
Prolog Lecture 2

● Rules
● Lists
● Arithmetic
● Last-call optimisation
● Backtracking
● Generate and Test

L2-2

Rules have a head that is true,
if the body is true

head body

Our Prolog databases have contained only facts
– e.g. lecturer(prolog,dave).

Most programs require more complex rules (p8/8)
– Not just “this is true”, but “this is true if that is true”

You can read this as: “rule(X,Y) is true if part1(X)
is true and part2(X,Y) is true”
– Note: X and Y also need to be unified appropriately

rule(X,Y) :- part1(X), part2(X,Y).

L2-3

Variables can be internal to a rule

The variable Z is not present in the clause head:

Read this as “rule2(X) is true if there is a Z such
that thing(X,Z) is true and thang(Z) is true”

rule2(X) :- thing(X,Z), thang(Z).

L2-4

Prolog and first order logic

The :- symbol is an ASCII-art arrow pointing left
– The “neck” (it's between the clause head and body!)

The arrow represents logical implication
– Mathematically we'd usually write clause➔head
– It's not as clean as a graphical arrow ...
– In practice Prolog is not as clean as logic either!

Note that quantifiers ( and ) are not explicitly
expressed in Prolog
– (Also, in logic we could have multiple head terms, …)

L2-5

Rules can be recursive

In a recursive reading rule3(ground) is a base
case, and the other clause is the recursive case.
– Recursion is a key Prolog programming technique

In a declarative reading both clauses simply represent
a situation in which the rule is true.

rule3(ground).
rule3(In) :- anotherRule(In,Out),
 rule3(Out).

L2-6

Prolog identifies clauses by
name and arity

We refer to a rule using its clause's head term

The clause
– rule.

is referred to as rule/0 and is different to:
– rule(A).

which is referred to as rule/1 (i.e. it has arity 1)
– rule(_,Y).

would be referred to as rule/2, etc.

L2-7

Prolog has built-in support for lists

Items are put within square brackets, separated
by commas, e.g.[1,2,3,4] (p61/60)
– The empty list is denoted []

A single list may contain terms of any kind:
– [1,2,an_atom,5,Variable,compound(a,b,c)]

Use a pipe symbol to refer to the tail of a list
– Examples: [Head|Tail] or [1|T] or [1,2,3|T]
– Try unifying [H|T] and [H1,H2|T] with [1,2,3,4]

● i.e. ?- [H|T] = [1,2,3,4].

L2-8

We can write rules to find the first
and last element of a list

Like functional languages, Prolog uses linked lists

Make sure that you (eventually) understand what
this shows you about Prolog's list representation:
write_canonical([1,2,3]).

first([H|_],H).

last([H],H).
last([_|T],H) :- last(T,H).

L2-9

Question
last([H],H).
last([_|T],H):-

last(T,H).

What happens if we ask: last([],X). ?
a) pattern-match exception
b) Prolog says no (i.e., the query fails)
c) Prolog says yes, X = []
d) Prolog says yes, X = ???

L2-10

You should include tests for your
clauses in your source code

Example last.pl:

What happens if the test assertion fails?

What happens if we ask:
?- last(List,3).

last([H],H).
last([_|T],H) :- last(T,H).

% this is a test assertion
% (think about = vs. ==)
:- last([1,2,3],A), A=3.

L2-11

?- [last].
% last compiled 0.01 sec, 604 bytes

Yes
?- trace,last([1,2],A).
 Call: (8) last([1, 2], _G187) ? creep
 Call: (9) last([2], _G187) ? creep
 Exit: (9) last([2], 2) ? creep
 Exit: (8) last([1, 2], 2) ? creep

A = 2

Prolog provides a way to trace
through the execution path

Query trace/0, evaluation then goes step by step
– Press enter to “creep” through the trace
– Pressing s will “skip” over a call

L2-12

Arithmetic Expressions

(AKA “Why Prolog is a bit special/different/surprising”)

What happens if you ask Prolog:

?- A = 1+2.

