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(2 lectures)
Probability spaces, random variables, discrete/continuous
distributions, means and variances, independence, conditional
probabilities, Bayes’s theorem.
(1 lecture)
Definitions and properties; use in calculating moments of random
variables and for finding the distribution of sums of independent
random variables.
(1 lecture)
Random vectors and independence; joint and marginal density
functions; variance, covariance and correlation; conditional density
functions.
(2 lectures)

Simple random walks; recurrence and transience; the Gambler’s
Ruin Problem and solution using difference equations.

(2 lectures)

A selection of worked examples and illustrative applications taken
from across Computer Science (with separate notes).
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Elementary probability theory




Random experiments

We will describe randomness by conducting
0 experiments (or trials) with uncertain outcomes.
@ The set of all possible outcomes of an experiment is

called the and is denoted by Q.

Identify with particular subsets of Q2 and write
F ={E|E CQis arandom event}

for the collection of possible events.

For each such random event, E € .%, we will associate a number
called its , written P(E) € [0, 1].

Before introducing probabilities we need to look closely at our notion
of collections of random events.



Event spaces

We formalize the notion of an , %, by requiring the
following to hold.

Definition (Event space)
1. % is non-empty
2. EcF=Q\Ee7
3. (ViE 1. E; Ey) éU,‘E/Ei ceF

Example
Q any setand & = £(Q), the of Q.

Example

Q any set with some event E' c Q and .% = {0,E',Q\ E',Q}.

Note that Q\ E is often written using the shorthand E°€ for the
of E with respect to Q.



Probability spaces

Given an experiment with outcomes in a sample space Q with an
event space . we associate probabilities to events by defining a
P: % — R as follows.

Definition (Probability function)

1. VE€ Z.P(E)>0
2. P(Q)=1and P(0) =
3. Eje # for i€ ldisjoint (that is, E;N E; = 0 for i # j) then

P(Uje/Ei) ZP

iel

We call the triple (Q2,.%#,P) a



Examples of probability spaces

» Q any set with some event E' C Q (E' #0, E' # Q).
Take . = {0,E',Q\ E',Q} as before and define the probability
function P(E)by

0 E=0
p E=F
P(E) =
(E) 1—-p E=Q\F
1 E=Q

forany0<p<1.
» Q={w,w,...,0p} with F = F(Q) and probabilities given for
all Ee # by

_ IEl
P(E) = o
» For a six-sided fair die 2 = {1,2,3,4,5,6} we take

P((i}) = 5.



Examples of probability spaces, ctd

Q2 » More generally, for each
® (04 outcome w; € Q (i=1,...,n) assign a
E value p; where p; > 0and Y7, p; = 1.
oy If 7 = 2(Q) then take

PE)= Y p  VEeZ.

i:C()/GE




Conditional probabilities

Given a probability space (Q2,.#,P) and
two events Eq, E> € .% how does
knowledge that the random event E,, say,
has occurred influence the probability
that E4 has also occurred?

This question leads to the notion of

Q

E; 1=

Definition (Conditional probability)

If P(Ez) > 0, define the , P(Eq|Ep), of E;

given E; by

P(E1NEp)

P(E|Ep) = ——2
( 1| 2) P(Ez)

Note that P(Ez|Ex) = 1.

Exercise: check that for any E’ € % such that P(E’) > 0

then (Q,.%,Q) is a probability space where Q : # — R is defined by

Q(E)=P(E|E') VEeZ.



Independent events

Given a probability space (92,.7,P) we can define independence
between random events as follows.

Definition (Independent events)
Two events, Eq,E> € % are if

P(E1NEz) =P(E1)P(E2)

Otherwise, the events are . Note that if E; and E» are
independent events then

P(E1|E2) =P(E1)
P(Ez|E1) = P(Ez2).



Independence of multiple events

More generally, a collection of events {E;|i € I} are
events if for all subsets J of /

ﬁjeJE HP(E
jed

When this holds just for all those subsets J such that |J| = 2 we have

Note that pairwise independence does not imply independence
(unless |1] =2)



Venn diagrams
John Venn 1834-1923 <%

Example (|/| = 3 events)
E;,E,, E5 are independent events if

IP(E10E2) ( ) (

P(E1 N E3) = P(E1)P(

P(E20 ;) ~ P(E)P(E2)
P(EsNE;NE3) (E1)P(




Bayes’ theorem
Thomas Bayes (1702-1761)

Theorem (Bayes’ theorem)

If Ey and E> are two events
withP(Ey) > 0 and P(E;) > 0 then

P(E|E1)P(Eq)

]P(E1|E2): ]P(EQ)

Proof.
We have that

P(E1|E2)P(E2) = P(Eq N Ez) = P(E2 N Eq) = P(E2| E1)P(E4).

Thus Bayes’ theorem provides a way to reverse the order of
conditioning.



Given a probability space (Q2,.7,P) define a
partition of Q2 as follows.

