
Flow Control

An Engineering Approach to Computer NetworkingAn Engineering Approach to Computer Networking

Flow control problem

 Consider file transferConsider file transfer
 Sender sends a stream of packets representing fragments of aSender sends a stream of packets representing fragments of a

filefile
 Sender should try to match rate at which receiver and networkSender should try to match rate at which receiver and network

can process datacan process data
 CanCan’’t send too slow or too fastt send too slow or too fast
 Too slowToo slow

 wastes timewastes time
 Too fastToo fast

 can lead to buffer overflowcan lead to buffer overflow
 How to find the correct rate?How to find the correct rate?

Other considerations

 SimplicitySimplicity
 OverheadOverhead
 ScalingScaling
 FairnessFairness
 StabilityStability

 Many interesting tradeoffsMany interesting tradeoffs

 overhead for stabilityoverhead for stability
 simplicity for unfairnesssimplicity for unfairness

Where?

 Usually at transport layerUsually at transport layer
 Also, in some cases, in Also, in some cases, in datalink datalink layerlayer

Model

 Source, sink, server, service rate, bottleneck, round trip timeSource, sink, server, service rate, bottleneck, round trip time

Classification

 Open loopOpen loop
 Source describes its desired flow rateSource describes its desired flow rate
 Network Network admits admits callcall
 Source sends at this rateSource sends at this rate

 Closed loopClosed loop
 Source monitors available service rateSource monitors available service rate

 Explicit or implicitExplicit or implicit
 Sends at this rateSends at this rate
 Due to speed of light delay, errors are bound to occurDue to speed of light delay, errors are bound to occur

 HybridHybrid
 Source asks for some minimum rateSource asks for some minimum rate
 But can send more, if availableBut can send more, if available

Open loop flow control

 Two phases to flowTwo phases to flow
 Call setupCall setup
 Data transmissionData transmission

 Call setupCall setup
 Network prescribes parametersNetwork prescribes parameters
 User chooses parameter valuesUser chooses parameter values
 Network admits or denies callNetwork admits or denies call

 Data transmissionData transmission
 User sends within parameter rangeUser sends within parameter range
 Network Network policespolices users users
 Scheduling policies give user QoSScheduling policies give user QoS

Hard problems

 Choosing a descriptor at a source
 Choosing a scheduling discipline at intermediate network

elements
 Admitting calls so that their performance objectives are met (call

admission control).

Traffic descriptors

 Usually an Usually an envelopeenvelope
 Constrains worst case behaviorConstrains worst case behavior

 Three usesThree uses
 Basis for traffic contractBasis for traffic contract
 Input to Input to regulatorregulator
 Input to Input to policerpolicer

Descriptor requirements

 RepresentativityRepresentativity
 adequately describes flow, so that network does not reserveadequately describes flow, so that network does not reserve

too little or too much resourcetoo little or too much resource
 VerifiabilityVerifiability

 verify that descriptor holdsverify that descriptor holds
 PreservabilityPreservability

 DoesnDoesn’’t change inside the networkt change inside the network
 UsabilityUsability

 Easy to describe and use for admission controlEasy to describe and use for admission control

Examples

 Representative, verifiable, but not useble
 Time series of interarrival timesTime series of interarrival times

 Verifiable, preservable, and useable, but not representativeVerifiable, preservable, and useable, but not representative
 peak ratepeak rate

Some common descriptors

 Peak ratePeak rate
 Average rateAverage rate
 Linear bounded arrival process (LBAP)Linear bounded arrival process (LBAP)

Peak rate

 Highest Highest ‘‘raterate’’ at which a source can send data at which a source can send data
 Two ways to compute itTwo ways to compute it
 For networks with fixed-size packetsFor networks with fixed-size packets

 min inter-packet spacingmin inter-packet spacing
 For networks with variable-size packetsFor networks with variable-size packets

 highest rate over highest rate over allall intervals of a particular duration intervals of a particular duration
 Regulator for fixed-size packetsRegulator for fixed-size packets

 timer set on packet transmissiontimer set on packet transmission
 if timer expires, send packet, if anyif timer expires, send packet, if any

 ProblemProblem
 sensitive to extremessensitive to extremes

Average rate

 Rate over some time period (Rate over some time period (windowwindow))
 Less susceptible to outliersLess susceptible to outliers
 Parameters: Parameters: tt and and aa
 Two types: jumping window and moving windowTwo types: jumping window and moving window
 Jumping windowJumping window

 over consecutive intervals of length over consecutive intervals of length tt, only , only a a bits sentbits sent
 regulator reinitializes every intervalregulator reinitializes every interval

 Moving windowMoving window
 over all intervals of length over all intervals of length t, t, only only aa bits sent bits sent
 regulator forgets packet sent more thanregulator forgets packet sent more than t t seconds ago seconds ago

