
Allocation vs. scheduling

We have seen why register allocation is a useful
compilation phase: when done well, it can make

the best use of available registers and hence
reduce the number of spills to memory.

Unfortunately, by maximising the utilisation of
physical registers, register allocation makes

instruction scheduling significantly more difficult.

Allocation vs. scheduling

*x := *a;
*y := *b;

LDR v36,v32
STR v36,v33
LDR v37,v34
STR v37,v35

LDR v5,v1
STR v5,v2
LDR v5,v3
STR v5,v4

lw $5,0($1)
sw $5,0($2)
lw $5,0($3)
sw $5,0($4)

lexing,
parsing,

translation

code
generation

register allocation

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $5,0($3)
sw $5,0($4)

IF RF EX MEM WBlw $5,0($1)

sw $5,0($2) IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $5,0($3)

sw $5,0($4)

STALL

STALL

This schedule of instructions
produces two pipeline stalls

(or requires two NOPs).

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $5,0($3)
sw $5,0($4)

1
2
3
4

2

3 4

1, 2, 3, 4

No: this is the only
correct schedule for
these instructions.

1

Can we reorder them
to avoid stalls?

Allocation vs. scheduling

We might have done better if
register $5 wasn’t so heavily used.

If only our register allocation had
been less aggressive!

Allocation vs. scheduling

*x := *a;
*y := *b;

LDR v36,v32
STR v36,v33
LDR v37,v34
STR v37,v35

LDR v5,v1
STR v5,v2
LDR v6,v3
STR v6,v4

lw $5,0($1)
sw $5,0($2)
lw $6,0($3)
sw $6,0($4)

lexing,
parsing,

translation

code
generation

register allocation

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $6,0($3)
sw $6,0($4)

1
2
3
4

2

3 4

1, 2, 3, 4
1, 3, 2, 4
3, 1, 2, 4
1, 3, 4, 2
3, 4, 1, 2

1

Allocation vs. scheduling

lw $5,0($1)
lw $6,0($3)
sw $5,0($2)
sw $6,0($4)

IF RF EX MEM WBlw $5,0($1)

lw $6,0($3)

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

sw $5,0($2)

sw $6,0($4)

This schedule of the
new instructions

produces no stalls.

Allocation vs. scheduling
There is clearly antagonism between register

allocation and instruction scheduling: one reduces
spills by using fewer registers, but the other can better

reduce stalls when more registers are used.

This is related to the phase-order problem discussed
earlier in the course, in which we would like to defer
optimisation decisions until we know how they will

affect later phases in the compiler.

It’s not clear how best to resolve the problem.

Allocation vs. scheduling

One option is to try to allocate physical registers
cyclically rather than re-using them at the earliest

opportunity.

It is this eager re-use of registers that causes
stalls, so if we can avoid it — and still not spill any

virtual registers to memory — we will have a
better chance of producing an efficient program.

Allocation vs. scheduling
In practise this means that, when doing register

allocation by colouring for a basic block, we should

• satisfy all of the important constraints as usual
(i.e. clash graph, preference graph),

• see how many spare physical registers we still
have left over, and then

• for each unallocated virtual register, try to
choose a physical register distinct from all
others allocated in the same basic block.

Allocation vs. scheduling

So, if we are less zealous about reusing registers, this
should hopefully result in a better instruction schedule

while not incurring any extra spills.

In general, however, it is rather difficult to predict
exactly how our allocation and scheduling phases will
interact, and this particular solution is quite ad hoc.

Some recent research (e.g. CRAIG system in 1995,
Touati’s PhD thesis in 2002) has improved the situation.

Allocation vs. scheduling
The same problem also shows up in dynamic

scheduling done by hardware.

Executable x86 code, for example, has lots of
register reuse because of the small number of

physical registers available.

The Pentium copes by actually having more
registers than advertised; it does dynamic
recolouring using this larger register set,

which then enables more effective scheduling.

Part D
Decompilation and
reverse engineering

Decompilation

intermediate code

parse tree

token stream

character stream

target code

optimisation

optimisation

optimisation

decompilation

Motivation
The job of an optimising compiler is to turn human-
readable source code into efficient, executable target

code.

Although executable code is useful, software is most
valuable in source code form, where it can be easily

read and modified.

The source code corresponding to an executable is not
always available — it may be lost, missing or secret — so

we might want to use decompilation to recover it.

Reverse engineering

In general terms, engineering is a process which
decreases the level of abstraction of some system.

Reverse engineering

Requirements
Ideas

Design

Source codeTarget code

compiler

Reverse engineering

In contrast, reverse engineering is the process of
increasing the level of abstraction of some system,

making it less suitable for implementation but more
suitable for comprehension and modification.

Reverse engineering

Requirements
Ideas

Design

Source codeTarget code

decompiler

It is quite feasible to decompile and otherwise reverse-
engineer most software.

