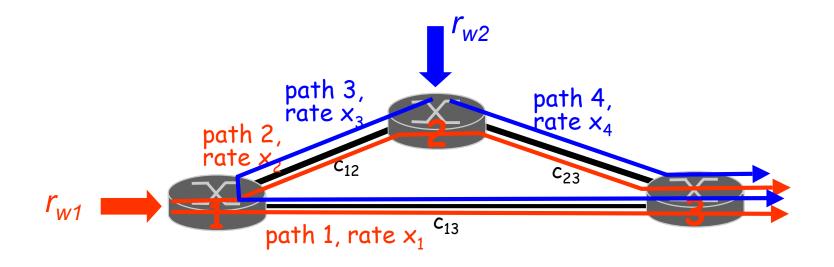
Optimization-based routing and congestion control

Routing, congestion control as optimization problems:

- how to route flows, set flow rates to optimize an objective (cost) function
- routing and congestion control protocols as distributed asynchronous implementations of optimization algorithms
 - systematic approach towards protocol design
 - e.g., TCP as distributed rate optimization

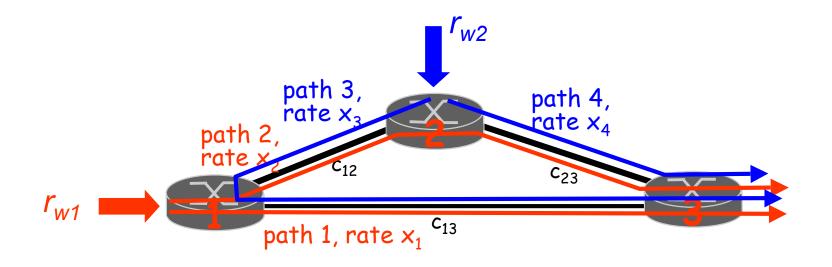
Optimization Framework

- W: set of source-destination (sd) pairs
- r_w: rate of sd pair w
- P_w: set of paths between sd pair w
- x_p: packet flow rate ("fluid") on path p
- **c**_{ii} link capacity of link i,j, (assume same as c_{ii})



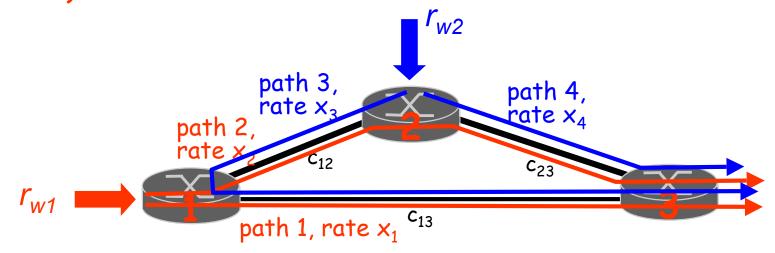
Optimization Framework

- *routing problem:* r_w (rate of sd pair w) typically *given*
 - question: what rate x_p on each path p
- *rate control problem:* r_w (rate of sd pair w) *variable*
 - *question:* what rate x_p on each *given* path p
 - single path or multiple paths between sd pair w



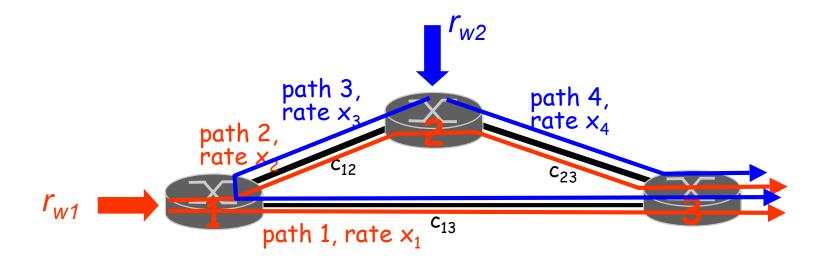
Optimization Framework

<u>Key question</u>: how, (rate of sci pair w) typically fixed to set rates on what rate x_p on each path p paths? Input proplem: r_w (rate of sci pair w) variable rates may be a what rate x_p on each given path p fixed (routing) or multiple paths between sci pair w or variable (rate control)