Definition (Partition)

A partition of Q is a collection of disjoint
events {E; € % |i € I} with

UjelEj = Q.

e Jllowing theorem (a.k.a. the law of total
grobabilityy

Theorem (Partition theorem)
If{Ej € 7 |i < I} is a partition of Q and P(E;) > 0 for all i € | then

P(E) =Y P(E|E))P(E;)) VEeZ.

iel
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Proof of partition theorem
We prove the partition theorem as follows.

Proof.

P(E) =P(EN(Uic/Er))
=P(Uje/(ENE)))
= Z]P’(Eﬁ E)
iel

=) P(E|E)P(E)

iel



Bayes’ theorem and partitions

A (slight) generalization of Bayes’ theorem can be stated as follows
combining Bayes’ theorem with the partition theorem.

_ _ P(EIE)P(E)) ;
HEE s mEgrE)

where {E; € % |i € I} forms a partition of Q.

Q As a special case consider the
partition {E1 ,Eo =Q \ E; }

E,=Q\E

Then we have

P(E|E1)P(E)
(E|E1)P(Eq) +P(EIQ\ E)P(Q\ Ey)

P(EiIE) =5



Bayes’ theorem example

Suppose that you have a good game of table
football two times in three, otherwise a poor
game.

Your chance of scoring a goal is 3/4 in a good
game and 1/4 in a poor game.

What is your chance of scoring a goal in any given game?
Conditional on having scored in a game, what is the chance that you
had a good game?

So we know that

P(Good) =2/3,
(Poor) =1/3,
(
(S

v

Score|Good) = 3/4,

P
> P
P(Score|Poor) = 1/4.

>



Bayes’ theorem example, ctd
Thus, noting that {Good, Poor} forms a partition of the sample space
of outcomes,
P(Score) = P(Score|Good)P(Good) + P(Score|Poor)P(Poor)
=(38/4)x(2/3)+(1/4)x (1/3)=7/12.

Then by Bayes’ theorem we have that

_ IP(Score|Good)P(Good)  (3/4) x(2/3)
P(Good|Score) = P(Score) BRI 6/7.




Random variables

Given a probability space (2,.7,P) we may wish to work not with the
outcomes w € Q2 directly but with some real-valued function of them,
say using the function X : Q — R. (Alternative to writing X C Q x R.)

This gives us the notion of a (RV) measuring, for
example, temperatures, profits, goals scored or minutes late.
We shall first consider the case of random variables.

Definition (Discrete random variable)
Afunction X : Q > Risa on the probability
space (Q,.7,P) if
1. the image set, Im(X) = {x e R|Fw € Q. X(w) = x},is a
countable subset of R
2. {weQX(w)=x}eZF VxeR

The first condition ensures discreteness of the values obtained. The
second condition says that the set of outcomes o € Q2 mapped to a
common value, x, say, by the function X must be an event E, say, that
is in the event space .7 (so that we can actually associate a
probability P(E) to it).

20



Probability mass functions
Suppose that X is a discrete RV. We shall write
P(X =x)=P{ocQ|X(0)=x}) VXxER.
So that

Y P(X =)= P(Uremx) {0 € Q| X(0) = X}) = P() = 1
xelm(X)

and P(X = x) =0 if x € Im(X). Itis usual to abbreviate all this by

writing

Y P(X=x)=1.

xeR
The RV X is then said to have P(X = x)
thought of as a function x € R — [0, 1]. The probability mass function
describes the of probabilities over the collection of
outcomes for the RV X.

21



Examples of discrete distributions

Example (Bernoulli distribution)
Here Im(X) = {0,1} and for given p € [0,1]

P(X =k)

1 eg. p=075 .
Bx=k) =P k=1
0.5 1— p k=0.
0.25

0 k

0 1

RV, X | Parameters | Im(X) | Mean | Variance
Bernoulli | pe[0,1] {0,1} p p(1—p)

22



Examples of discrete distributions, ctd
Example (Binomial distribution, Bin(n, p))

P(X = k) Here Im(X) ={0,1,...,n} for some positive
g n=10.p=05 integer n and given p € [0,1]

P(X = k) = (:)pkﬂ —p)"k vke{01,....n}.

012345678910

RV, X Parameters Im(X) Mean | Variance
Bin(n,p) | ne{1,2,...} | {0,1,...,n} np np(1—p)
p<0,1]

We use the notation
X ~ Bin(n,p)

as a shorthand for the statement that the RV X is distributed
according to stated Binomial distribution. We shall use this shorthand
notation for our other named distributions.

23



Examples of discrete distributions, ctd

Example (Geometric distribution, Geo(p))
Here Im(X)={1,2,...} and0<p <1

P(X=k)=p(1—-p)k' vke{l,2,..}.

12345678910

RV, X | Parameters Im(X) Mean | Variance

Geo(p) | O0<p<1 | {1,2,...} ;3 1/[);2"

Notationally we write
X ~ Geo(p).

: some authors prefer to define our X — 1
as a ‘Geometric’ RV!

