System Design

An Engineering Approach to Computer Networking

What is system design?

m A computer network provides computation, storage and transmission
resources

m System design is the art and science of putting together these
resources into a harmonious whole

m Extract the most from what you have

Goal

In any system, some resources are more freely available than others

high-end PC connected to Internet by a 28.8 modem
constrained resource is link bandwidth
PC CPU and and memory are unconstrained

Maximize a set of performance metrics given a set of resource
constraints

Explicitly identifying constraints and metrics helps in designing
efficient systems
Example

maximize reliability and MPG for a car that costs less than $10,000 to
manufacture

System design in real life

m Can’t always quantify and control all aspects of a system

m Criteria such as scalability, modularity, extensibility, and elegance are
important, but unquantifiable

m Rapid technological change can add or remove resource constraints
(example?)

an ideal design is ‘future proof’
m Market conditions may dictate changes to design halfway through the process

International standards, which themselves change, also impose constraints

m Nevertheless, still possible to identify some principles

Some common resources

m Most resources are a combination of
time
space
computation
money
labor

Time

Shows up in many constraints

deadline for task completion
time to market
mean time between failures

Metrics

response time: mean time to complete a task

throughput. number of tasks completed per unit time

degree of parallelism = response time * throughput
+ 20 tasks complete in 10 seconds, and each task takes 3 seconds
+ => degree of parallelism =3 * 20/10 =6

Space

m Shows up as

limit to available memory (kilobytes)
bandwidth (kilobits)
+ 1 kilobit/s = 1000 bits/sec, but 1 kilobyte/s = 1024 bits/sec!

Computation

m Amount of processing that can be done in unit time
m Can increase computing power by

using more processors
waiting for a while!

Money

m Constrains

what components can be used
what price users are willing to pay for a service
the number of engineers available to complete a task

Labor

m Human effort required to design and build a system
m Constrains what can be done, and how fast

Social constraints

m Standards

force design to conform to requirements that may or may not make sense

underspecified standard can faulty and non-interoperable
implementations

m Market requirements

products may need to be backwards compatible
may need to use a particular operating system
example

+ GUI-centric design

Scaling

m A design constraint, rather than a resource constraint

m Can use any centralized elements in the design
forces the use of complicated distributed algorithms
m Hard to measure
but necessary for success

Common design techniques

m Key concept: bottleneck

the most constrained element in a system
m System performance improves by removing bottleneck

but creates new bottlenecks

m In a balanced system, all resources are simultaneously bottlenecked
this is optimal
but nearly impossible to achieve

in practice, bottlenecks move from one part of the system to another
example: Ford Model T

Top level goal

m Use unconstrained resources to alleviate bottleneck
m How to do this?

m Several standard techniques allow us to trade off one resource for
another

Multiplexing

= Another word for sharing
m Trades time and space for money

m Users see an increased response time, and take up space when
waiting, but the system costs less

economies of scale

Users LUlsares

N4

Servers Server

Multiplexing (contd.)

m Examples

multiplexed links
shared memory
m Another way to look at a shared resource

unshared virtual resource
m Server controls access to the shared resource

uses a schedule to resolve contention
choice of scheduling critical in proving quality of service guarantees

Statistical multiplexing

Suppose resource has capacity C

Shared by N identical tasks

Each task requires capacity c

If Nc <= C, then the resource is underloaded

If at most 10% of tasks active, then C >= Nc/10 is enough

we have used statistical knowledge of users to reduce system cost
this is statistical multiplexing gain

Statistical multiplexing (contd.)

m Two types: spatial and temporal

m Spatial
we expect only a fraction of tasks to be simultaneously active
m Temporal

we expect a task to be active only part of the time
+ e.g silence periods during a voice call

Example of statistical multiplexing gain

m Consider a 100 room hotel
m How many external phone lines does it need?

each line costs money to install and rent
tradeoff
m What if a voice call is active only 40% of the time?
can get both spatial and temporal statistical multiplexing gain
but only in a packet-switched network (why?)

m Remember

to get SMG, we need good statistics!
if statistics are incorrect or change over time, we’re in trouble

example: road system

Pipelining

Suppose you wanted to complete a task in less time
Could you use more processors to do so?