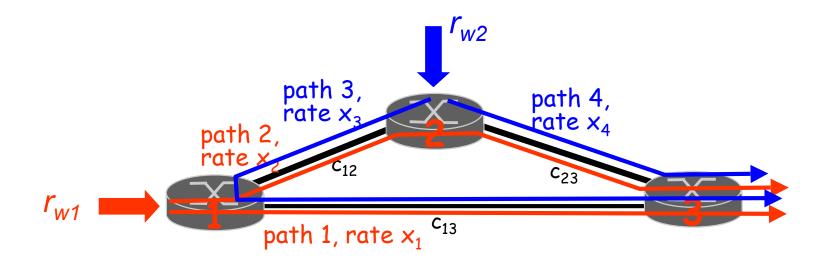
Optimization Framework lookout for: where are path rates set

- centrally: global computation
- at endpoints: distributed algorithm with multiple endpoints at network edge
- *at routers:* distributed algorithm with multplie routers within network

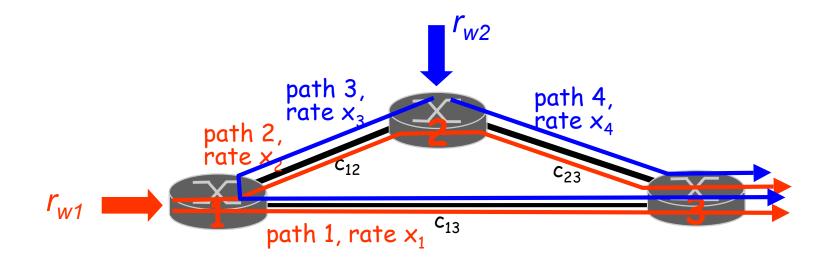


Optimization Framework lookout for: what cost function is being optimized? Typically:

- minimize system-wide delay with variable routing given fixed sd traffic rates $\{r_w\}$
- maximize system-wide utility, $\Sigma_w U_w(r_w)$, with variable traffic rates $\{r_w\}$ } given fixed paths



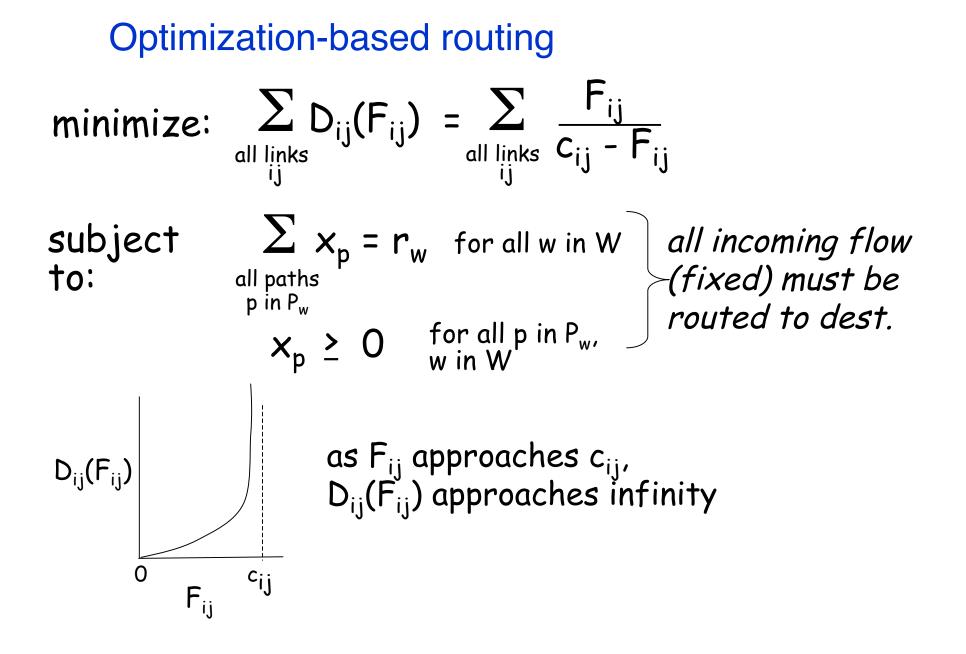
Optimization Framework lookout for: how are capacity constraints taken into account