24



Examples of discrete distributions, ctd

Example (Uniform distribution, U(1,n))

P(X = k) Here n is some positive integer and
:JMHH P(X:k):% Vke{1,2,....n}.
k
123456
RV, X | Parameters Im(X) Mean | Variance
1 21
ut,n) | ne{1,2,..} | {1,2,....n} | =

Notationally we write
X~ U(1,n).

25



Examples of discrete distributions, ctd

Example (Poisson distribution, Pois(1))
P(X = k) Here Im(X)={0,1,...} and 1 >0

04

e=1 kA=A
]P’(X:k):/lkel Vke{0,1,...}.

0.3 +A=5

02
04 I
0 k

012345678910

Im(X) | Mean | Variance
A A

RV, X | Parameters
Pois(1) A>0 {0,1,...}

Notationally we write
X ~ Pois(1).



Expectation

One way to summarize the distribution of some RV, X, would be to

construct a weighted average of the observed values, weighted by

the probabilities of actually observing these values. This is the idea of
defined as follows.

Definition (Expectation)
The , E(X), of a discrete RV X is defined as

E(X)= ) xP(X=x)
xelm(X)

so long as this sum is (absolutely) convergent (that is,

erlm(X) IXP(X = X)| < ).

The expectation of a RV X is also known as the , the
, the or simply the

27



Expectations and transformations

Suppose that X is a discrete RV and g : R — R is some
transformation. We can check that Y = g(X) is again a RV defined

by Y(®) = g(X)(0) = g(X(w)).
Theorem
We have that
E(g(X)) = ;Q(X)P(X =X)

whenever the sum is absolutely convergent.

Proof.

E@(X)=E(Y)= Y yP(Y=y)
yeg(Im(X))

= Y vy ) P(X = x)
yeg(Im(X)) xelm(X):g(x)=y

— Y g0B(X=x)

xelm(X)

28



Expectation is linear

Suppose that X is a discrete RV and consider the special case
where g : R — R is given by the transformation: g(x) = ax + b with a
and b any real numbers.

We have that

E(aX+b)) =) (ax+b)P(X = x)
=) axP(X =x)+) bP(X = x)
=a) xP(X=x)+b) P(X =x)

=aE(X)+b.

29



Variance

For a discrete RV X with expected value E(X) we define the ,
written Var(X), as follows.

Definition (Variance)
Var(X) =E ((x - ]E(X))2>
Thus, writing u = E(X) and taking g(x) = (x — u)?

Var(X) = E (X~ E(X))?) =E(g(X)) = ¥_(x — 1)?P(X = X).

X

Just as the expected value summarizes the of outcomes
taken by the RV X, the variance measures the of X about
its expected value.

The of a RV X is defined as +/Var(X).

Note that E(X) and Var(X) are real numbers not RVs.

30



First and second moments of random variables

Just as the expectation or mean, E(X), is called the first moment of
the RV X, E(X?) is called the of X.
The variance Var(X) = E ((X —E(X))?) is called the

of X since it measures the dispersion in the values of X
centred about their mean value.
Note that we have the following property where a,b € R.

Var(aX +b) = E ((aX + b—E(aX + b))?)
=E ((ax+ b— aE(X) - b)2)
—E (2(X-E(X)$)
= &Var(X).

31



Calculating variances

Note that we can expand our expression for the variance where again
we use u =E(X) as follows

Var(X) = Y (x — u)?P(X = x)

=Y (x®—2ux+p?)P(X = x)

=Y xX®P(X =x) —2u Y XP(X = x) + 2 Y P(X = x)
=E(X?) —2p®+p?

= E(X?)—p?

= E(X?) - (E(X)).

This useful result determines the second central moment of a RV X in
terms of the first and second moments of X. This usually is the best
method to calculate the variance.

32



An example of calculating means and variances

Example (Bernoulli)
The expected value is given by

E(X) =) xP(X =x)

=0xP(X=0)+1xP(X=1)
=0x(1-p)+1xp=p.

In order to calculate the variance first calculate the second
moment, E(X?)

E(X?) =Y x*P(X = x)
X
=0®xP(X=0)+12xP(X=1)=p.
Then the variance is given by

Var(X) = E(X?) - (E(X))? = p—p? = p(1 - p).

33



Bivariate random variables
Given a probability space (92,.#,P), we may have two RVs, X and Y,
say. We can then use a

PX=x,Y=y)=P{ocQ|X(0)=x}N{ocQ|Y(w)=y})

for all x,y € R.
We can recover the individual probability mass functions for X and Y
as follows
P(X=x)=P({w e Q| X(w)=x})
=P (Uyemy){@ € Q| X(0) =x}N{o € Q| Y(0) = y}))
= )Y PX=xY=y).
yelm(Y)

Similarly,

P(Y=y)= Y P(X=xY=y).
xelm(X)

34



Transformations of random variables

If g : R? — R then we get a similar result to that obtained in the
univariate case

EgX.Y)= ) Y dxyP(X=xY=y).
xelm(X) yelm(Y)

This idea can be extended to probability mass functions in the
multivariate case with three or more RVs.

