Feedback Control Theory

a Computer System’s Perspective

= Introduction

What is feedback control?

Why do computer systems need feedback control?
= Control design methodology

System modeling

Performance specs/metrics

Controller design
= Summary

Control

= Applying input to cause system variables to conform to desired values called
the reference.
Crui I car: f_engi 2> sp mph
E-commerce server: Resource allocation? - T_response=5 sec
Embedded networks: Flow rate? - Delay = 1 sec
Computer systems: QoS guarantees

Open-loop control

= Compute control input without continuous variable measurement
Simple
Need to know EVERYTHING ACCURATELY to work right
+ Cruise-control car: friction(t), ramp_angle(t)

+ E-commerce server: Workload (request arrival rate? resource
consumption?); system (service time? failures?)

= Open-loop control fails when
We don’t know everything
We make errors in estimation/modeling
Things change

Feedback (close-loop) Control

Feedback (close-loop) Control

= Measure variables and use it to compute control input
More complicated (so we need control theory)
Continuously measure & correct
+ Cruise-control car: measure speed & change engine force
+ Ecommerce server: measure response time & admission control
+ Embedded network: measure collision & change backoff window
m Feedback control theory makes it possible to control well even if
We don’t know everything
We make errors in estimation/modeling
Things change

Controlled System
Controller
control control Actuator manipulated
function input variable
error

o Moni sample | controlled

4 - L I~ variable

I
reference

Why feedback control?

Open, unpredictable environments

m Deeply embedded networks: interaction with physical environments
Number of working nodes
Number of interesting events
Number of hops
Connectivity
Available bandwidth
Congested area
m Internet: E-business, on-line stock broker

m Unpredictable off-the-shelf hardware

Why feedback control?
We want QoS guarantees

m Deeply embedded networks

Update intruder position every 30 sec
Report fire <= 1 min

m E-business server
Purchase completion time <= 5 sec
Throughput >= 1000 transaction/sec

Advantage of feedback control theory

m Adaptive resource management heuristics

Laborious design/tuning/testing iterations

Not enough confidence in face of untested workload
= Queuing theory

Doesn't handle feedbacks

Not good at characterizing transient behavior in overload
m Feedback control theory

Systematic theoretical approach for analysis and design
Predict system response and stability to input

= The problem: provide QoS guarantees in open. unpredictable
environments
Outline

= Introduction

What is feedback control?

Why do today’s computer systems need feedback control?
= Control design methodology

System modeling

Performance specs/metrics

Controller design
= Summary

Control design methodology

Controller
Modeling Design
0] | P
analytical = Dynamic model » Root-Locus ™! Control algorithm |
system IDs PI Control H
7 N

 Performance Specifications :»4 [ETTTITT

System Models

= Linear vs. non-linear (differential egns)
m Deterministic vs. Stochastic
m Time-invariant vs. Time-varying

Are coefficients functions of time?
m Continuous-time vs. Discrete-time
System ID vs. First Principle

Dynamic Model

m Computer systems are dynamic
Current output depends on “history”

m Characterize relationships among system variables
Differential equations (time domain)

@y Y0+ @ 2(0) + ay(0) = by () + b(0)

« Transfer functions (frequency domain)
Ns) = G(s)U(s)

Gs) = bys +b, __q [

a,s’+as+a, S—-p, S—p,
* Block diagram (pictorial)

Example
Utilization control in a video server

= Periodic task T, corresponding to each video stream i
cfi): processing time, p[i]: period
Stream i's requested CPU utilization: u[i]=cil/p[i]
= Total CPU utilization: U(t)=2,u[K], {k} is the set of active streams
= Completion rate: Ry(t)= (Xyqulm])/At, where {m} is the set of terminated video
streams during [t, t+At]
Unknown
= Admission rate: Ry(t)= (Zuli])/At, where {j} is the set of admitted streams during [t,
t+At]

= Problem: design an admission controller to guarantee U(t)=U, regardless of B (t)

