
1

Feedback Control Theory
a Computer Systemʼs Perspective

 IntroductionIntroduction
 What is feedback control?What is feedback control?
 Why do computer systems need feedback control?Why do computer systems need feedback control?

 Control design methodologyControl design methodology
 System modelingSystem modeling
 Performance specs/metricsPerformance specs/metrics
 Controller designController design

 SummarySummary

Control

 Applying input to cause system variables to conform to desired values calledApplying input to cause system variables to conform to desired values called
the the referencereference..
 Cruise-control car: Cruise-control car: f_engine(t)=?f_engine(t)=?  speed=60 mph speed=60 mph
 E-commerce server: E-commerce server: Resource allocation? Resource allocation?  T_response=5 sec T_response=5 sec
 Embedded networks: Embedded networks: Flow rate? Flow rate?  Delay = 1 sec Delay = 1 sec
 Computer systems: QoS guaranteesComputer systems: QoS guarantees

Open-loop control

 Compute control input without continuous variable measurementCompute control input without continuous variable measurement
 SimpleSimple
 Need to know Need to know EVERYTHINGEVERYTHING ACCURATELYACCURATELY to work right to work right

 Cruise-control car: Cruise-control car: friction(t), ramp_angle(t)friction(t), ramp_angle(t)
 E-commerce server: E-commerce server: Workload (request arrival rate? resourceWorkload (request arrival rate? resource

consumption?); system (service time?consumption?); system (service time? fa failuresilures?)?)

 Open-loop control fails whenOpen-loop control fails when
 We donWe donʼ̓t know everythingt know everything
 We make errors in estimation/modelingWe make errors in estimation/modeling
 Things changeThings change

Feedback (close-loop) Control

Actuator

Monitor

reference

control
input

controlled
variable

manipulated
variable

Controlled System

+ -

error

control
function

Controller

sample

Feedback (close-loop) Control

 Measure variables and use it to compute control inputMeasure variables and use it to compute control input
 More complicated (so we need control theory)More complicated (so we need control theory)
 Continuously measure & correctContinuously measure & correct

 Cruise-control car: Cruise-control car: measure speed & change engine forcemeasure speed & change engine force
 Ecommerce server: Ecommerce server: measure response time & admission controlmeasure response time & admission control
 Embedded network: Embedded network: measure collision & change backoff windowmeasure collision & change backoff window

 Feedback control theory makes it possible to control well even ifFeedback control theory makes it possible to control well even if
 We donWe donʼ̓t know everythingt know everything
 We make errors in estimation/modelingWe make errors in estimation/modeling
 Things changeThings change

Why feedback control?
Open, unpredictable environments

 Deeply embedded networks: interaction with physical environmentsDeeply embedded networks: interaction with physical environments
 Number of working nodesNumber of working nodes
 Number of interesting eventsNumber of interesting events
 Number of hopsNumber of hops
 ConnectivityConnectivity
 Available bandwidthAvailable bandwidth
 Congested areaCongested area

 Internet: E-business, on-line stock brokerInternet: E-business, on-line stock broker
 Unpredictable off-the-shelf hardwareUnpredictable off-the-shelf hardware

2

Why feedback control?
We want QoS guarantees

 Deeply embedded networksDeeply embedded networks
 Update intruder position every 30 secUpdate intruder position every 30 sec
 Report fire <= 1 minReport fire <= 1 min

 E-business serverE-business server
 Purchase completion time <= 5 secPurchase completion time <= 5 sec
 Throughput >= 1000 transaction/secThroughput >= 1000 transaction/sec

 The problem: provide QoS guarantees in open, unpredictableThe problem: provide QoS guarantees in open, unpredictable
environmentsenvironments

Advantage of feedback control theory

 Adaptive resource management heuristicsAdaptive resource management heuristics
 LLaborious design/tuning/testing iterationsaborious design/tuning/testing iterations
 NNot enough confidence in face of untested workloadot enough confidence in face of untested workload

 Queuing theoryQueuing theory
 DoesnDoesnʼ̓t handle feedbackst handle feedbacks
 Not good at characterizing transient behavior in overloadNot good at characterizing transient behavior in overload

 Feedback control theoryFeedback control theory
 Systematic theoretical approach for analysis and designSystematic theoretical approach for analysis and design
 Predict system response and stability to inputPredict system response and stability to input

Outline

 IntroductionIntroduction
 What is feedback control?What is feedback control?
 Why do todayWhy do todayʼ̓s computer systems need feedback control?s computer systems need feedback control?

