Network/Graph
Theory

Graph-based representations

Representing a problem as a graph can
provide a different point of view
Representing a problem as a graph can
make a problem much simpler

= More accurately, it can provide the
appropriate tools for solving the problem

What is a Network?

* Network = graph
* Informally a graph is a set of nodes
joined by a set of lines or arrows.
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What is network theory?

Network theory provides a set of
techniques for analysing graphs

Complex systems network theory provides
techniques for analysing structure in a
system of interacting agents, represented
as a network

Applying network theory to a system
means using a graph-theoretic
representation

What makes a problem graph-like?

There are two components to a graph
= Nodes and edges
In graph-like problems, these components
have natural correspondences to problem
elements
= Entities are nodes and interactions between
entities are edges

Most complex systems are graph-like

Friendship Network
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Ecological Networks

Graph Theory - History

Leonhard Euler's paper
on “Seven Bridges of
Kénigsberg” ,

published in 1736.

Graph Theory - History

Cycles in Polyhedra

Thomas P. Kirkman William R. Hamilton

Hamiltonian cycles in Platonic graphs

Graph Theory - History

Trees in Electric Circuits

Gustav Kirchhoff

Graph Theory - History

Enumeration of Chemical Isomers

Arthur Cayley James J. Sylvester ~ George Polya
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Definition: Graph

* G is an ordered triple G:=(V, E, f)
—V is a set of nodes, points, or vertices.

— E is a set, whose elements are known as
edges or lines.

—fis a function
* maps each element of E
* to an unordered pair of vertices in V.

Definitions

* Vertex

— Basic Element

— Drawn as a node or a dot.

— Vertex set of G is usually denoted by V(G), or V
* Edge

— A set of two elements

— Drawn as a line connecting two vertices, called
end vertices, or endpoints.

— The edge set of G is usually denoted by E(G), or
E.

Example
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. Vi={1,2,3,4,56}

+ E:={{1,2},{1,5},{2,3}.{2,5}.{3,4},{4,5},{4,6}}

Simple Graphs

Simple graphs are graphs without multiple
edges or self-loops.

Directed Graph (digraph)

+ Edges have directions
— An edge is an ordered pair of nodes

Weighted graphs

+ is a graph for which each edge has an

associated weight, usually given by a weight
function w: E — R.

®

% §




Structures and structural
metrics

Graph structures are used to isolate
interesting or important sections of a
graph

Structural metrics provide a measurement
of a structural property of a graph

= Global metrics refer to a whole graph

= Local metrics refer to a single node in a graph

Graph structures

Identify interesting sections of a graph

= Interesting because they form a significant
domain-specific structure, or because they
significantly contribute to graph properties

A subset of the nodes and edges in a

graph that possess certain characteristics,

or relate to each other in particular ways

Connectivity

* agraph is connected if

— you can get from any node to any other by
following a sequence of edges OR

— any two nodes are connected by a path.

» Adirected graph is strongly connected if
there is a directed path from any node to any
other node.

Component

+ Every disconnected graph can be split
up into a number of connected
components.

O

O—

Degree

» Number of edges incident on a node

The degree of 5 is 3

Degree (Directed Graphs)

* In-degree: Number of edges entering
» Out-degree: Number of edges leaving

* Degree = indeg + outdeg
outdeg(1)=2
indeg(1)=0

outdeg(2)=2
indeg(2)=2

outdeg(3)=1
indeg(3)=4




Degree: Simple Facts

« If G is a graph with m edges, then
2 deg(v)=2m=2|E|

* If G is a digraph then
2 indeg(v)=2 outdeg(v) = |E |

* Number of Odd degree Nodes is even

Walks
A walk of length k in a graph is a succession of k
(not necessarily different) edges of the form
uv,vW,wx, ...,yz.

This walk is denote by uvwx...xz, and is referred to
as a walk between u and z.

A walk is closed is u=z.

Path

* A path is a walk in which all the edges and all
the nodes are different.

Walks and Paths
1,2,52,3,4 1,2,52,3,2,1 1,2,3,4,6
walk of length 5 CW of length 6 path of length 4

Cycle

* A cycle is a closed path in which all the
edges are different.