(a good way to find out is to try it, obviously!)

L2-13

Arithmetic equality is
not the same as Unification

This should raise anyone's procedural eyebrows...

Arithmetical operators get no special treatment!
(Prolog's core is very small in terms of semantics)

?- A = 1+2.
A = 1+2.

?- 1+2 = 3.
false.

L2-14

Unification, unification, unification

In Prolog “=” is not assignment!

“=” does not evaluate expressions!

“=” means “try to unify two terms”

L2-15

Arithmetic equality is
not the same as Unification

Plus (+) is just forming compound terms
We discussed this in lecture 1

?- A = money+power.
A = money+power.

?- money+power = A,
 A = +(money,power).
A = money+power.

L2-16

Use the “is” operator to
evaluate arithmetic

?- A is 1+2.
A = 3.

?- A is money+power.
ERROR: is/2: Arithmetic: `power/0' is not a function

The “is” operator tells Prolog: (p81/80)
(1) evaluate the right-hand expression numerically
(2) then unify the expression result with the left

Ensure that you can explain what will happen here:
?- 3 is 1+2 ?- 1+2 is 3

L2-17

The right hand side must be a
ground term (no variables)

It seems that “is” is some sort of magic predicate
– Our predicates do not force instantiation of variables!

In fact it can be implemented in logic
– See the supervision problems

?- A is B+2.
ERROR: is: Arguments are not sufficiently
instantiated

?- 3 is B+2.
ERROR: is: Arguments are not sufficiently
instantiated

L2-18

We can now write a rule
about the length of a list

List length:

This uses O(N) stack space for a list of length N

len([],0).
len([_|T],N) :- len(T,M), N is M+1.

L2-19

List length using O(N) stack space

● Evaluate len([1,2],A).

● Apply len([1| [2]],A
0
) :- len([2],M

0
), A

0
 is M

0
+1

● Evaluate len([2],M
0
)

● Apply len([2 | []],M
0
) :- len([],M

1
), M

0
 is M

1
+1

● Evaluate len([],M
1
)

● Apply len([],0) so M
1
 = 0

● Evaluate M
0
 is M

1
+1 so M

0
 = 1

● Evaluate A
0
 is M

0
+1 so A

0
 = 2

● Result len([1,2],2)

● This takes O(N) space because of the variables in each frame

S
ta

ck F
r am

e
 1

S
ta

ck F
r am

e
 2

len([],0).
len([_|T],N) :-

len(T,M), N is M+1.

L2-20

List length using O(1) stack space

List length using an accumulator:

We are passing variables to the recursive len2 call that
we do not need to use in future evaluations
– Make sure that you understand an example trace

len2([],Len,Len).
len2([_|Tail],Len0,Len) :-

Len1 is Len0 + 1,
len2(Tail,Len1,Len).

len2(List,Len) :-
len2(List,0,Len).

L2-21

List length using O(1) stack space

● Evaluate len2([1,2],0,Len)

● Apply len2([1| [2]],0,Len) :- Len1 is 0+1,
 len2([2],Len1,Len).

● Evaluate Len1 is 0+1 so Len1 = 1
● Evaluate len2([2],1,Len)

● Apply len2([2| []],1,Len) :- Len1 is 1+1,
 len2([],Len1,Len).

● Evaluate Len1 is 1+1 so Len1 = 2
● Evaluate len2([],2,Len).

● Apply len2([],2,2) so Len = 2

● I didn't need to use any subscripts on variable instances!

S
ta

ck F
r am

e
 1

S
ta

ck F
r am

e
 2

L2-22

Last Call Optimisation transforms
recursion into iteration

Any decent Prolog implementation will apply “Last
Call Optimisation” to tail recursion (p186/211)
– The last query in a clause body can re-use the stack

frame of its caller
– This “tail” recursion can be implemented as iteration,

drastically reducing the stack space required

Can only apply LCO to rules that are determinate
– The rule must have exhausted all of its options for

change: no further computation or backtracking

L2-23

We can demonstrate that Prolog is
applying last call optimisation

Trace will not help
– The debugger will likely interfere with LCO!