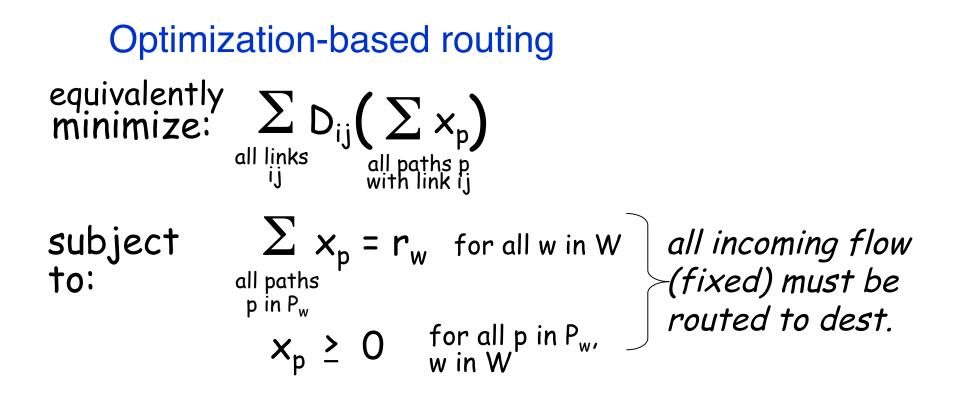


Optimization-based routing

read: Gallagher 1992 [sec 5.4 intro, 5.5, 5.6], [Gallagher 1977].

W: set of source-destination (sd) pairs r_w : *fixed* rate of sd pair w (traffic to be routed) P_w : set of paths between sd pair w x_p : packet flow rate ("fluid") on path p c_{ii} link capacity of link i,j, (assume same as c_{ii})





This is the routing optimization problem: how to choose $\{x_p\}$ to minimize cost function above.

How to solve optimal routing problem?

Insight: looking at properties of optimal routing solution suggests algorithms (protocols) for finding optimum!

minimize:

$$\sum_{\substack{all \ links \\ ij}} D_{ij} \left(\sum_{\substack{all \ paths \ p \\ with \ link \ ij}} \right)$$

consider:
$$\frac{\partial D(x)}{\partial x_p} = \sum_{ij} \frac{\partial D_{ij}(\sum x_p)}{\partial x_p}$$
 all paths p
with link ij

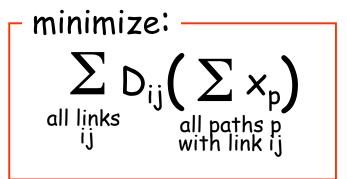
and let: $x^* = \{x_p^*\}$ be optimal path flows

Suppose move small amount flow δ from p (with non-zero x_{p}^{*} at x^{*}) to path p' between same OD pair. Then:

$$\delta \frac{\partial D(x^*)}{\partial x'_p} \geq \delta \frac{\partial D(x^*)}{\partial x_p}$$

otherwise x_{p}^{*} in x^{*} would not be optimal How to solve optimal routing problem?

Insight: looking at properties of optimal routing solution suggests algorithms (protocols) for finding optimum!



<u>At the optimum:</u>

$\underline{\partial D(x^*)}$	<u>aD(x*)</u>	for all non-zero x_{p1}, x_{p2}
∂× _{p1} [−]	∂× _{p2}	in P _w , for all w

set flow rate on alternative path so partial derivatives (marginal utilities) are equal