 Control design methodologyControl design methodology
 System modelingSystem modeling
 Performance specs/metricsPerformance specs/metrics
 Controller designController design

 SummarySummary

Control design methodology

Controller
Design

Root-Locus
PI Control

Requirement
Analysis

Modeling
analytical
system IDs

Dynamic model Control algorithm

Performance Specifications

Satisfy

System Models

 LinearLinear vsvs. non-linear (differential . non-linear (differential eqnseqns))
 DeterministicDeterministic vsvs. Stochastic. Stochastic
 Time-invariantTime-invariant vsvs. Time-varying. Time-varying

 Are coefficients functions of time?Are coefficients functions of time?
 Continuous-timeContinuous-time vsvs. Discrete-time. Discrete-time
 System ID System ID vsvs. First Principle. First Principle

Dynamic Model
 Computer systems are Computer systems are dynamicdynamic

 Current output depends on Current output depends on ““historyhistory””
 Characterize relationships among system variablesCharacterize relationships among system variables

•• Differential equations (time domain)Differential equations (time domain)

)()()()()(01012 tubtubtyatyatya +=++
••••

• Transfer functions (frequency domain)
Y(s) = G(s)U(s)

2

2

1

1

01
2

2

01)(
ps
c

ps
c

asasa
bsb

sG
!

+
!

=
++

+
=

• Block diagram (pictorial)

C(s)R(s) Y(s)
-

G(s)

3

Example
Utilization control in a video server

 Periodic task TPeriodic task Tii corresponding to each video stream i corresponding to each video stream i
 c[i]: processing time, p[i]: periodc[i]: processing time, p[i]: period
 Stream Stream ii ʼ̓s s requested CPU utilization: u[i]=c[i]/p[i]requested CPU utilization: u[i]=c[i]/p[i]

 Total CPU utilizationTotal CPU utilization: U(t)=: U(t)=ΣΣ{k}{k}u[k], {k} is the set of active streamsu[k], {k} is the set of active streams
 Completion rateCompletion rate: : RRcc(t)= ((t)= (ΣΣ{{kckc}}u[m])/u[m])/ΔΔtt, where {m} is the set of terminated video, where {m} is the set of terminated video

streams during [t, t+streams during [t, t+ΔΔtt]]
 UnknownUnknown

 Admission rateAdmission rate: R: Raa(t)= ((t)= (ΣΣ{ka}{ka}u[j])/u[j])/ΔΔtt, where {j} is the set of admitted streams during [t,, where {j} is the set of admitted streams during [t,
t+t+ΔΔtt]]

 Problem: design an admission controller to guarantee U(t)=Problem: design an admission controller to guarantee U(t)=UUss regardless of regardless of RRcc(t)(t)

Model
Differential equation

U(t)

Ra(t)

C?

Us-

CPU

Rc(t)

• Model (differential equation): !
=

"=
t

ca dRRtU
0

))()(()(
#

###

• Error: E(t)=Us-U(t)

• Controller C? E(t) ⇒ Ra(t)

 Three ways of system modelingThree ways of system modeling

A Diversion to Math
System representations

u(t) g(t) y(t) ! "==
t

dutgtutgty
0

)()()(*)()(###

• Time domain: convolution; differential equations.

U(s) G(s) Y(s))()()(sUsGsY =

• s (frequency) domain: multiplication

s-domain is a simple & powerful “language” for control analysis

• Block diagram: pictorial

 Laplace Laplace transform of a signal f(t)transform of a signal f(t)

A Diversion to Math
Laplace transform

!
"

#

#

==
0

)()]([)(dtetftfLsF st

 where s=σ+iω is a complex variable.
• Laplace transform is a translation from time-domain to
 s-domain

• Differential equation ⇒ Polynomial function

)()()()()(01012 tubtubtyatyatya +=++
••••

)()(
01

2
2

01 sU
asasa

bsb
sY •

++

+
=!