How about a “test to destruction”?

biglist(0,[]).
biglist(N,[N|T]) :-

M is N-1,
biglist(M,T),
M=M.

L2-24

Prolog uses depth-first search
to find answers

Here is a (boring) program:

What does Prolog do when given this query?

c(A,B).

a(1).
a(2).
a(3).
b(1).
b(2).
b(3).
c(A,B) :- a(A), b(B).

L2-25

Depth-first solution of query c(A,B)
c(A,B)

a(A),b(B)

Expand using the rule
c(A,B):-a(A),b(B).

Look up the first fact
of form a(_)

Likewise first
fact b(_)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=1

We've found
a solution!

L2-26

Backtrack to find the next solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=2

We've found the
next solution

Reject first
fact b(_)

L2-27

Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=1, B=3

L2-28

Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B) a(2),b(B) a(3),b(B)

b(1) b(2) b(3) b(1) b(2) b(3) b(1) b(2) b(3)

Variable bindings: A=2, B=1

We exhausted all possible
solutions from the first
a(_) fact...

... so look for solutions
that use the second fact

of form a(_).

L2-29

Take from a list

Here is a program that takes an element from a
list:

What does Prolog do when given the query:

take([1,2,3],E,Rest).

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

L2-30

All solutions for take([1,2,3],E,Rest)

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: E=1, Rest=[2,3]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

From the “fact”
take/3 clause

L2-31

Backtrack for next solution

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: E=2, Rest=[1,3], S
1
=[3]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

From the “rule”
take/3 clause

(arrow direction?)

L2-32

Backtrack for another solution

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: E=3, Rest=[1,2], S
1
=[2], S

2
=[]

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

L2-33

Prolog says “no”

take([1,2,3],E,Rest)

take([1|[2,3]],1,[2,3]).

take([2|[3]],2,[3]).

take([3|[]],3,[]).

take([H|T],H,T).
take([H|T],R,[H|S]):-
 take(T,R,S).

Variable bindings: none – the predicate is false

take([1|2,3],E,[1|S
1
])

take([2,3],E,S
1
)

take([2|[3]],E,[2|S
2
])

take([3],E,S
2
)

take([3|[]],E,[3|S
3
])

take([],E,S
3
)

L2-34

“Find list permutation”
predicate is very elegant

perm([],[]).
perm(List,[H|T]) :- take(List,H,R), perm(R,T).

What is the declarative reading of this predicate?

L2-35

Dutch national flag

The problem was used by Dijkstra as an exercise in
program design and proof.

Take a list and re-order such that red precedes white
precedes blue

[red,white,blue,white,red]

[red,red,white,white,blue]

L2-36

“Generate and Test” is a technique
for solving problems like this

(1) Generate a solution

(2) Test if it is valid

(3) If not valid then backtrack to the next generated
solution

How can we implement checkColours/1?

flag(In,Out) :- perm(In,Out),
 checkColours(Out).

L2-37

,,, ,

Place eight queens so that
none can take any other

1 5 8 6 3 7 2 4[, , ,]

♛

♛

♛

♛

♛

♛

♛

♛

L2-38

Generate and Test works for Eight
Queens too

Why do I only need to check the diagonals?

8queens(R) :- perm([1,2,3,4,5,6,7,8],R),
 checkDiagonals(R).

L2-39

Anagrams

Load the dictionary into the Prolog database:
– i.e. use facts like: word([a,a,r,d,v,a,r,k]).

Generate permutations of the input word and test if
they are words from the dictionary

or

Generate words from the dictionary and test if they
are a permutation!

http://www.cl.cam.ac.uk/teaching/1112/Prolog/anagram.pl

End

Next lecture:
controlling backtracking with cut,

and negation