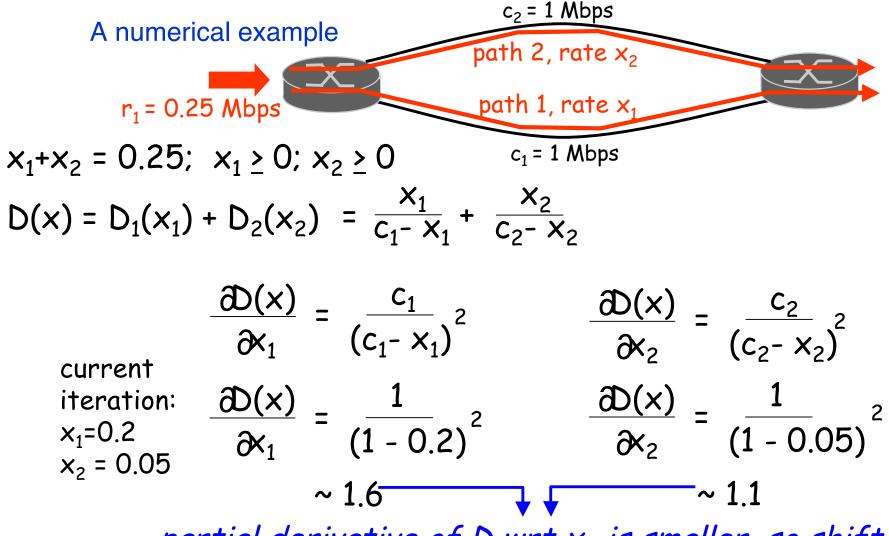
This suggests an algorithm!

For each sd pair, w:

evaluate: $\frac{\partial D(x)}{\partial x_{p1}}$ $\frac{\partial D(x)}{\partial x_{pkw}}$ for all k_w paths for sd pair w

move "small" amount of flow to path with minimum marginal increase from other k_w -1 paths for sd pair w in attempt to balance marginal utilities on paths with non-zero flows

until for each sd pair, marginal utilities equal for all paths with non-zero flow for that sd pair for all sd pairs



partial derivative of D wrt x_2 is smaller, so shift "small" amount of flow from p_1 to p_2 and iterate

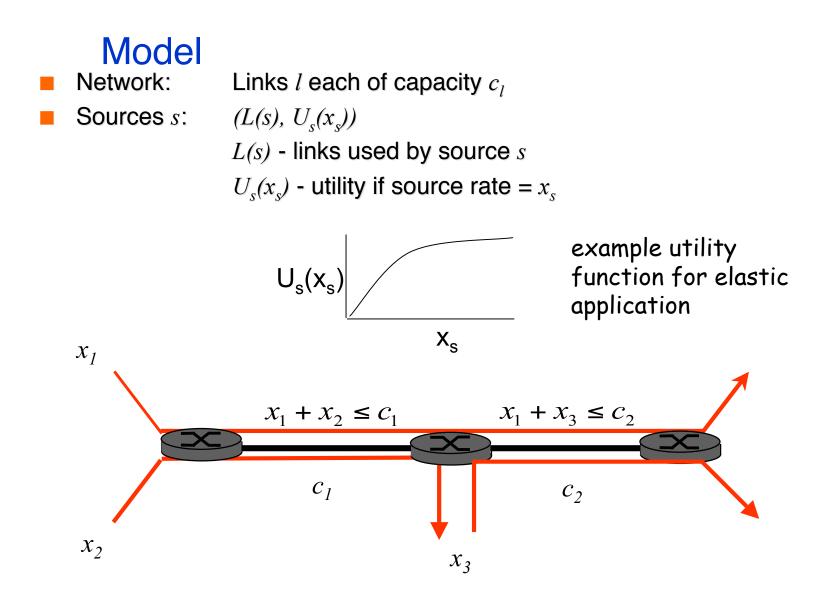
Routing optimization: "hill descent"

- <u>key idea</u>: iteratively evaluate marginal path costs (gradient descent)
- various algorithms to determine which flows can accept a "little" more flow, which should give up a "little" flow, subject to:
 - maintaining flow conservation
 - respecting capacity constraints
 - maintaining loop freedom

Optimization-based approach towards congestion control

Resource allocation as optimization problem:

- how to allocate resources (e.g., bandwidth) to optimize some objective function
- maybe not possible that optimality exactly obtained but...
 - optimization framework as means to explicitly steer network towards desirable operating point
 - practical congestion control as distributed asynchronous implementations of optimization algorithm
 - systematic approach towards protocol design