The transformation occurs frequently and is given

by g(x,y) = ax+ by + c where a, b, ¢ € R. In this case we find that

E(aX+bY+c)=) Y (ax+by+c)P(X=x,Y =y)
Xy

=a) xP(X=x)+b) yP(Y=y)+c
X y

=aEk(X)+bE(Y)+c.

85!



Independence of random variables

We have defined independence for events and can use the same
idea for pairs of RVs X and Y.

Definition

Two RVs X and Y are if {oe Q| X(w)=x}
and {o € Q| Y(w) = y} are independent for all x,y € R.
Thus, if X and Y are independent

PX=x,Y=y)=P(X=x)P(Y =y).

If X and Y are independent discrete RV with expected values E(X)
and E(Y) respectively then

E(XY) ZnyIP’X x,Y=y)
_Zny[P’X X)P(Y =y)
:ZxIP’X:nyPY:y)
:&mmn.y

36



Variance of sums of RVs and Covariance

Given a pair of RVs X and Y consider the variance of their sum X+ Y
Var(X+ Y)=E (((X+ Y) - E(X + Y))2)
=E ((X—E(X))+ (Y ~E(Y))})
= E((X —E(X))?) +2E((X —E(X))(Y —E(Y)))+

E((Y -E(Y))?)
= Var(X)+2Cov(X,Y)+ Var(Y)

where the of X and Y is given by

Cov(X,Y) =E((X —E(X))(Y-E(Y)))
= E(XY) - E(X)E(Y).

So, if X and Y are independent RV then E(XY) = E(X)E(Y) and
so Cov(X,Y) =0 and we have that

Var(X + Y) = Var(X) + Var(Y).
Notice also that if Y = X then Cov(X, X) = Var(X).

37



Covariance and correlation

The covariance of two RVs can be used as a measure of dependence
but it is not invariant to a change of units. For this reason we define
the of two RVs as follows.

Definition (Correlation coefficient)

The , p(X,Y), oftwo RVs X and Y is given by
Cov(X,Y
p(X,Y) = —SVXY)
V/Var(X)Var(Y)

whenever the variances exist and the product Var(X)Var(Y) # 0.
It may further be shown that we always have

-1<p(X,Y)<1.

We have seen that when X and Y are independent

then Cov(X,Y)=0and so p(X,Y)=0. When p(X,Y) =0 the two
RVs X and Y are said to be . In fact,

if p(X,Y)=1(or—1) then Y is a linearly increasing (or decreasing)
function of X.

38



Random samples

An important situation is where we have a collection of n

RVs, Xji,Xs,..., X, which are independent and identically distributed
(I'D). Such a collection of RVs represents a of size n
taken from some common probability distribution. For example, the
sample could be of repeated measurements of given random quantity.
Consider the RV given by

which is known as the
We have that

where pu = E(X;) is the common mean value of X;.

39



Distribution functions
Given a probability space (Q2,.7,P) we have so far considered
discrete RVs that can take a countable number of values. More
generally, we define X : Q — R as a if
{we Q| X(w)<x}eF Vx eR.
Note that a discrete random variable, X, is a random variable since
{we Q| X(w)<x} = UX'E|m(X):X’§X{w € X(w) = X/} eZ.

Definition (Distribution function)

If X is a RV then the of X, written Fx(x), is
defined by

Fx(x) =P{w e Q| X(w) <x})=P(X <x).

40



Properties of the distribution function
Fx(x)=P(X <x)

Fx(x)
]

0 \

1. If x <y then Fx(x) < Fx(y).

2. If x — —eo then Fx(x) — 0.

3. If x — oo then Fx(x) — 1.

4. If a< bthenP(a< X < b) = Fx(b)— Fx(a).

41



Continuous random variables

Random variables that take just a countable number of values are

called . More generally, we have that a RV can be defined by
its , Fx(x). ARV is said to be a

when the distribution function has sufficient
smoothness that

Fx(x) = P(X < x) = /'X fe(u)du

for some function fx(x). We can then take

dFx(X)  if th rivati .
fx(X)—{ .~ if the derivative exists at x

0 otherwise.

The function fx(x) is called the of the
continuous RV X or often just the of X.

The density function for continuous RVs plays the analogous r6le to
the probability mass function for discrete RVs.
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Properties of the density function

fx (X)

0

1. ¥x e R.fx(x) > 0.
2. 7 fx(x)dx=1.
3. lfa<bthen P(a< X < b) = [P fx(x)dx.
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Examples of continuous random variables

We define some common continuous RVs, X, by their density
functions, fx(x).

Example (Uniform distribution, U(a, b))
Given a€ R and b € R with a < b then
fx(x)

. fX(x):{(b1a) ifa<x<b

0 otherwise.