Linear Bounded Arrival Process

 Source bounds # bits sent in any time interval by a linearSource bounds # bits sent in any time interval by a linear
function of timefunction of time

 the number of bits transmitted in any active interval of length t is
less than rt + s

 r is the long term rate
 s is the burst limit
 insensitive to outliers

Leaky bucket

 A regulator for an LBAPA regulator for an LBAP
 Token bucket fills up at rate Token bucket fills up at rate rr
 Largest # tokens < Largest # tokens < ss

Variants

 Token and data bucketsToken and data buckets
 Sum is what mattersSum is what matters

 Peak rate regulatorPeak rate regulator

Choosing LBAP parameters

 Tradeoff between Tradeoff between r r and and ss
 Minimal descriptorMinimal descriptor

 doesndoesn’’t simultaneously have smaller t simultaneously have smaller rr and and ss
 presumably costs lesspresumably costs less

 How to choose minimal descriptor?How to choose minimal descriptor?
 Three way tradeoffThree way tradeoff

 choice of choice of s s (data bucket size)(data bucket size)
 loss rateloss rate
 choice of choice of rr

Choosing minimal parameters

 Keeping loss rate the sameKeeping loss rate the same
 if if s s is more, is more, r r is less (smoothing) is less (smoothing)
 for each for each rr we have least we have least ss

 Choose knee of curveChoose knee of curve

LBAP

 Popular in practice and in academiaPopular in practice and in academia
 sort of representativesort of representative
 verifiableverifiable
 sort of preservablesort of preservable
 sort of usablesort of usable

 Problems with multiple time scale trafficProblems with multiple time scale traffic
 large burst messes up thingslarge burst messes up things

Open loop vs. closed loop

 Open loopOpen loop
 describe trafficdescribe traffic
 network admits/reserves resourcesnetwork admits/reserves resources
 regulation/policingregulation/policing

 Closed loopClosed loop
 cancan’’t describe traffic or network doesnt describe traffic or network doesn’’t support reservationt support reservation
 monitor available bandwidthmonitor available bandwidth

 perhaps allocated using emulation of Generalized Processorperhaps allocated using emulation of Generalized Processor
Sharing (GPS - see later under Scheduling)Sharing (GPS - see later under Scheduling)

 adapt to itadapt to it
 if not done properly eitherif not done properly either

 too much losstoo much loss
 unnecessary delayunnecessary delay

Taxonomy

 First generationFirst generation
 ignores network stateignores network state
 only match receiveronly match receiver

 Second generationSecond generation
 responsive to stateresponsive to state
 three choicesthree choices

 State measurementState measurement
•• explicit or implicitexplicit or implicit

 ControlControl
•• flow control window size or rateflow control window size or rate

 Point of controlPoint of control
•• endpoint or within networkendpoint or within network

Explicit vs. Implicit

 ExplicitExplicit
 Network tells source its current rateNetwork tells source its current rate
 Better controlBetter control
 More overheadMore overhead

 ImplicitImplicit
 Endpoint figures out rate by looking at networkEndpoint figures out rate by looking at network
 Less overheadLess overhead

 Ideally, want overhead of implicit with effectiveness of explicitIdeally, want overhead of implicit with effectiveness of explicit

Flow control window

 Recall error control windowRecall error control window
 Largest number of packet outstanding (sent but not Largest number of packet outstanding (sent but not ackedacked))
 If endpoint has sent all packets in window, it must wait => slowsIf endpoint has sent all packets in window, it must wait => slows

down its ratedown its rate
 Thus, window provides Thus, window provides bothboth error control and flow control error control and flow control
 This is called This is called transmission transmission windowwindow
 Coupling can be a problemCoupling can be a problem

 Few buffers at receiver => slow rate!Few buffers at receiver => slow rate!

Window vs. rate

 In adaptive rate, we directly control rateIn adaptive rate, we directly control rate
 Needs a timer per connectionNeeds a timer per connection
 Plusses for windowPlusses for window

 no need for fine-grained timerno need for fine-grained timer
 self-limitingself-limiting

 Plusses for ratePlusses for rate
 better control (finer grain)better control (finer grain)
 no coupling of flow control and error controlno coupling of flow control and error control

 Rate control must be careful to avoid overhead and sending tooRate control must be careful to avoid overhead and sending too
muchmuch

Hop-by-hop vs. end-to-end

 Hop-by-hopHop-by-hop
 first generation flow control at each linkfirst generation flow control at each link

 next server = sinknext server = sink
 easy to implementeasy to implement

 End-to-endEnd-to-end
 sender matches all the servers on its pathsender matches all the servers on its path

