively enumerable set of wifs I' such
that © = Con I'. Which, if either, author is more generous?

These definitions are equivalent, but it’s not obvious at first. Obuviously “recursively
enumerable” 1s more generous than “recursive”. The question is “whether we can
tell when an axiom s not in I'” and this is unclear when I' is only recursively

4



enumerable. But we can replace T' = {71, 72,73, ...} with I'" = {y1,71 Ay2, 71 A2 A
Y3y ...} I and T have the same models, and I is recursive (not merely recursively
enumerable) because given a ¢ we can determine whether or not ¢ is in I” just
checking members as enumerated until one appears which is bigger (in terms of size
— number of characters in it) then ¢.

(¢) Why do we not define a theory to be axiomatisable if it simply has a countable
set of wifs I" such that © = Con I'?

Because the idea of countability is too loose; we need some effective way of
determining which things are true or false. For example if we enumerate Turing
machines also wffs, but take I" to be those wffs which correspond to non-terminating
Turing machines. Then we can’t even mechanically decide what axioms the system
has! (Of course, we can have philosphical discussion here about whether people can
do non-effective things, but that’s another subject.