1 X

S}
Y
S

RV, X | Parameters | Im(X) | Mean | Variance

Uab) | aber | (ab) | b | @2
a<b

Notationally we write
X~ U(a,b).
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Examples of continuous random variables, ctd

Example (Exponential distribution, Exp(1))
Given A > 0 then

1 Fe(x) = reM ifx>0
X0 otherwise.

X

RV, X | Parameters | Im(X) | Mean | Variance
Exp(A) A>0 R, 1 2

Notationally we write
X ~Exp(1).

45



Examples of continuous random variables, ctd

Example (Normal distribution, N(u,c?))
; 2
f(x) Given u € R and o< > 0 then

1 2 /(052
fX(X) — ef(xfl'l) /(26 ) — oo < X < oo
\/ 2

u

RV, X | Parameters | Im(X) | Mean | Variance
N(u,6%) | ueR R u o?
62>0

Notationally we write
X ~ N(u,0?).
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Expectations of continuous random variables

Just as for discrete RVs we can define the ofa
continuous RV with density function fx(x) by a weighted averaging.

Definition (Expectation)
The of X is given by

oo

E(X) = [ xf(x)ax

whenever the integral exists.
In a similar way to the discrete case we have that if g: R — R then

E(9(X)) = | _a(0ix(x)dx

whenever the integral exists.

47



Variances of continuous random variables
Similarly, we can define the of a continuous RV X.

Definition (Variance)
The , Var(X), of a continuous RV X with density
function fy(x) is defined as

Var(X) = E (X~ E(X)?) = / Z(x —0)PH(x)ax

whenever the integral exists and where u = E(X).

Exercise: check that we again find the useful result connecting the
second central moment to the first and second moments.

Var(X) = E(X?) — (E(X))?.
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Example: exponential distribution, Exp(1)

Suppose that the RV X has an exponential distribution with
parameter A > 0 then using integration by parts

E(X) = /wxle*“dx
JO
= [—xe‘“r—k/m e Mdx
0 0
—0+ 1 | e ax .
N A \Jo A
and
E(X?) = / " x2Ae M dx
0

[ xze‘“ ot / 2xe M dx

_ E —Ax 2
OU(/O xie dx) =.

Hence, Var(X) = E(X?) — (E(X))? = % — (1)2 = -L.

>
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Bivariate continuous random variables

Given a probability space (2,.7,P), we may have multiple continuous
RVs, X and Y, say.

Definition (joint probability distribution function)
The is given by

Fxy(x,y) =P({ow € Q[ X(0) <x}n{o Q| Y(0) < y})
=P(X<x,Y<y)

forall x,y € R.

Independence follows in a similar way to the discrete case and we
say that two continuous RVs X and Y are if

Fx.y(x,y) = Fx(x)Fy(y)

forall x,y e R.
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Bivariate density functions

The of two continuous RVs X and Y satisfies

X y
Fx.v(x.y) 2/2 /2 fx.y(u, v)dudv
and is given by

%Fx)y(x,y) if the derivative exists at (x, y)
0 otherwise.

fX,Y(va) = {

We have that
fxy(x,y)>0  Vx,yeR

and that N
/ / fx y(x,y)dxdy =1.
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Marginal densities and independence

If X and Y have a joint density function fx y(x,y) then we have

fx(x) = /Z,m fx,y(x,v)av

and

oo

N = [ vy

In the case that X and Y are also then

fx.y(x,y) = fx(xX)fy(y)

forall x,y e R.

52



Conditional density functions

The marginal density fy(y) tells us about the variation of the RV Y
when we have no information about the RV X. Consider the opposite
extreme when we have information about X, namely, that X = x,
say. We can not evaluate an expression like

P(Y <y|X=Xx)

directly since for a continuous RV P(X = x) = 0 and our definition of
conditional probability does not apply.

Instead, we first evaluate P(Y < y|x < X < x4 dx) for any éx > 0.
We find that

P(Y<y,x<X<x+06x)

P(x < X < x+6x)

f”)fx v o fx y(u,v)dudv

fX+5X fX(U)dU

P(Y<y|x<X<x+6x)=
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Conditional density functions, ctd

Now divide the numerator and denominator by dx and take the limit
as 6x — 0 to give

fX Y(X7 V)
ARSIy, |V
v=—o  Ix(X)
= G(y),say
where G(y) is a distribution function with corresponding density

fX,Y(Xay)
Q(Y):W~

Accordingly, we define the notion of a as
follows.

P(Y<y|x<X<X+06x)—

Definition
The is defined as

rxtyb) = 20

defined for all y € R and x € R such that fx(x) > 0.