 Plusses for hop-by-hopPlusses for hop-by-hop
 simplersimpler
 distributes overflowdistributes overflow
 better controlbetter control

 Plusses for end-to-endPlusses for end-to-end
 cheapercheaper

On-off

 Receiver gives ON and OFF signals
 If ON, send at full speed
 If OFF, stop
 OK when RTT is small
 What if OFF is lost?
 Bursty
 Used in serial lines or LANs

Stop and Wait

 Send a packetSend a packet
 Wait for ack before sending next packetWait for ack before sending next packet

Static window

 Stop and wait can send at most one pkt per RTTStop and wait can send at most one pkt per RTT
 Here, we allow multiple packets per RTT (= transmissionHere, we allow multiple packets per RTT (= transmission

window)window)

What should window size be?

 Let bottleneck service rate along path = b pkts/sec
 Let round trip time = R sec
 Let flow control window = w packet
 Sending rate is w packets in R seconds = w/R
 To use bottleneck w/R > b => w > bR
 This is the bandwidth delay product or optimal window size

Static window

 Works well if b and R are fixedWorks well if b and R are fixed
 But, bottleneck rate changes with time!But, bottleneck rate changes with time!
 Static choice of w can lead to problemsStatic choice of w can lead to problems

 too smalltoo small
 too largetoo large

 So, need to adapt windowSo, need to adapt window
 Always try to get to the Always try to get to the current current optimal valueoptimal value

DECbit flow control

 IntuitionIntuition
 every packet has a bit in headerevery packet has a bit in header
 intermediate routers set bit if queue has built up => sourceintermediate routers set bit if queue has built up => source

window is too largewindow is too large
 sink copies bit to acksink copies bit to ack
 if bits set, source reduces window sizeif bits set, source reduces window size
 in steady state, oscillate around optimal sizein steady state, oscillate around optimal size

DECbit

 When do bits get set?When do bits get set?
 How does a source interpret them?How does a source interpret them?

DECbit details: router actions

 Measure Measure demanddemand and mean queue length of each source
 Computed over queue regeneration cycles
 Balance between sensitivity and stability

Router actions

 If mean queue length > 1.0If mean queue length > 1.0
 set bits on sources whose demand exceeds fair shareset bits on sources whose demand exceeds fair share

 If it exceeds 2.0If it exceeds 2.0
 set bits on everyoneset bits on everyone
 panic!panic!

Source actions

 Keep track of bitsKeep track of bits
 CanCan’’t take control actions too fast!t take control actions too fast!
 Wait for past change to take effectWait for past change to take effect
 Measure bits over past + present window sizeMeasure bits over past + present window size
 If more than 50% set, then decrease window, else increaseIf more than 50% set, then decrease window, else increase
 Additive increase, multiplicative decreaseAdditive increase, multiplicative decrease

Evaluation

 Works with FIFOWorks with FIFO
 but requires per-connection state (demand)but requires per-connection state (demand)

 SoftwareSoftware
 ButBut

 assumes cooperation!assumes cooperation!
 conservative window increase policyconservative window increase policy

Sample trace

TCP Flow Control

 ImplicitImplicit
 Dynamic windowDynamic window
 End-to-endEnd-to-end

 Very similar to Very similar to DECbitDECbit, but, but
 no support from routersno support from routers
 increase if no loss (usually detected using timeout)increase if no loss (usually detected using timeout)
 window decrease on a timeoutwindow decrease on a timeout
 additive increase multiplicative decreaseadditive increase multiplicative decrease

TCP details

 Window starts at 1Window starts at 1
 Increases exponentially for a while, then linearlyIncreases exponentially for a while, then linearly
 Exponentially => doubles every RTTExponentially => doubles every RTT
 Linearly => increases by 1 every RTTLinearly => increases by 1 every RTT
 During exponential phase, every ack results in window increaseDuring exponential phase, every ack results in window increase

by 1by 1
 During linear phase, window increases by 1 when # acks =During linear phase, window increases by 1 when # acks =

window sizewindow size
 Exponential phase is calledExponential phase is called slow start slow start
 Linear phase is calledLinear phase is called congestion avoidance congestion avoidance

More TCP details

 On a loss, current window size is stored in a variable called On a loss, current window size is stored in a variable called slowslow
start thresholdstart threshold or or ssthreshssthresh

 Switch from exponential to linear (slow start to congestionSwitch from exponential to linear (slow start to congestion
avoidance) when window size reaches thresholdavoidance) when window size reaches threshold

 Loss detected either with timeout or Loss detected either with timeout or fast retransmitfast retransmit (duplicate (duplicate
cumulative acks)cumulative acks)

