Scheduling and queue management

DigiComm 11

Traditional queuing behaviour in routers

* Data transfer:
* datagrams: individual packets
* no recognition of flows
* connectionless: no signalling
* Forwarding:
* based on per-datagram, forwarding table look-ups
* no examination of “type” of traffic — no priority traffic

* Traffic patterns

DigiComm 11

Questions

* How do we modify router scheduling behaviour to
support QoS?

* What are the alternatives to FCFS?

* How do we deal with congestion?

DigiComm 11

Scheduling mechanisms

DigiComm 11

Scheduling [1]

* Service request at server:
* e.g. packet at router inputs
* Service order:
« which service request (packet) to service first?
* Scheduler:
* decides service order (based on policy/algorithm)
* manages service (output) queues
* Router (network packet handling server):
* service: packet forwarding
 scheduled resource: output queues
* service requests: packets arriving on input lines

DigiComm 11

Scheduling [2]

Simple router schematic
* Input lines:

* no input buffering forwarding
routing
* Packet classifier: tables

« policy-based classification

 Correct output queue:
« forwarding/routing tables

« switching fabric switching

 output buffer (queue) fabric

* Scheduler:

« which output queue
serviced next

°
£
5
£
=
=8
g

(s)1o171552[0 193j0Rd

DigiComm 11

FCFS scheduling

* Null packet classifier

» Packets queued to outputs in order they arrive
* No packet differentiation

* No notion of flows of packets

+ Anytime a packet arrives, it is serviced as soon as
possible:
* FCFS is a work-conserving scheduler

Conservation law [1]

» FCFS is work-conserving:
+ not idle if packets waiting

* Reduce delay of one flow,
increase the delay of one
or more others

* We can not give all flows
a lower delay than they
would get under FCFS

i P4, =C

=
Py =Ryl
p,, - mean link utlisation

q, : mean delay due to scheduler
C': constant [s]

A, : mean packet rate [p/s]

u, : mean per — packet service rate[s/p]

DigiComm 11

Non-work-conserving schedulers

* Non-work conserving
disciplines:

can be idle even if packets

waiting

.

.

allows “smoothing” of
packet flows

* Do not serve packet as
soon as it arrives:

« wait until packet is eligible
for transmission

Eligibility:

« fixed time per router, or

« fixed time across network

v Less jitter
v" Makes downstream traffic
more predictable:
« output flow is controlled
« less bursty traffic
v Less buffer space:
* router: output queues
« end-system: de-jitter buffers
% Higher end-to-end delay
% Complex in practise
* may require time
synchronisation at routers

DigiComm 11

DigiComm I1
Conservation law [2]
Example + Change f1:
* u,:0.1ms/p (fixed) e A 15pls
* Flow fl: * q1:01s
. 2y 10p/s * g =1.5x107s
« ¢,:0.1ms » For 2 this means:
© p;q;=107s * decrease A,?
« Flow f2: * decrease ¢,?
« 2, 10p/s * Note the trade-off for f2:
* ¢,:0.Ims + delay vs. throughput
© P2g>=107s + Change service rate (u,,):
« C=2x107s « change service priority
DigiComm I1
Scheduling: requirements
* Ease of implementation: * Performance bounds:
* simple > fast per-flow bounds
« high-speed networks deterministic (guaranteed)

.

« low complexity/state statistical/probabilistic

.

« implementation in hardware data rate, delay, jitter, loss

* Fairness and protection: * Admission control:
+ local fairness: max-min (if required)
* local fairness > global « should be easy to
fairness implement
« protect any flow from the should be efficient in use

(mis)behaviour of any other

DigiComm 11

The max-min fair share criteria

+ Flows are allocated
resource in order of
increasing demand

* Flows get no more than

they need

Flows which have not

been allocated as they

demand get an equal share ,

of the available resource

Weighted max-min fair
share possible

If max-min fair >
provides protection

m, =min(x,,M,) lsnsN
n=l
C-Ym
" N-n+l

C': capacity of resource (maximum resource)
m, : actual resource allocation to flow n
x, :resource demand by flow n,x, < x,--- = X,

:resource available to flow n

Example:
C =10, four flow with demands of 2, 2.6, 4, 5
actual resource allocations are 2, 2.6, 2.7, 2.7

DigiComm 11

Scheduling: dimensions

* Priority levels: + Degree of aggregation:
« how many levels? « flow granularity
« higher priority queues per application flow?

services first

.

per user?