 Basic translationsBasic translations
 Impulse functionImpulse function f(t)=f(t)=δδ(t) (t) ⇔⇔ F(s)=1 F(s)=1
 Step signal Step signal f(t)=af(t)=a••1(t) 1(t) ⇔⇔ F(s)=1/s F(s)=1/s
 Ramp signalRamp signal f(t)=af(t)=a••t t ⇔⇔ F(s)=a/s F(s)=a/s22

 Exp signal Exp signal f(t)=ef(t)=eatat ⇔⇔ F(s)=1/(s-a) F(s)=1/(s-a)
 Sinusoid signalSinusoid signal f(t)=sin(at) f(t)=sin(at) ⇔⇔ F(s)=a/(s F(s)=a/(s22+a+a22))

 Composition rulesComposition rules
 LinearityLinearity LL[af(t)+bg(t[af(t)+bg(t)] =)] = aaLL[f(t)]+b[f(t)]+bLL[g(t[g(t)])]
 DifferentiationDifferentiation LL[df(t)/dt[df(t)/dt] =] = sF(ssF(s)) –– f(0 f(0--))
 IntegrationIntegration LL[[∫∫ttf(f(ττ)d)dττ] = F(s)/s] = F(s)/s

A Diversion to Math
Laplace transform

A Diversion to Math
Transfer function

 Modeling a linear time-invariant (LTI) systemModeling a linear time-invariant (LTI) system
 G(s) = Y(s)/U(s) G(s) = Y(s)/U(s) ⇒⇒ Y(s) = G(s)U(s)Y(s) = G(s)U(s)

U(s) G(s) Y(s)

2

2

1

1

01
2

2

01)(
ps
c

ps
c

asasa
bsb

sG
!

+
!

=
++

+
=

 E.g., a second order system with poles p1 and p2

4

A Diversion to Math
Poles and Zeros

 The response of a linear time-invariant (LTI) systemThe response of a linear time-invariant (LTI) system

!
=

=

=

"
"

"
"

=#

"
++

"
+

"
=

"$

"$
=

+++

+++
=

n

i

tp
i

n

n

i
n
i

i
m
i

n
n

n
n

m
m

m
m

ieCtf

ps
C

ps
C

ps
C

ps
zs

K

asasa
bsbsb

sF

1

2

2

1

1

1

1

0
1

1

0
1

1

)(

...
)(
)(

...
...

)(

{pi} are poles of the function and decide the system behavior

A Diversion to Math
Time response vs. pole location

•f’(t) = ept, p = a+bj

UnstableStable

A Diversion to Math
Block diagram

 A pictorial tool to represent a system based on transfer functions and signalA pictorial tool to represent a system based on transfer functions and signal
flowsflows

 Represent a feedback control systemRepresent a feedback control system

C(s)R(s) Y(s)
-

Go(s)

R(s) Y(s)Gc(s)

)()()(
)()(1
)()(

sRsGsY
sGsC
sGsC

G

c

o

o
c

=

+
=

Back to
Our utilization control example

U(t)

Ra(t)

C?

Us-

CPU

Rc(t)

• Model (differential equation): !
=

"=
t

ca dRRtU
0

))()(()(
#

###

• Error: E(t)=Us-U(t)

• Controller C? E(t) ⇒ Ra(t)

Model
Transfer func. & block diag.

 Inputs: reference UInputs: reference Uss(s) = U(s) = Uss/s; completion rate /s; completion rate RRcc(s(s))
 Close-loop system transfer functionsClose-loop system transfer functions

 UUss(s) as input:(s) as input: GG11(s) = C(s)G(s) = C(s)Goo(s)/(1+C(s)G(s)/(1+C(s)Goo(s))(s))
 RRcc(s(s) as input:) as input: GG22(s) = G(s) = Goo(s)/(1+C(s)G(s)/(1+C(s)Goo(s))(s))

 Output: U(s)=GOutput: U(s)=G11(s)U(s)Uss/s+G/s+G22(s)R(s)Rcc(s)(s)

s
sG

s
sRsR

sUdRRtU o
aa

t

ca

1
)(

)()(
)())()(()(

0

=!
"

=!"= #
=$

$$$

• CPU is modeled as an integrator

Rc(s)

GoUs/s
Ra(s) U(s)C(s)