54



Probability generating functions




Probability generating functions

A very common situation is when a RV, X, can take only non-negative
integer values, that is Im(X) c {0,1,2,...}. The probability mass
function, P(X = k), is given by a sequence of values pg,p1,po,. ..
where

px =P(X = k) Vke{0,1,2,...}

and we have that

pk>0 Vke{0,1,2,...} and Y p=1.
k=0

The terms of this sequence can be wrapped together to define a

certain function called the (PGF).
Definition (Probability generating function)
The , Gx(2), of a (non-negative

integer-valued) RV X is defined as
Gx(2) =Y pkZ"
k=0

for all values of z such that the sum converges appropriately.
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Elementary properties of the PGF

1. Gx(Z) Zk Okak SO

Gx(0)=po and  Gx(1)=
2. If g(t) = z! then
Gx(2)= ¥ 2" = ¥ g(k)P(X = K) = E(g(X)) = E(zY).
k=0 k=0
3. The PGF is defined for all |z| <1 since
Z ok 2¥| < Zpk—1

k=0

4. Importantly, the PGF the distribution of a RV in the
sense that
Gx(Z) = Gy(Z) Vz

if and only if
P(X=k)=P(Y =k) Vke{0,1,2,...}.
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Examples of PGFs

Example (Bernoulli distribution)
Gx(z)=q+pz where g=1—-p.

Example (Binomial distribution, Bin(n, p))

. /n
Gx(2)= Y <k>pk(q)”kzk =(q+p2)"  whereg=1-p.
k=0

Example (Geometric distribution, Geo(p))

k=1 ,k k__PZ . 1 _
Gx(2)=) pq“ 'z =ng(q2) =17qzlf|2|<q andqg=1-p.
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Examples of PGFs, ctd

Example (Uniform distribution, U(1,n))

z(1-2z"

oA
:,?;_1 n- ’ZZ Tn(-2)

Example (Poisson distribution, Pois(1))

oo 7Lk —A
Gx(Z) _ ke| Zk — elze—l _ el(z—1) )
k=0 ’
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Derivatives of the PGF

We can derive a very useful property of the PGF by considering the
derivative, G\ (z), with respect to z of the PGF Gx(z). Assume we
can interchange the order of differentiation and summation, so that

Gy(z)= ZFP(X = k))

=
Le-s

DM: Rla
Rl

(zk) P(X = k)

T
o

kz"1P(X = k)

Il
gk

i
o

then putting z = 1 we have that
Gx(1) =Y kP(X = k) =E(X)
k=0

the expectation of the RV X.
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Further derivatives of the PGF

Taking the second derivative gives

=)

Gx(2)= Y k(k—1)Z"2P(X = k).
k=0

So that,
Gy(1 Zk —1)P(X =k)=E(X(X-1))

Generally, we have the following result.

Theorem
Ifthe RV X has PGF Gx(z) then the r-th derivative of the PGF,
written G&')(z), evaluated at z =1 is such that

GP()=E(X(X=1)-(X=r+1)).
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Using the PGF to calculate E(X) and Var(X)

We have that
E(X) = Gx(1)

and

Var(X) = E(X?) - (E(X))?
= [E(X(X — 1))+ E(X)] - (E(X))?
= Gx(1)+ Gx(1) — Gx(1)%.
For example, if X is a RV with the Pois(1) distribution
then Gyx(z) = etz 1),
Thus, Gy(2) = 211 and Gj(z) = A2e*1).
So, Gi(1) =2 and Gi(1) = A2.
Finally,

E(X)=A and Var(X)=2A%24+1-1%2=2.
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Sums of independent random variables

The following theorem shows how PGFs can be used to find the PGF
of the sum of independent RVs.

Theorem
IfX and Y are RVs with PGFs Gx(z) and Gy(z)
respectively then

Gx+v(2) = Gx(2)Gy(2).

Proof.
Using the independence of X and Y we have that
Gx+y(2) = E(ZX+Y)
=E(zXz")
= E(ZE(z")
= Gx(2)Gy(2)
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PGF example: Poisson RVs

For example, suppose that X and Y are independent RVs
with X ~ Pois(A1) and Y ~ Pois(A;), respectively.
Then

Gx+v(2) = Gx(2)Gy(2)
_ M1 ghalz-1)

_ e+i2)(z-1)

Hence X+ Y ~ Pois(44 4+ A) is again a Poisson RV but with the
parameter A1 + As.
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PGF example: Uniform RVs

Consider the case of two fair dice with [ID

and Y ~ U(1,6). Let the total scorebe Z=X+Y

O @ outcomes X and Y, respectively, so that X ~ U(1,6)

P(X = k)

123456

and consider the probability generating function
of Z given by Gz(z) = Gx(z)Gy(z). Then

1 1
Gz(z) = é(erzz+-~+26)é(z+22+~~~+26)
1
= %[22 +228 4324 +425 4528+ 627+
528 +42% 432104271 4 712].

P(Y = k) P(Z = k)

1 1_ 86
3 6 36

Ll

123456 23456789101112
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Random walks

Consider a sequence Y, Yo, ... of independent and identically
distributed (1ID) RVs with P(Y;=1)=pand P(Y;=—-1)=1—-p
with p € [0,1].

Definition (Simple random walk)

The simple random walk is a sequence of RVs {X,|ne {1,2,...}}
defined by
Xn=X0+Y1 +Y2—|——|— Yn

where Xp € R is the starting value.