.

can cause starvation lower
priority queues

.

per end-system?
cost vs. control

.

* Work-conserving or not: * Servicing within a queue:
« must decide if delay/jitter « “FCFS” within queue?

control required
. q . « check for other parameters?
« is cost of implementation of

delay/jitter control in
network acceptable? ¢ queue management

+ added processing overhead

DigiComm 11

Simple priority queuing

* K queues:
s lsk=sK
* queue k + 1 has greater priority than queue k&
* higher priority queues serviced first
v Very simple to implement
v Low processing overhead
* Relative priority:
* no deterministic performance bounds
% Fairness and protection:
* not max-min fair: starvation of low priority queues

DigiComm 11

Generalised processor sharing (GPS)

* Work-conserving
* Provides max-min fair

share ¢(n) lsn=N
+ Can provide weighted S@rn 1sisN
max-min fair share Sir.d) , 20
. NVARIIN(0)]
* Not implementable: ¢(n): weight given to flow n
« used as a reference for S(i,t,t):service to flow 7 in interval /66,1
comparing other schedulers flow i has a non — empty queue

.

serves an infinitesimally
small amount of data from
flow i

* Visits flows round-robin

GPS — relative and absolute fairness

+ Use fairness bound to RFB= ‘S(”T_”) _SG.z)
evaluate GPS emulations g @ g»(;/)
(GPS-like schedulers) AFB = ‘S("Tj') (A2
ative fai) O
* Relative fairness boun(.L S(i,7,t):actual service for flow 7 in [7,]
* faimess of scheduler “_’“'h G(i,T,t): GPS service for flow i in[7,7]
respect to other flows itis () = min{g(i), g, K)}
servieing (1 < 2R B
e Absolute fairness bound: &t X
. Yotk
« fairness of scheduler =
compared to GPS for the @ (i, k) : weight given to flow i at router k

same flow r(k):servicerate of router k

I<i=N flow number
I=k=<K router number

DigiComm I1
Weighted round-robin (WRR)
+ Simplest attempt at GPS * Service is fair over long
* Queues visited round- timescales:
robin in proportion to + must have more than one

weights assigned visit to each flow/queue

. « short-lived flows?
+ Different mean packet short-iived Tows

. « small weights?
S1Z€s:

. .. « large number of flows?
« weight divided by mean

packet size for each queue
* Mean packets size
unpredictable:
* may cause unfairness

DigiComm 11

DigiComm I1
Deficit round-robin (DRR)
* DRR does not need to * Queues not served during
know mean packet size round build up “credits”:

* Each queue has deficit * only non-empty queues

counter (dc): initially zero * Quantum normally set to

+ Scheduler attempts to max expected packet size:

serve one quantum of data * ensures one packet per
from a non-empty queue: round, per non-empty queue
« packet at head served if * RFB: 3T/r (T = max pkt
size < quantum + dc service time, r = link rate)

dc € quantum + dc — size « Works best for:

4= .
* else de+= quantum « small packet size

« small number of flows

DigiComm 11

Weighted Fair Queuing (WFQ) [1]

Based on GPS: * Round-number:

« GPS emulation to produce « execution of round by bit-
finish-numbers for packets by-bit round-robin server
in queue « finish-number calculated
Simplification: GPS from round number

emulation serves packets . : .
bit-by-bit round-robin 1t q;lep}? 1 erbnp Fy'
.. . « finish-number is:
Finish-number: number of bits in packet +
« the time packet would have round-number
completed service under o If queue non-empty:
bit-by-bit) GPS 1 py:
(y-iD) . . « finish-number is:
« packets tagged with finish- highest current finish
number number for queue +

+ smallest finish-number number of bits in packet
across queues served first

.

DigiComm 11

Weighted Fair Queuing (WFQ) [2]

P(i,k,t): size of packet k on flow i

F(i,k,1) = max{F(i,k - 1,0,R0)} + PG.kD) o Flow completes (empty
F(i,k,t): finish - number for packet & queue):

on flow i arriving at time ¢ « one less flow in round, so

o) * R increases more quickly
arriving at time ¢
. « so, more flows complete
R(¢): round - number at time ¢ Ri ickl
« R increases more quic
PGk1) aney

F(i,k,t) = max {F, (i,k - L0, R(t)} + . ete. .