1,2,51 234,52
3-cycle  4-cycle

Special Types of Graphs

« Empty Graph / Edgeless graph

—No edge
®© O
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* Null graph
— No nodes

— Obviously no edge

Trees

» Connected Acyclic Graph

* Two nodes have exactly
one path between them
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Special Trees

O oooe Paths

Stars

Regular

@ Connected Graph

@ All nodes have the same
degree

Special Regular Graphs: Cycles
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Complete Graph

 Every pair of vertices are adjacent
* Has n(n-1)/2 edges

Bipartite graph

* V can be partitioned

into 2 sets V, and V, o\
such that (u,v)€E © A\
implies

—eitheru €V, and v €V, G)
-ORVvEV, and uev,

®
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Complete Bipartite Graph
* Bipartite Variation of Complete Graph

» Every node of one set is connected to
every other node on the other set

Stars




Planar Graphs

+ Can be drawn on a plane such that no two edges
intersect

+ K, is the largest complete graph that is planar

Subgraph
» Vertex and edge sets are subsets of

those of G

— a supergraph of a graph G is a graph that
contains G as a subgraph.

®
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Special Subgraphs: Cliques

A clique is a maximum complete
connected subgraph.
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Spanning subgraph

» Subgraph H has the same vertex set as
G.

— Possibly not all the edges

Spanning tree

Let G be a connected graph. Then a
spanning tree in G is a subgraph of G
that includes every node and is also a
tree.

—“H spans G”.
©
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Isomorphism

* Bijection, i.e., a one-to-one mapping:
f: V(G) -> V(H)
u and v from G are adjacent if and only
if f(u) and f(v) are adjacent in H.
« If an isomorphism can be constructed
between two graphs, then we say those
graphs are isomorphic.




Isomorphism Problem

Determining whether two

graphs are isomorphic N/ N
Although these graphs look \
very different, they are N/
isomorphic; one isomorphism /
between them is

f(a)=1 f(b)=6 f(c)=8 f(d)=3
f(g)=5 f(h)=2 f(i)=4 f(j)=7

[

Representation (Matrix)

* Incidence Matrix

-VxE

— [vertex, edges] contains the edge's data
» Adjacency Matrix

-VxV

— Boolean values (adjacent or not)

— Or Edge Weights

Matrices
12 15 23 25 34 45 46
1 (1 1 0 0 0 0 0]
2|1 0 1 1 0 0 0]
310 0 1 0 1 0 0]
400 0 0 0 1 1 1
5 10 1 0 1 0 1 0
6 |0 0 0 0 0 0 1
1 23456
101001 0
2101 01 0
3]0 1 01 00
4(0 01 0 1 1
51101 00
60 001 00

Representation (List)

+ Edge List
— pairs (ordered if directed) of vertices
— Optionally weight and other data

» Adjacency List (node list)

Implementation of a Graph.

« Adjacency-list representation
—an array of |V | lists, one for each vertex in

—Foreachu &V, ADJ [ u] points to all its
adjacent vertices.

Edge and Node Lists

Edge List Node List
12 122
12 235
23 33
25 435
33 534
43
45
53




Edge Lists for Weighted
Graphs

Edge List
121.2

240.2
4503
4105
540.5
6315

Topological Distance

@ A shortest path is the minimum path
connecting two nodes.

@ The number of edges in the shortest path
connecting p and q is the topological
distance between these two nodes, d, ,

Distance Matrix

@|V|x|V| matrix D= (d;) such that

d; is the topological distance between i and j.

123456

© 1012213
20101 213

0 ® 32101 22
© 41221011
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Random Graphs .

Erdés and Renyi (1959)
p=00;k=0 o °

N nodes

A pair of nodes has
probability p of being

connected. =000 k=1
Average degree, k= pN °
What interesting things can

be said for different values

ofpork? p=10: k=YiN2

(that are true as N > ©9)

Random Graphs . - .

Erdés and Renyi (1959) °
p=00;k=0 o o

.
\ . p=0.09;k=1
p=0045:k=05

Let's look at...

(7 =1.0; k=N?
Diameter (maximum path length between nodes) of the 1§

Random Graphs

Erdés and Renyi (1959)

p=00;k=0 p=0.045;k=05 p=009;k=1 p=1.0;k="N?

Diameter of largest component




Random Graphs

Erdés and Renyi (1959)

Ifk<1: 4
— small diameters

Atk=1:

— diameter peaks

Fork>1:

— diameter shrinks f

phase transition

1.0 k

Random Graphs
hnd Renyi (1959)

What does this mean?

« If connections between people can be modeled as a
random graph, then...

— Because the average person easily knows more than one
person (k >>1),

— Erdés and Renyi showed that average InN
path length between connected nodes is ﬁ
n

Random Graphs

=

Mumford

Snd Renyi (1959) o~
\Gra/
What does this mean? BIG “IF”II!

onnections between people can be modeled as a
ndom graph, then...