Control design methodology

Controller
Design

Root-Locus
PI Control

Requirement
Analysis

Modeling
analytical
system IDs

Dynamic model Control algorithm

Performance Specifications

Satisfy

5

Design Goals
Performance Specifications

 StabilityStability
 Transient responseTransient response
 Steady-state errorSteady-state error
 RobustnessRobustness

 Disturbance rejectionDisturbance rejection
 SensitivitySensitivity

Performance Specs: bounded input,bounded output stability

 BIBO stability: bounded input results in bounded output.BIBO stability: bounded input results in bounded output.
 A LTI system is BIBO stable if all poles of its transfer function are in the LHP (A LTI system is BIBO stable if all poles of its transfer function are in the LHP (∀∀ppii,,

Re[pRe[pii]<0).]<0).

0]Re[:

)(

...
)(
)(

)()()(

1

2

2

1

1

1

1

>!"" #"

=$

%
++

%
+

%
=

%&

%&
==

!#

=

=

=

'

i
ttp

i

n

i

tp
i

n

n

i
n
i

i
m
i

pifeCNote

eCty

ps
C

ps
C

ps
C

ps
zs

KsUsGsY

i

i

Performance Specs
Stability

UnstableStable

Performance specifications

Settling time

Overshoot

Controlled
variable

Time

Reference
±ε%

Steady StateTransient State

Steady state error

Example: Control & Response in an Email Server (IBM)

Control
(MaxUsers)

Response
(queue length)

Good

Slow

Bad

Useless

Performance Specs
Steady-state error

 Steady state (tracking) error of a stable systemSteady state (tracking) error of a stable system

))()((lim)(lim tytrtee
ttss !==

"#"#

 r(t) is the reference input, y(t) is the system output.
• How accurately can a system achieve the desired state?
• Final value theorem: if all poles of sF(s) are in the open left-half
of the s-plane, then

)(lim)(lim
0

ssFtf
st !"!

=

• Easy to evaluate system long term behavior without solving it

)(lim)(lim
0

ssEtee
stss
!"!

==

6

Performance Specs
Steady-state error

Steady state error of a CPU-utilization control system

U(t)

ess=-20%
Us

Performance Specs
Robustness

 Disturbance rejectionDisturbance rejection: steady-state error caused by external: steady-state error caused by external
disturbancesdisturbances
 Can a system track the reference input despite of external disturbances?Can a system track the reference input despite of external disturbances?
 Denial-of-service attacksDenial-of-service attacks

 SensitivitySensitivity: relative change in steady-state output divided by the relative: relative change in steady-state output divided by the relative
change of a system parameterchange of a system parameter
 Can a system track the reference input despite of variations in the system?Can a system track the reference input despite of variations in the system?
 Increased task execution timesIncreased task execution times
 Device failuresDevice failures

Performance Specs
Goal of Feedback Control

 Guarantee stabilityGuarantee stability
 Improve transient responseImprove transient response

 Short settling timeShort settling time
 Small overshootSmall overshoot

 Small steady state errorSmall steady state error
 Improve robustness wrt uncertaintiesImprove robustness wrt uncertainties

 Disturbance rejectionDisturbance rejection
 Low sensitivityLow sensitivity

Control design methodology

Controller
Design

Root-Locus
PID Control

Requirement
Analysis

Modeling
analytical
system IDs

Dynamic model Control algorithm

Performance Specifications

Satisfy

Controller Design
PID control

 Proportional-Integral-Derivative (PID) ControlProportional-Integral-Derivative (PID) Control

C(s)R(s) Y(s)
-

Go(s)
E(s) X(s)

sKKsCteKKtx dd =!=
•

)()()(

KsCtKetx =!=)()()(

s
KK

sCdeKKtx i
t

i =!= ")()()(
0

##

• Proportional Control

• Integral control

• Derivative control

• Classical controllers with well-studied properties and tuning rules

Controller Design
CPU Utilization Control

 Inputs: set-point UInputs: set-point Uss(s) = U(s) = Uss/s/s ; task completion ; task completion RRcc(s(s))
 Close-loop system transfer functionsClose-loop system transfer functions

 UUss(s) as input:(s) as input: GG11(s) = C(s)G(s) = C(s)Goo(s)/(1+C(s)G(s)/(1+C(s)Goo(s))(s))
 RRcc(s(s) as input:) as input: GG22(s) = G(s) = Goo(s)/(1+C(s)G(s)/(1+C(s)Goo(s))(s))