Model
Differential equation

 Error: E(t)=U,-U(t)
« Model (differential equation): U() = f(Ru(T)—R((t))dr

7=0

» Controller C? E(t) = R,(t)

Ry()

CPU

JJEXC

A Diversion to Math
System representations

m Three ways of system modeling

* Time domain: convolution; differential equations.
uO—gm [y ¥ =g *u(t)=[gt-u(x)dr
0

* s (frequency) domain: multiplication

UG =Y Y(s)=G(s)U(s)

* Block diagram: pictorial

s-domain is a simple & powerful “language” for control analysis

A Diversion to Math
Laplace transform

= Laplace transform of a signal f(t)

F(s)=LLf(O)]= f fedt

where s=o+iw is a complex variable.
¢ Laplace transform is a translation from time-domain to
s-domain
« Differential equation = Polynomial function

ay 9(0)+ a, (0 + ayy(t) = by u(t) + byu(r)

bis+b,

<YEs)="—"7F "
® a,s’ +a;s+a,

*U(s)

A Diversion to Math
Laplace transform

= Basic translations
Impulse function f(t)=3(t) < F(s)=1
Step signal f(t)=a-1(t) < F(s)=1/s

Ramp signal f(t)=a-t < F(s)=a/s?

Exp signal f(t)=e?' < F(s)=1/(s-a)

Sinusoid signal f(t)=sin(at) < F(s)=a/(s?+a?)
= Composition rules

Linearity L[af(t)+bg(t)] = aL[f(t)]+bL[g(t)]

Differentiation L[df(t)/dt] = sF(s) — (0.)

Integration L[/if(t)dt] = F(s)/s

A Diversion to Math
Transfer function

® Modeling a linear time-invariant (LTI) system
G(s) = Y(s)/U(s) = Y(s) = G(s)U(s)

U6 [Y©)

E.g., a second order system with poles p; and p,

Gsym—28*0 o &

= +
2
as"+as+a, s-p S-p,

A Diversion to Math
Poles and Zeros

= The response of a linear time-invariant (LTI) system

m m-1
F _bs"4b, 5" 4.+ by
()= n -1
a,s"+a, 5" +.+a,
"
I (s—z,) C, C, C,
= + ot

i=1

0. (s-p) s-p, s-p, s-p,

= f(t)= iC,.e“”
il

| {p:} are poles of the function and decide the system behavior

A Diversion to Math
Time response vs. pole location

Stable mio Unstable

LHP

of (t) = e, p = a+bj

A Diversion to Math
Block diagram

= A pictorial tool to represent a system based on transfer functions and signal
flows

= Represent a feedback control system

RE—Q; ()

I
R ¥

G - C(5)G,(s)
C T 1+ C(s)G, (s)
Y(s)=G.(s)R(s)

Back to
Our utilization control example

 Error: E(t)=U,-U(t)
« Model (differential equation): U(t) = f (R,(t)-R.(7))dt

7=0

» Controller C? E(t) = R,(t)

Ry ()

CPU

JJEXC

Model
Transfer func. & block diag.

e CPU is modeled as an integrator

'
Uty = J(R,(x)- R.(x))dT < U(s) = -
= Inplts: reference Uy(s) = Uy/s; completion rate R(s)

m Close-loop system transfer functions
U,(s) as input: G, (5) = C(8)G,(s)/(1+C(s)G,(s))
R,(s) as input: G,(s) = Gy(s)/(1+C(5)Gy (8))

m Output: U(s)=G; (s)Us/s+G(s)R(s)

RO-RG) oo 1

K

R.(s)
|

us a?ﬁ-%—%ﬁau@

Control design methodology

Controller
Modeling e Design e,
- N i
analytical [Dynamic model i gooy e, = Control algorithm |
system IDs PI Control
7 N

Design Goals

Performance Specifications Performance Specs: bounded input,bounded output stability

m Stability = BIBO stability: bounded input results in bounded output.