 Two versions of TCPTwo versions of TCP
 Tahoe: in both cases, drop window to 1Tahoe: in both cases, drop window to 1
 Reno: on timeout, drop window to 1, and on fast retransmitReno: on timeout, drop window to 1, and on fast retransmit

drop window to half previous size (also, increase window ondrop window to half previous size (also, increase window on
subsequent acks)subsequent acks)

TCP vs. DECbit

 Both use dynamic window flow control and additive-increase Both use dynamic window flow control and additive-increase
multiplicative decreasemultiplicative decrease

 TCP uses implicit measurement of congestionTCP uses implicit measurement of congestion
 probe a black boxprobe a black box

 Operates at the Operates at the cliffcliff
 Source does not filter informationSource does not filter information

Evaluation

 Effective over a wide range of bandwidthsEffective over a wide range of bandwidths
 A lot of operational experienceA lot of operational experience
 WeaknessesWeaknesses

 loss => overload? (wireless)loss => overload? (wireless)
 overload => self-blame, problem with FCFSoverload => self-blame, problem with FCFS
 overload detected only on a lossoverload detected only on a loss

 in steady state, source in steady state, source inducesinduces loss loss
 needs at least bR/3 buffers per connectionneeds at least bR/3 buffers per connection

Sample trace

TCP Vegas

 Expected throughput =Expected throughput =
transmission_window_size/propagation_delaytransmission_window_size/propagation_delay

 Numerator: knownNumerator: known
 Denominator: measure Denominator: measure smallestsmallest RTT
 Also know actual throughput
 Difference = how much to reduce/increase rate
 Algorithm

 send a special packetsend a special packet
 on on ackack, compute expected and actual throughput, compute expected and actual throughput
 (expected - actual)* RTT packets in bottleneck buffer(expected - actual)* RTT packets in bottleneck buffer
 adjust sending rate if this is too largeadjust sending rate if this is too large

 Works better than TCP RenoWorks better than TCP Reno

NETBLT

 First rate-based flow control scheme
 Separates error control (window) and flow control (no coupling)
 So, losses and retransmissions do not affect the flow rate
 Application data sent as a series of buffers, each at a particular

rate
 Rate = (burst size + burst rate) so granularity of control = burst
 Initially, no adjustment of rates
 Later, if received rate < sending rate, multiplicatively decrease

rate
 Change rate only once per buffer => slow

Packet pair

 Improves basic ideas in NETBLTImproves basic ideas in NETBLT
 better measurement of bottleneckbetter measurement of bottleneck
 control based on predictioncontrol based on prediction
 finer granularityfiner granularity

 Assume all bottlenecks serve packets in round robin orderAssume all bottlenecks serve packets in round robin order
 Then, spacing between packets at receiver (= ack spacing) =Then, spacing between packets at receiver (= ack spacing) =

1/(rate of slowest server)1/(rate of slowest server)
 If If allall data sent as paired packets, no distinction between data data sent as paired packets, no distinction between data

and probesand probes
 Implicitly determine service rates if servers are round-robin-likeImplicitly determine service rates if servers are round-robin-like

Packet pair

Packet-pair details

 Acks Acks give time series of service rates in the pastgive time series of service rates in the past
 We can use this to predict the next rateWe can use this to predict the next rate
 Exponential Exponential averageraverager, with fuzzy rules to change the averaging, with fuzzy rules to change the averaging

factorfactor
 Predicted rate feeds into flow control equationPredicted rate feeds into flow control equation

Packet-pair flow control

 Let X = # packets in bottleneck buffer
 S = # outstanding packets
 R = RTT
 b = bottleneck rate
 Then, X = S - Rb (assuming no losses)
 Let l = source rate
 l(k+1) = b(k+1) + (setpoint -X)/R

Sample trace

Comparison among closed-loop schemes

 On-off, stop-and-wait, static window, DECbit, TCP, NETBLT,On-off, stop-and-wait, static window, DECbit, TCP, NETBLT,
Packet-pairPacket-pair

 Which is best? No simple answerWhich is best? No simple answer
 Some rules of thumbSome rules of thumb

 flow control easier with RR schedulingflow control easier with RR scheduling
 otherwise, assume cooperation, or police ratesotherwise, assume cooperation, or police rates

 explicit schemes are more robustexplicit schemes are more robust
 hop-by-hop schemes are more resposive, but more compleshop-by-hop schemes are more resposive, but more comples
 try to separate error control and flow controltry to separate error control and flow control
 rate based schemes are inherently unstable unless well-rate based schemes are inherently unstable unless well-

engineeredengineered

Hybrid flow control

 Source gets a minimum rate, but can use moreSource gets a minimum rate, but can use more
 All problems of both open loop and closed loop flow controlAll problems of both open loop and closed loop flow control
 Resource partitioning problemResource partitioning problem

 what fraction can be reserved?what fraction can be reserved?
 how?how?