 C(s)=? to achieve zero steady-state error: U(t) C(s)=? to achieve zero steady-state error: U(t) →→ U Uss

s
sG

s
sRsR

sUdRRtU o
aa

t

ca

1
)(

)()(
)())()(()(

0

=!
"

=!"= #
=$

$$$

• CPU is modeled as an integrator

Rc(s)

GoUs/s
Ra(s) U(s)C(s)

7

Proportional Control
Stability

 Proportional ControllerProportional Controller
 rraa(t(t)=)=Ke(tKe(t);); C(s) = K C(s) = K

 Transfer functionsTransfer functions
 UUss/s as input: /s as input: GG11(s) = K/(s+K)(s) = K/(s+K)
 RRcc(s(s) as input:) as input: GG22(s) = 1/(s+K)(s) = 1/(s+K)

 StabilityStability
 Pole pPole p0 0 = -K<0 = -K<0 ⇔⇔ System is BIBO stable System is BIBO stable iffiff K>0 K>0
 Note: System may shoot to 100% if K<0!Note: System may shoot to 100% if K<0!

Rc(s)

GoUs/s
Ra(s) U(s)C(s)

Proportional Control
Steady-state error

 Assume completion rate Assume completion rate RRcc(t(t) keeps constant for a time period longer than) keeps constant for a time period longer than
the settling time: the settling time: RRcc(s(s)=)=RRcc/s/s

 System response isSystem response is

)(
)()(

)(21

Kss
RKU

s
sGR

s
sGU

sU cscs

+

!
=+=

• Compute steady-state err using final value theorem,

0lim)(lim)(lim
00

<!="!=
+

!
==

##$# K
R

e
K
R

U
Ks
RKU

ssUtU c
ss

c
s

cs

sst

• P-control cannot achieve the desired CPU utilization Us; instead
it will end up lower by Rc/K Oops!
• The larger the proportional gain K is, the closer will CPU
utilization approach to Us

CPU Utilization
Proportional Control

U(t)

ess=-20%
Us

Proportional-Integral Control
Stability

 Proportional ControllerProportional Controller
 rraa(t(t)=)=K(e(t)+KK(e(t)+Kii••∫∫tte(e(ττ)d)dττ)) C(s) = K(1+KC(s) = K(1+Kii/s)/s)

 Transfer functionsTransfer functions
 UUss/s as input: /s as input: GG11(s) =(s) = (Ks+KK(Ks+KKii)/(s)/(s22+Ks+KK+Ks+KKii))
 RRcc(s(s) as input:) as input: GG22(s) = s/(s(s) = s/(s22+Ks+KK+Ks+KKii))

 StabilityStability
 Poles Re[pPoles Re[p00]<0, Re[p]<0, Re[p00]<0]<0

⇔⇔ System is BIBO stable System is BIBO stable iffiff K>0 & K>0 & KKii>0>0

Rc(s)

GoUs/s
Ra(s) U(s)C(s)

Proportional Control
Steady-state error

 Assume completion rate Assume completion rate RRcc(t(t) keeps constant for a time period longer than) keeps constant for a time period longer than
the settling time: the settling time: RRcc(s(s)=)=RRcc/s/s

 System response isSystem response is

• Compute steady-state err using final value theorem,

• PI control can accurately achieve the desired CPU utilization Us √
• Control analysis gives design guidance

)(
)()()(

)(2
21

i

sicscs

KKKsss
UKKsRKU

s
sGR

s
sGU

sU
++

++
=+=

0
)(

lim)(lim)(lim 200
=!=

++

++
==

""#"
sss

i

sics

sst
eU

KKKss
UKKsRKU

ssUtU

CPU Utilization
Proportional-Integral Control

U(t)

ess=0

ts tr tp

Mp=
0Us

8

Controller Design
Summary & pointers

 PID control: simple, works well in many systemsPID control: simple, works well in many systems
 P control: may have non-zero steady-state errorP control: may have non-zero steady-state error
 I control: improves steady-state trackingI control: improves steady-state tracking
 D control: may improve stability & transient responseD control: may improve stability & transient response