® Transient response ::[‘;I]z?em is BIBO stable if all poles of its transfer function are in the LHP (Vp,,
= Steady-state error

= Robustness
Disturbance rejection
Sensitivity I (s—z) C C, C,

Y()=GOU(s)=K————= + Fot—"
O (s=p) s-p s—p, S=P,

= ()= X Ce
i=1

1=

Note: Ce" © if Re[p]>0

Performance Specs Performance specifications

Stability
Controlled
variable
mis) %
Stable ™ Unstable ——D—Z:I-TOV—TMM Steady state error
AR Reference —=
——— A

LHP

Transient State Steady State

Time

Settling time

Example: Control & Response in an Email Server (IBM)
Performance Specs
Steady-state error

=1, Caty =0 W= 1, ety =2

£ Response
\ (queue length)

Good).
=t Control

(MaxUsers)

m Steady state (tracking) error of a stable system

e, =lime(r) = lim(r(t)- ¥(t)

r(t) is the reference input, y(t) is the system output.
* How accurately can a system achieve the desired state?
« Final value theorem: if all poles of sF(s) are in the open left-half
of the s-plane, then

PR

lim (1) = limsF (s)

. " * Easy to evaluate system long term behavior without solving it
(T - et e :
| “ I | \\ | I ¢, =lime(r) = limsE(s)

Narars

PR

{

Performance Specs
Steady-state error
Steady state error of a CPU-utilization control system

uw

09

o T €,=-20%
A

8 10 12
Time (sec)

Performance Specs
Robustness

= Disturbance rejection: steady-state error caused by external
disturbances
Can a system track the reference input despite of external disturbances?
Denial-of-service attacks
= Sensitivity: relative change in steady-state output divided by the relative
change of a system parameter
Can a system track the reference input despite of variations in the system?
Increased task execution times
Device failures

Performance Specs
Goal of Feedback Control

= Guarantee stability
= Improve transient response
Short settling time
Small overshoot
= Small steady state error
= Improve robustness wrt uncertainties
Disturbance rejection
Low sensitivity

Control design methodology

Controller
Modeling e Design N
- - i
analytical [Dynamic model i gooy ey, = Control algorithm |
system IDs PID Control
Z'

 Performance Specifications :»4 [ETTTITT

Controller Design
PID control

m Proportional-Integral-Derivative (PID) Control

o Proportional Control x(1)=Ke(r) < C(s)=K

f KK,
« Integral control x0)= KK Je@ydr = Cls)= .
)
* Derivative control x()=KK,e(t) = C(s)=KK,s

* Classical controllers with well-studied properties and tuning rules

Controller Design
CPU Utilization Control

* CPU is modeled as an integrator

U@ = [(R,(x)-R.(x)dt < U(s) = RO-RG gL
u Inplts: set-point Uy(s) = Ug/s ; task gompleiion Rc(s) s
m Close-loop system transfer functions
U,(s) as input: G, (5) = C(8)G,(s)/(1+C(s)G,(s))
R,(s) as input: Gy(5) = Gy(8)/(14C(8)Gy(s))

m C(s)=7 to achieve zero steady-state error: U(t) — Ug

R.(s)
|

uJs @—-—5T RO o)

Proportional Control
Stability

= Proportional Controller
ra()=Ke(t); C(s) =K
= Transfer functions

Uy/s as input: Gi(s) = K/(s+K)
R.(s) as input: Gy(s) = 1/(s+K)
= Stability

Pole p, = -K<0 < System is BIBO stable iff K>0
Note: System may shoot to 100% if K<0!

Re(s)
|

us 7%?7-&57’THU(5)

Proportional Control
Steady-state error

= Assume completion rate R(t) keeps constant for a time period longer than
the settling time: R (s)=R./s

= System response is

U,G(s) RG,(s) KU, -R
ves)= Sl * sz B s(s+K)
¢ Compute steady-state err using final value theorem,
limU(f) = limsU((s) = fim <= R _ U, - R =e, =- L
1= =0 —0 s+K K T K

* P-control cannot achieve the desired CPU utilization U,; instead
it will end up lower by R./K Oops!