Optimization Problem $\max_{x_s \ge 0} \qquad \sum_{s} U_s(x_s)$ subject to $\sum_{s \in S(l)} x_s \le c_l, \forall l \in L$

"system" problem

- maximize system utility (note: all sources "equal)
- constraint: bandwidth used less than capacity
- centralized solution to optimization impractical
 - must know all utility functions
 - impractical for large number of sources
 - we'll see: congestion control as distributed asynchronous algorithms to solve this problem

The user view

- user can choose amount to pay per unit time, w_s
- Would like allocated bandwidth, x_s in proportion to w_s

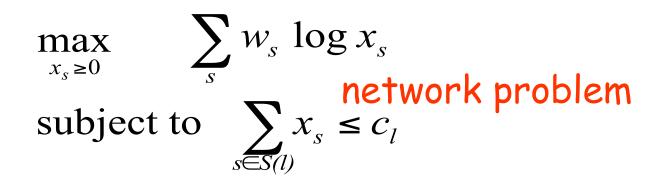
$$x_s = \frac{w_s}{p_s}$$

p_s could be viewed as charge per unit flow for user s

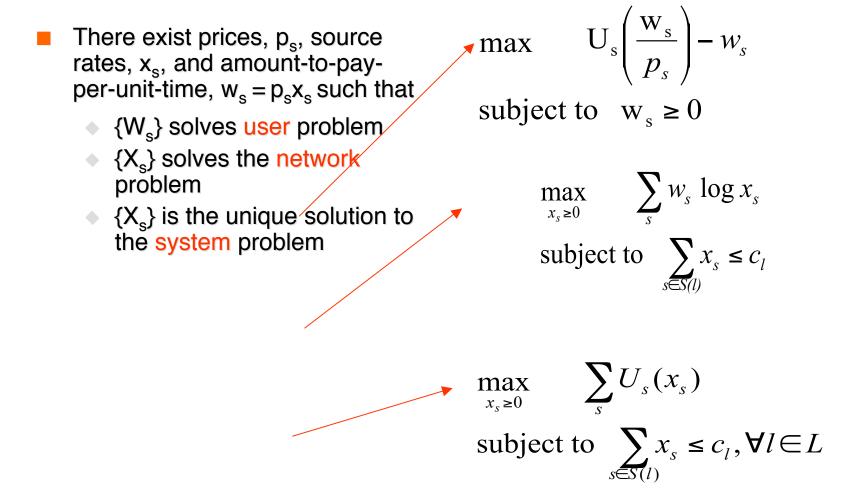
 $\begin{array}{c|c} \max & U_{s} \left(\begin{array}{c} W \\ P_{s} \end{array} \right) - W_{s} \\ \text{user problem} \\ \text{subject to } W_{s} \ge 0 \end{array}$

The network view

- suppose network knows vector $\{w_s\}$, chosen by users
- network wants to maximize logarithmic utility function



Solution existence



Proportional Fairness

Vector of rates, {X_s}, proportionally fair if feasible and for any other feasible vector {X_s^{*}}:

$$\sum_{s \in S} \frac{x_s^* - x_s}{x_s} \le 0$$

result: if $w_r=1$, then $\{X_s\}$ solves the network problem IFF it is proportionally fair Related results exist for the case that w_r not equal 1.

Solving the network problem

- Results so far: *existence* solution exists with given properties
- How to *compute* solution?
 - ideally: distributed solution easily embodied in protocol
 - insight into existing protocol

Solving the network problem

$$\frac{d}{dt}x_s(t) = k\left(w_s - x_s(t)\sum_{l \in L(s)}p_l(t)\right)$$

change in linear multiplicative bandwidth increase decrease allocation at s

where
$$p_l(t) = g_l\left(\sum_{l \in L(s)} x_s(t)\right)$$

congestion "signal": function of aggregate rate at link I, fed back to s.