 Linear continuous time controlLinear continuous time control
 Root-locus designRoot-locus design
 Frequency-response designFrequency-response design
 State-space designState-space design
 G. F. Franklin et. al., G. F. Franklin et. al., Feedback control of dynamic systemsFeedback control of dynamic systems

Discrete Control
 More useful for computer systemsMore useful for computer systems
 Time is discrete; sampled systemTime is discrete; sampled system

 denoted k instead of tdenoted k instead of t
 Main tool is Main tool is z-transformz-transform

 ff((kk)) →→ FF((zz)) , where , where zz is complex is complex
 Analogous to Analogous to Laplace Laplace transform for transform for s-domains-domain

!
"

=

#==
0

)()()]([
k

kzkfzFkfZ

Discrete Modeling

 Difference equationDifference equation
 VV((mm) =) = aa11VV((mm-1) + -1) + aa22VV((mm-2) + -2) + bb11UU((mm-1) + -1) + bb22UU((mm-2)-2)
 zz domain: domain: VV((zz) =) = aa11zz-1-1VV((zz) +) + aa22zz-2-2VV((zz) +) + bb11zz-1-1UU((zz) +) + bb22zz-2-2UU((zz))
 Transfer function Transfer function GG((zz) = () = (bb11zz + + bb22)/()/(zz22-a-a11zz - - aa22))

 VV((mm): output in): output in mmthth sampling windowsampling window
 UU((mm): input in): input in mmthth sampling windowsampling window
 Order Order nn: #sampling-periods in history affects current performance: #sampling-periods in history affects current performance
 SP = 30 sec, and n = 2 SP = 30 sec, and n = 2  Current system performance depends on Current system performance depends on

previous 60 secprevious 60 sec

Root Locus analysis of Discrete Systems

 Stability boundary: Stability boundary: ||zz|=1|=1 (Unit circle) (Unit circle)
 Settling time = distance from OriginSettling time = distance from Origin
 Speed = location relative to Speed = location relative to ImIm axis axis

 Right half = slowerRight half = slower
 Left half = fasterLeft half = faster

Effect of discrete poles

|z|=1

Longer settling time

Re(s)

Im(s)

Unstable

Stable

Higher-frequency
response

Tsez = :Intuition

Feedback control works in CS

 U.Mass: network flow controllers (TCP/IP U.Mass: network flow controllers (TCP/IP –– RED) RED)
 IBM: Lotus Notes admission controlIBM: Lotus Notes admission control
 UIUC: Distributed visual trackingUIUC: Distributed visual tracking
 UVAUVA

 Web Caching QoSWeb Caching QoS
 Apache Web Server QoS differentiationApache Web Server QoS differentiation
 Active queue management in networksActive queue management in networks
 Processor thermal controlProcessor thermal control
 Online data migration in network storage (with HP)Online data migration in network storage (with HP)
 Real-time embedded networkingReal-time embedded networking
 Control middlewareControl middleware
 Feedback control real-time schedulingFeedback control real-time scheduling

9

Advanced Control Topics
 Robust ControlRobust Control

 Can the system tolerate noise?Can the system tolerate noise?
 Adaptive ControlAdaptive Control

 Controller changes over time (adapts)Controller changes over time (adapts)
 MIMO ControlMIMO Control

 Multiple inputs and/or outputsMultiple inputs and/or outputs
 Stochastic ControlStochastic Control

 Controller minimizes varianceController minimizes variance
 Optimal ControlOptimal Control

 Controller minimizes a cost function of error and control energyController minimizes a cost function of error and control energy
 Nonlinear systemsNonlinear systems

 NeuroNeuro-fuzzy control-fuzzy control
 Challenging to derive analytic resultsChallenging to derive analytic results

Issues for Computer Science
 Most systems are non-linearMost systems are non-linear

 But linear approximations may doBut linear approximations may do
 egeg, fluid approximations, fluid approximations

 First-principles First-principles modelingmodeling is difficult is difficult
 Use empirical techniquesUse empirical techniques

 Mapping control objectives to feedback control loopsMapping control objectives to feedback control loops
 ControlWareControlWare paper paper

 Deeply embedded networkingDeeply embedded networking
 Massively decentralized control problemMassively decentralized control problem
 ModellingModelling
 Node failuresNode failures