— Because the average person easily knows more than one
person (k >>1)

— We live in a “small world” where within a few links, we are
connected to anyone in the world.

— Erd6s and Renyi computed average InN
path length between connected nodes to be: ﬁ
n

The Alpha Model

Watts (1999)

The people you know aren’t
randomly chosen.

b ’:'““’T“k‘ ’ "', Susan Dumais
§ Comy M i
‘Angel Baum | “Jonathan Grudi
{, Suzanne Evans
People tend to g_et to know those 5 L Lili Cheng
who are two links away |, Kentaro Toyams % Oweg Vonay
(Rapoport , 1957). L Socil ComputngGowp 7o
L Pemoum oo

L The Personal Map
The real world exhibits a lot of by MSR Redmond’s Social Computing Group

clustering.

The Alpha Model

Watts (1999)

a model: Add edges to nodes, as
in random graphs, but makes

[ ordered Exreme > links more likely when two

nodes have a common friend.

Propensity to become fiends

os  ee o
o of ot inds
Probability of linkage as a function
of number of mutual friends
(ais 0 in upper left,
1 in diagonal,
and « in bottom right curves.)

0.2
Matust friacs

The Alpha Model

Watts (1999)

a model: Add edges to nodes, as
in random graphs, but makes
links more likely when two
nodes have a common friend.

Random networks

Clustering coefficient /

Clustering coefficient (C) and
average path length (L)
plotted against o




The Beta Model

Watts and Strogatz (1998)

B=0.125 B=
People know People know People know
their neighbors. their neighbors, others at
and a few distant people. random.

The Beta Model
nd Strogatz (1998)

Jonathan
Donner
Kentaro
Toyama

First five random links reduce the
average path length of the
network by half, regardless of N!

Both a and g models reproduce
short-path results of random
graphs, but also allow for
clustering.

Clustering coefficient /

Small-world phenomena occur at Clustering coefficient (C) and average
threshold between order and path length (L) plotted against g
chaos.

Power Laws
Albert and Barabasi (1999)
What'’s the degree (number of

edges) distribution over a graph,
for real-world graphs?

Random-graph model results in
Poisson distribution.

Degree distribution of a random graph,
N=10,000 p=0.0015 k=15.
(Curve is a Poisson curve, for comparison.)

Power Laws

Albert and Barabasi (1999)

What'’s the degree (number of
edges) distribution over a graph,
P for real-world graphs?

Random-graph model results in
Poisson distribution.

k

Typical shape of a power-law distribution.

Power Laws

Albert and Barabasi (1999) - o
(a) 1f

1

Power-law distributions are straight
lines in log-log space.

10 j”

2 (©) (d)

How should random graphs be
generated to create a power-law 10°
distribution of node degrees?

I
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Power laws in real networks:

(a) WWW hyperlinks

(b) co-starring in movies

(c) co-authorship of physicists

(d) co-authorship of neuroscientists

Power Laws )
Anandan
Albert and(1 999)

Kentaro
Toyama
Jennifer
Chayes
“The rich get richer!”

Power-law distribution of node
distribution arises if

Map of the Internet” poster Additional variable fitness coefficient
allows for some nodes to grow

faster than others.




Searchable Networks

Kleinberg (2000)

THE ENCYCLOPEDIA OF

The FBI's

Just because a short path exists,
doesn’t mean you can easily
find it.

You don'’t know all of the people
whom your friends know.

Searchable Networ® ¢ 2 2 ¢ ¢ ¢
o 0o 0o o o o
: o o—~Q 0 o
Kleinberg (2000) 2 <
o o o¥9 o
0 0 o ‘0%t
L , o o o o9 o
a) Variation of Watts's 8 model: N
—  Lattice is d-dimensional (d=2).
~  One random link per node. s °° can (e-2Viet)
~  Parameter « controls probability of random link S XN .
— greater for closer nodes. 22 D e
RN,
£ oz} \
b) T R T R
~ Forlow a, random graph; no “geographic’ Clusterng exponent ()
correlation in links .
~  Forhigh a not a small world; no short paths to IS .
be found.

c) Searchability dips at a=2, in simulation

InT for gready aigorthm

1 B
Clustering exponent ()

Searchable Networks

Watts, Dodds, Newman (2002) show
that for d = 2 or 3, real networks
are quite searchable.

Killworth and Bernard (1978) found
that people tended to search their
networks by d = 2: geography and
profession.

Kentaro
Toyama

Number of completed chans

723456789101 12131415

Number of steps i ltter chaln

The Watts-Dodds-Newman model
closely fitting a real-world experiment
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