[40)] N

« iterated deletion problem

« Rate of change of R(¢) depends WFQ .needs to evaluflte R
on number of active flows (and each time packet arrives or
their weights) leaves:

(i) : weight given to flow i

* As R(f) changes, so packets will

« processing overhead
be served at different rates

DigiComm 11

Weighted Fair Queuing (WFQ) [3]

Buffer drop policy:
« packet arrives at full queue

 drop packets already in queued, in order of decreasing finish-
number

Can be used for:

« best-effort queuing

« providing guaranteed data rate and deterministic end-to-end delay
WFQ used in “real world”
Alternatives also available:

« self-clocked fair-queuing (SCFQ)

» worst-case fair weighted fair queuing (WF2Q)

DigiComm 11

Class-Based Queuing

* Hierarchical link sharing:
« link capacity is shared
 class-based allocation
« policy-based class selection 40%
+ Class hierarchy: °
 assign capacity/priority to
each node
node can “borrow” any @
spare capacity from parent D
« fine-grained flows possible -
1%

* Note: this is a queuing RT

.

real-time

mechanism: requires use NRT non-real-time
of a scheduler

DigiComm 11

Queue management and congestion
control

DigiComm 11

Queue management [1]

» Scheduling:
* which output queue to visit
* which packet to transmit from output queue
* Queue management:
* ensuring buffers are available: memory management
* organising packets within queue
* packet dropping when queue is full
* congestion control

DigiComm 11

Queue management [2]

» Congestion:

* misbehaving sources

* source synchronisation

* routing instability

* network failure causing re-routing

* congestion could hurt many flows: aggregation
* Drop packets:

* drop “new” packets until queue clears?

+ admit new packets, drop existing packets in queue?

DigiComm 11

Packet dropping policies

* Drop-from-tail: * Flush queue:
+ easy to implement « drop all packets in queue
 delayed packets at within « simple
queue may “expire” + flows should back-off
* Drop-from-head: « inefficient
« old packets purged first .]ntelligem drop:
« good for real time « based on level 4
* better for TCP information
+ Random drop: « may need a lot of state

« fair if all sources behaving information

. . « should be fairer
« misbehaving sources more

heavily penalised

DigiComm 11

End system reaction to packet drops

* Non-real-time — TCP:
* packet drop = congestion = slow down transmission
* slow start > congestion avoidance
* network is happy!
* Real-time — UDP:
* packet drop - fill-in at receiver > ??
« application-level congestion control required
+ flow data rate adaptation not be suited to audio/video?
* real-time flows may not adapt - hurts adaptive flows
* Queue management could protect adaptive flows:
* smart queue management required

DigiComm 11

RED [1]

* Random Early Detection:
* spot congestion before it happens
* drop packet - pre-emptive congestion signal
* source slows down
* prevents real congestion
* Which packets to drop?
* monitor flows

* cost in state and processing overhead vs. overall
performance of the network

DigiComm 11

RED [2]

* Probability of packet drop « queue length
* Queue length value — exponential average:
* smooths reaction to small bursts
* punishes sustained heavy traffic
* Packets can be dropped or marked as “offending”:

* RED-aware routers more likely to drop offending
packets

* Source must be adaptive:
* OK for TCP
* real-time traffic > UDP ?

DigiComm 11

TCP-like adaptation for real-time flows

* Mechanisms like RED require adaptive sources
* How to indicate congestion?

* packet drop — OK for TCP

* packet drop — hurts real-time flows

» use ECN?
+ Adaptation mechanisms:

* layered audio/video codecs

* TCP is unicast: real-time can be multicast

DigiComm 11

Scheduling and queue management:

Discussion

* Fairness and protection: * Aggregation:

* queue overflow « granularity of control

« congestion feedback from « granularity of service

router: packet drop? + amount of router state

+ Scalability: « lack of protection

« granularity of flow . Signalling:

* speed of operation set-up of router state
* Flow adaptation: « inform router about a flow

« non-real time: TCP « explicit congestion

notification?

* real-time?

DigiComm 11

Summary

Scheduling mechanisms

+ work-conserving vs. non-work-conserving
Scheduling requirements
Scheduling dimensions
Queue management
Congestion control

DigiComm 11