Solving the network problem

$$\frac{d}{dt}x_s(t) = k\left(w_s - x_s(t)\sum_{l \in L(s)} p_l(t)\right)$$

Results:

- * converges to solution of "relaxation" of network problem
- $x_s(t)\Sigma p_l(t)$ converges to w_s

Interpretation: TCP-like algorithm to iteratively solve optimal rate allocation!

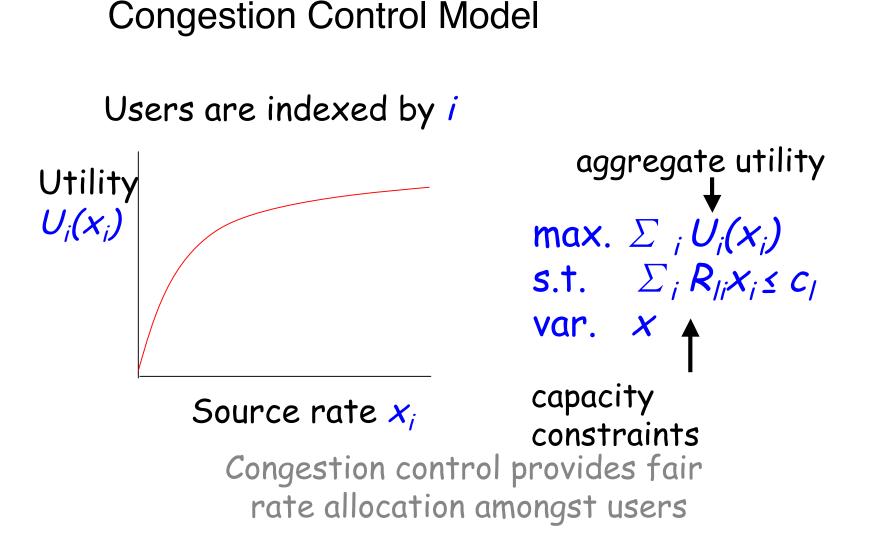
Optimization-based congestion control: summary

- bandwidth allocation as optimization problem:
- practical congestion control (TCP) as distributed asynchronous implementations of optimization algorithm
- optimization framework as means to explicitly steer network towards desirable operating point
- systematic approach towards protocol design

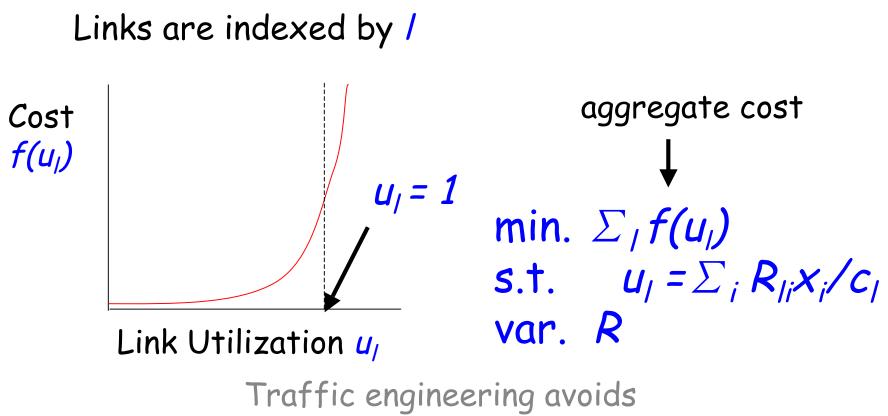
Motivation

Congestion Control: maximize user utility **Traffic Engineering:** minimize network congestion





Traffic Engineering Model



bottlenecks in the network

Model of Internet Reality



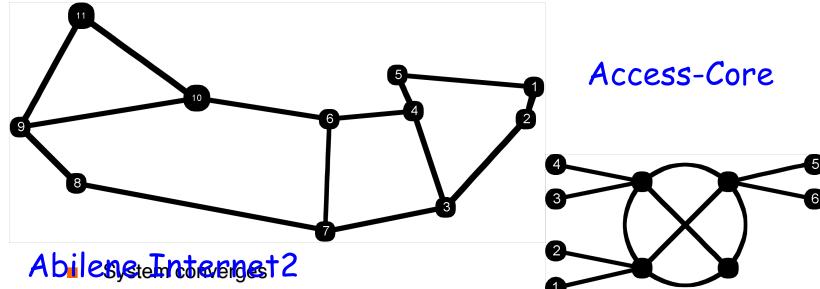
System Properties

Convergence

- Does it achieve some objective?
- Benchmark:

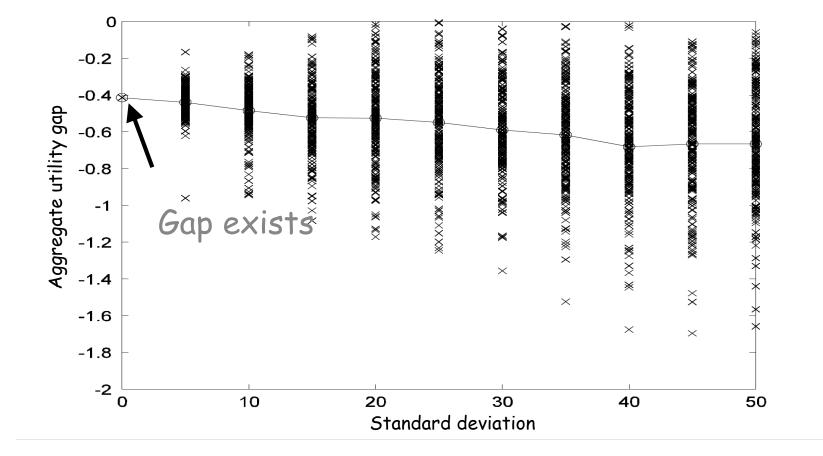
max. $\sum_{i} U_{i}(x_{i})$ s.t. $Rx \leq c$ Var. x, RUtility gap between the joint system and benchmark

Numerical Experiments



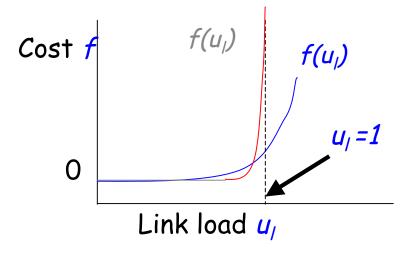
- Quantify the gap to optimal aggregate utility
- Capacity distribution: truncated Gaussian with average 100
- 500 points per standard deviation

Results for Abilene: $f = e^{u_{-}/l}$

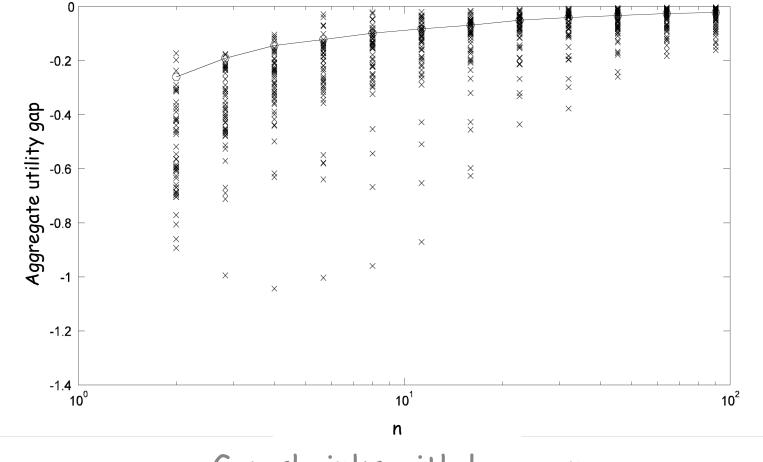


Backward Compatible Design

- Simulation of the joint system suggests that it is stable, but suboptimal
- Gap reduced if we modify f



Abilene Continued: $f = n(u_l)^n$



Gap shrinks with larger n

Theoretical Results

- Modify congestion control to approximate the capacity constraint with a penalty function
- Theorem: modified joint system model converges if $U_i''(x_i) \leq -U_i'(x_i)/x_i$