Yes, if you can break up the task into independent subtasks
such as downloading images into a browser
optimal if all subtasks take the same time
What if subtasks are dependent?
for instance, a subtask may not begin execution before another ends
such as in cooking
Then, having more processors doesn’t always help (example?)

Pipelining (contd.)

m Special case of serially dependent subtasks

a subtask depends only on previous one in execution chain
m Can use a pipeline

think of an assembly lir

o o 3
~ o~

;.: ’.- U_}.' '.k)}
& & & &
v & v

SOOO
'\——/ .\-J '\-- l\- e Steg

2 1 2

K 2 1 3

4 i 2 1 4
4 3 2

Pipelining (contd.)

What is the best decomposition?

If sum of times taken by all stages, Response Time = R
Slowest stage takes time S

Throughput = 1/S

Degree of parallelism = R/S

Maximize parallelism when R/S = N, so that S = R/N => equal stages

balanced pipeline

Batching

Group tasks together to amortize overhead

Only works when overhead for N tasks < N time overhead for one
task (i.e. nonlinear)

Also, time taken to accumulate a batch shouldn’t be too long

We're trading off reduced overhead for a longer worst case response
time and increased throughput

Exploiting locality

m If the system accessed some data at a given time, it is likely that it will
access the same or ‘nearby’ data ‘soon’

Nearby => spatial
Soon => temporal
Both may coexist

Exploit it if you can

caching
+ get the speed of RAM and the capacity of disk

Optimizing the common case

m 80/20 rule

80% of the time is spent in 20% of the code
m Optimize the 20% that counts

need to measure first!
RISC

m How much does it help?

Amdahl’s law

Execution time after improvement = (execution affected by improvement /
amount of improvement) + execution unaffected

beyond a point, speeding up the common case doesn’t help

Hierarchy

Recursive decomposition of a system into smaller pieces that depend
only on parent for proper execution

No single point of control
Highly scaleable
Leaf-to-leaf communication can be expensive

shortcuts help

Binding and indirection

Abstraction is good
allows generality of description
e.g. mail aliases
Binding: translation from an abstraction to an instance

If translation table is stored in a well known place, we can bind
automatically

indirection
Examples

mail alias file

page table
telephone numbers in a cellular system

Virtualization

m A combination of indirection and multiplexing

m Refer to a virtual resource that gets matched to an instance at run
time

m Build system as if real resource were available

virtual memory
virtual modem
Santa Claus

m Can cleanly and dynamically reconfigure system

Randomization

m Allows us to break a tie fairly
m A powerful tool

m Examples
resolving contention in a broadcast medium
choosing multicast timeouts

Soft state

State: memory in the system that influences future behavior

for instance, VCI translation table
State is created in many different ways

signaling
network management
routing

How to delete it?
Soft state => delete on a timer
If you want to keep it, refresh

Automatically cleans up after a failure
but increases bandwidth requirement

Exchanging state explicitly

m Network elements often need to exchange state
m Can do this implicitly or explicitly
m Where possible, use explicit state exchange

Hysteresis

m Suppose system changes state depending on whether a variable is
above or below a threshold

m Problem if variable fluctuates near threshold

rapid fluctuations in system state
m Use state-dependent threshold, or hysteresis

Separating data and control

m Divide actions that happen once per data transfer from actions that
happen once per packet

Data path and control path
m Can increase throughput by minimizing actions in data path
m Example

connection-oriented networks

m On the other hand, keeping control information in data element has its
advantages

per-packet QoS

Extensibility

m Always a good idea to leave hooks that allow for future growth

m Examples

Version field in header
Modem negotiation

Performance analysis and tuning

m Use the techniques discussed to tune existing systems

m Steps

measure
characterize workload
build a system model
analyze

implement