Definition (Simple symmetric random walk)

A simple symmetric random walk is a simple random walk with the
choice p=1/2.

Xn Eg Xg=2&(Yy.Yp,....Yg,.) = (1,~1,-1,-1,-1,1,1,1,1,...)

Xo
0
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Examples

Practical examples of random walks abound
across the physical sciences (motion of atomic
particles) and the non-physical sciences
(epidemics, gambling, asset prices).

The following is a simple model for the operation of a casino.
Suppose that a gambler enters with a capital of £X,. At each stage
the gambler places a stake of £1 and with probability p wins the
gamble otherwise the stake is lost. If the gambler wins the stake is
returned together with an additional sum of £1.

Thus at each stage the gambler’s capital increases by £1 with
probability p or decreases by £1 with probability 1 — p.

The gambler’s capital X, at stage n thus follows a simple random
walk that the gambler is if X, reaches £0 and then
can not continue to any further stages.
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Returning to the starting state for a simple random
walk
Let X, be a simple random walk and
rm=DP(Xn = Xp) forn=1,2,...

the probability of returning to the starting state at time n.
We will show the following theorem.

Theorem
If n is odd then r, = 0 else if n=2m is even then

Iom = (zn,:)l?m“ -p)".

69



Proof.
The position of the random walk will change by an amount

Xn—Xo=Yi1+Yo+---4+ Y,

between times 0 and n. Hence, for this change X, — Xj to be 0 there
must be an equal number of up steps as down steps. This can never
happen if nis odd and so r, = 0 in this case. If n=2m s even then
note that the number of up steps in a total of n steps is a binomial RV
with parameters 2m and p. Thus,

Fom = P(Xo— X = 0) = (2,;");)’"(1 o)™,

O

This result tells us about the probability of returning to the starting
state at a given time n.

We will now look at the probability that we ever return to our starting
state. For convenience, and without loss of generality, we shall take
our starting value as Xy = 0 from now on.
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Recurrence and transience of simple random
walks

Note firstthat E(Y;)) =p— (1 —p) =2p—1foreachie {1,2,...}. Thus
there is a net drift upwards if p > 1/2 and a net drift downwards
if p<1/2. Only in the case p=1/2 is there no net drift upwards nor

downwards.

We say that the simple random walk is if it is certain to
revisit its starting state at some time in the future and

otherwise.

We shall prove the following theorem.

Theorem
For a simple random walk with starting state X, = 0 the probability of
revisiting the starting state is

P(X,=0forsomene{1,2,...})=1-12p—1]|.

Thus a simple random walk is recurrent only when p=1/2.
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Proof

We have that Xy = 0 and that the event R, = { X, = 0} indicates that
the simple random walk returns to its starting state at time n.
Consider the event

Fo={Xn=0,Xn#0forme{1,2,... (n—1)}}

that the random walk first revisits its starting state at time n. If R,
occurs then exactly one of Fy, Fo,..., F, occurs. So,

n
m=1
but
since we must first return at time m and then return a time n— m later
which are independent events. So if we write f, = P(Fp)
and r, =P(Ry) then

n
rn == Z fmrn_m .
m=1
Given the expression for r, we now wish to solve these equations
for fr.
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Proof, ctd

Define generating functions for the sequences r, and f, by
R(z)=Y mz" and F(z)=) f2"
n=0 n=0
where ry =1 and f, = 0 and take |z| < 1. We have that
= o n
Z fnZn - Z Z fmrnfmzn
n=1

= i i fmZmI’n,mZn_m
m—=

The left hand side is R(z) — rpz° = R(z) — 1 thus we have that
R(z) = R(z2)F(z) +1 if |z] < 1.
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Proof, ctd

Now,
R(z) = Z rmz"
n=0

=Y rmz®™ asr,=0if nis odd

m=0
—m: (%)t -pi)m

=(1-4p(1-p)2%)%.
The last step follows from the binomial series expansion
of (1 —46)~2 and the choice 8 = p(1 — p)z2.
Hence,
1

F(z)=1—(1—4p(1—p)z%)z for|z| <1.
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Proof, ctd

But now
P(X,=0forsome n=1,2,...)=P(F{UFU---)

= f1 +f2_|_...
— i = n
—Izlmr;fnz
= F(1)
=1—(1-4p(1-p))2

1—((p+(1-p))* ~4p(1-p))2

=1-((2p—1)?)2
=1-|2p—-1].

So, finally, the simple random walk is certain to revisit its starting state
justwhen p=1/2.

75



Mean return time

Consider the recurrent case when p=1/2 and set
T=min{n>1|X,=0} so that P(T=n)="f

where T is the time of the first return to the starting state. Then

=

E(T)= Y nfy

n=1

= &7 (1)

where Gr(z) is the PGF of the RV T and for p =1/2 we have
that 4p(1—p)=1so

Gr(z2)=1-(1-2%)2
so that |
" (z2)=z(1—2%)"2 5 aszt1.