* The larger the proportional gain K is, the closer will CPU
utilization approach to U,

CPU Utilization
Proportional Control

oz T €,=-20%
Yy

o 2 a 6 B 10
Time (sec)

Proportional-Integral Control
Stability

= Proportional Controller
ra()=K(e(t)+Kfie(x)dr) C(s) = K(1+Ki/s)

= Transfer functions
Uy/s as input: Gi(s) = (Ks+KK))/(s2+Ks+KK;)
R.(s) as input: Giy(s) = s/(s2+Ks+KK;)

= Stability

Poles Re[p,]<0, Re[p,]<0
<> System is BIBO stable iff K>0 & K;>0

Re(s)
|

us Ho?-%—%ﬁau@

T

Proportional Control
Steady-state error

= Assume completion rate R(t) keeps constant for a time period longer than
the settling time: R (s)=R./s

= System response is

iy~ LG RO) (KU, +R)s KKD,

s s(s* + Ks+ KK,)
¢ Compute steady-state err using final value theorem,

m KU +R, KK.U,
limU(7) = limsU(s) = lim KYs + R)s + KKU,
= = =

=U =0
0 s’ +Ks+KK, s T4

 PI control can accurately achieve the desired CPU utilization U, v
« Control analysis gives design guidance

CPU Utilization
Proportional-Integral Control

umn

ss!

as 6a s0

ttt,

Controller Design
Summary & pointers

m PID control: simple, works well in many systems
P control: may have non-zero steady-state error
I control: improves steady-state tracking
D control: may improve stability & transient response
= Linear continuous time control
Root-locus design
Frequency-response design
State-space design
G. F. Franklin et. al., Feedback control of dynamic systems

Discrete Control

= More useful for computer systems

= Time is discrete; sampled system
denoted k instead of t

= Main tool is z-transform

flk) = F(z) , where z is complex
Analogous to Laplace transform for s-domain

7L/ (k)] = F(2) = Zf(k)fk

Discrete Modeling

Difference equation

+ V(m) = a,V(m-1) + a,V(m-2) + b,U(m-1) + b,U(m-2)
+ zdomain: V(2) = a,z'W(2) + a,z2V(2) + b,z 'U(2) + b,z2U(2)

+ Transfer function G(2) = (b,z + by)/(z?-a,z - a,)
V(m): output in mt sampling window
U(m): input in m™" sampling window

Order n: #sampling-periods in history affects current performance
SP =30 sec, and n = 2 > Current system performance depends on

previous 60 sec

Root Locus analysis of Discrete Systems

m Stability boundary: |zj=1 (Unit circle)
m Settling time = distance from Origin
m Speed = location relative to Im axis

Right half = slower
Left half = faster

Effect of discrete poles

In(s)
A

Higher-frequency
response b/— \

/ onger settling time

Stable Re)

Unstable |Z ‘: 1

Intuition: z = ™

Feedback control works in CS

U.Mass: network flow controllers (TCP/IP — RED)
IBM: Lotus Notes admission control
UIUC: Distributed visual tracking
UVA
Web Caching QoS
Apache Web Server QoS differentiation
Active queue management in networks
Processor thermal control
Online data migration in network storage (with HP)
Real-time embedded networking
Control middleware
Feedback control real-time scheduling

Advanced Control Topics

= Robust Control

Can the system tolerate noise?
Adaptive Control

Controller changes over time (adapts)
= MIMO Control

Multiple inputs and/or outputs
Stochastic Control

Controller minimizes variance
m Optimal Control
Controller minimizes a cost function of error and control energy
Nonlinear systems
Neuro-fuzzy control
Challenging to derive analytic results

Issues for Computer Science

Most systems are non-linear
But linear approximations may do
+ eg, fluid approximations
First-principles modeling is difficult
Use empirical techniques
Mapping control objectives to feedback control loops
ControlWare paper
Deeply embedded networking
Massively decentralized control problem
Modelling
Node failures