Thus, the simple symmetric random walk (p = 1/2) is recurrent but
the expected time to first return to the starting state is
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The Gambler’s ruin problem

We now consider a variant of the simple random walk. Consider two
players A and B with a joint capital between them of £N. Suppose that
initially A has Xo =£a (0 <a<N).

At each time step player B gives A £1 with probability p and with
probability g = (1 — p) player A gives £1 to B instead. The outcomes
at each time step are independent.

The game ends at the first time T if either X7, = £0 or X7, = £N for
some T,€{0,1,...}.

We can think of A’s wealth, X, at time n as a simple random walk on
the states {0,1,..., N} with absorbing barriers at 0 and N.

Define the probability of for gambler A as

pa=P(Aisruined) =P(Bwins) for0<a<N.

Xn Eg. N=5 X, —a=28&(Yy, Yo, Y, Ya) = (1,—1,—1,—1)
N=5
Xo=2 To=48&Xp, =X =0
n
0 1 2 3 4 5 6 7 8 9
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Solution of the Gambler’s ruin problem

Theorem

The probability of ruin when A starts with an initial capital of a is given
by

oo 5o ifp#a
T l1-2 ifp=q=1/2
where 6 = g/p.

For illustration here is a set of graphs of p, for N =100 and three
possible choices of p.

Pa

1
0.75
0.5+

025+
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Proof
Consider what happens at the first time step
pa=P(ruinNY; =+1|Xg =a)+P(ruinnY; = —1|Xy = a)
= pP(ruin|Xp = a+ 1)+ gP(ruin|Xp = a—1)
= PPa+1+qPa—1

Now look for a solution to this difference equation of the form A2 with
boundary conditions py =1 and py =0.
Try a solution of the form p,; = A2 to give

22 = p)‘a+1 _~_q)~a—1

Hence,
pA2—24+q=0

with solutions A =1 and A = q/p.
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Proof, ctd

If p # q there are two distinct solutions and the general solution of the
difference equation is of the form A+ B(q/p)?.
Applying the boundary conditions

1=pp=A+B and 0=py=A+B(g/p)"

we get
A=-B(q/p)"
and
1=B-B(q/p)"
% 1 (a/p)V
i@ " AT i@
Hence,

(a/p)*—(a/P)"

Pa= " (q/p)"
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Proof, ctd

If p=qg=1/2 then the general solution is C + Da.
So with the boundary conditions

1=pg=C+ D(0) and 0=pn=C+D(N).

Therefore,
Cc=1 and 0=1+D(N)
SO
D=-1/N
and
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Mean duration time

Set T, as the time to be absorbed at either 0 or N starting from the
initial state a and write uy = E(Ty).
Then, conditioning on the first step as before

MHa=1+PHa1+qUar for1<a<N-1

and pug = uy =0.
It can be shown that u, is given by

1 (q/p)2~1 ;
1o — oo (Nigpr —a) tp#q
a(N - a) ifp=qg=1/2.

We skip the proof here but note the following cases can be used to
establish the result.
: trying a particular solution of the form 5 = ca shows

that c =1/(g— p) and the general solution is then of the
form u, = A+ B(q/p)?+ a/(q— p). Fixing the boundary conditions
gives the result.

: now the particular solution is —a? so the general
solution is of the form u, = A+ Ba— & and fixing the boundary
conditions gives the result.
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Properties of discrete RVs

[(RV.X [ Parameters [ Im(X) P(X=k) [ E(X) Var(X) [ Gx(@
Bernoulli p<0,1] {0,1} (1—p)ifk=0orpifk=1 P p(1-p) (1-p+pz)
Bin(n.p) ne{1.2,...} {0.1,....n} (E)pk(1—p)”’k np np(1-p) (1-p+pz)"

pe0,1]
- 1=
Geo(p) O<p<t {1.2,...} p(1—p)k 1 % sz %
)
) ne(ta.} | (l2..m | & ot % %(111—22)2
Pois(1) | A>0 0.1,..) ﬁ,f,i 2 1 erz-1)
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Properties of continuous RVs

[ RV, X [ Parameters [ Im(X) [ fx(x) E(X) [ Var(X) |
b b-a)’
U(a,b) | abeR (ab) | 5 ath ( 1;)
a<b
Exp(A) | A>0 R, Le Ax _ 1 ha
N(u,0%) | ueR R \/2’;73—()‘—#) /@) |y G2
6%>0
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Notation

of possible outcomes w €
: set of random events E C Q
function of the event E € .
that event E occurs, e.g. E ={X =k}

Alternative to writing as a relation X C Q x R.
under RV X, i.e. {(x e R|3w € Q. X(w) = x}
u(o,1)
of RV X
, Fx(x) =P(X <x)
of RV X given, when it exists, by F}(x)
Gx(z) for RV X

RV X

of RV X
of RV X, forn=1,2,...
of RV X

of random sample Xi,Xs,..., X
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