So if reverse-engineering software is technologically
possible, is there any ethical barrier to doing it?

In particular, when is it legal to do so?

Legality and ethics

Legality and ethics
Companies and individuals responsible for creating
software generally consider source code to be their

confidential intellectual property; they will not make it
available, and they do not want you to reconstruct it.

(There are some well-known exceptions.)

Usually this desire is expressed via an end-user
license agreement, either as part of a shrink-wrapped
software package or as an agreement to be made at

installation time (“click-wrap”).

Legality and ethics
However, the European Union Software

Directive of 1991 (91/250/EC) says:

Article 4 Restricted Acts

Subject to the provisions of Articles 5 and 6, the exclusive rights of the rightholder
within the meaning of Article 2, shall include the right to do or to authorize:

(a) the permanent or temporary reproduction of a computer program by any means
and in any form, in part or in whole. Insofar as loading, displaying, running,
transmission or storage of the computer program necessitate such reproduction,
such acts shall be subject to authorization by the rightholder;

(b) the translation, adaptation, arrangement and any other alteration of a computer
program and the reproduction of the results thereof, without prejudice to the rights of
the person who alters the program;

(c) any form of distribution to the public, including the rental, of the original computer
program or of copies thereof. The first sale in the Community of a copy of a program
by the rightholder or with his consent shall exhaust the distribution right within the
Community of that copy, with the exception of the right to control further rental of the
program or a copy thereof.

Article 5 Exceptions to the restricted acts

1. In the absence of specific contractual provisions, the acts referred to in Article 4
(a) and (b) shall not require authorization by the rightholder where they are
necessary for the use of the computer program by the lawful acquirer in accordance
with its intended purpose, including for error correction.

2. The making of a back-up copy by a person having a right to use the computer
program may not be prevented by contract insofar as it is necessary for that use.

3. The person having a right to use a copy of a computer program shall be entitled,
without the authorization of the rightholder, to observe, study or test the functioning
of the program in order to determine the ideas and principles which underlie any
element of the program if he does so while performing any of the acts of loading,
displaying, running, transmitting or storing the program which he is entitled to do.

Article 6 Decompilation

1. The authorization of the rightholder shall not be required where reproduction of the
code and translation of its form within the meaning of Article 4 (a) and (b) are
indispensable to obtain the information necessary to achieve the interoperability of
an independently created computer program with other programs, provided that the
following conditions are met:

(a) these acts are performed by the licensee or by another person having a right to
use a copy of a program, or on their behalf by a person authorized to to so;

(b) the information necessary to achieve interoperability has not previously been
readily available to the persons referred to in subparagraph (a); and (c) these acts
are confined to the parts of the original program which are necessary to achieve
interoperability.

2. The provisions of paragraph 1 shall not permit the information obtained through its
application:

(a) to be used for goals other than to achieve the interoperability of the independently
created computer program;

(b) to be given to others, except when necessary for the interoperability of the
independently created computer program; or (c) to be used for the development,
production or marketing of a computer program substantially similar in its expression,
or for any other act which infringes copyright.

Legality and ethics

“The authorization of the rightholder shall not be
required where [...] translation [of a program is]
necessary to achieve the interoperability of [that

program] with other programs, provided [...]
these acts are performed by [a] person having a

right to use a copy of the program”

Legality and ethics
The more recent European Union Copyright Directive of

2001 (2001/29/EC, aka “EUCD”) is the EU’s
implementation of the 1996 WIPO Copyright Treaty.

It is again concerned with the ownership rights of
technological IP, but Recital 50 states that:

“[this] legal protection does not affect the specific
provisions [of the EUSD]. In particular, it should not

apply to [...] computer programs [and shouldn’t] prevent
[...] the use of any means of circumventing a

technological measure [allowed by the EUSD].”

Legality and ethics

And the USA has its own implementation of the
WIPO Copyright Treaty: the Digital Millennium

Copyright Act of 1998 (DMCA), which contains a
similar exception for reverse engineering:

“This exception permits circumvention [...] for the
sole purpose of identifying and analyzing elements of

the program necessary to achieve interoperability
with other programs, to the extent that such acts

are permitted under copyright law.”

Legality and ethics

Predictably enough, the interaction between the
EUSD, EUCD and DMCA is complex and unclear,
particularly at the increasingly-blurred interfaces
between geographical jurisdictions (cf. Dmitry

Sklyarov), and between software and other forms
of technology (cf. Jon Johansen).

Get a lawyer.

Clean room design

Despite the complexity of legislation, it is possible to
do useful reverse-engineering without breaking the law.

In 1982, Compaq produced the first fully IBM-
compatible personal computer by using clean room
design (aka “Chinese wall technique”) to reverse-

engineer the proprietary IBM BIOS.

This technique is effective in legally circumventing
copyrights and trade secrets, although not patents.

Summary

• Register allocation makes scheduling harder by
creating extra dependencies between instructions

• Less aggressive register allocation may be desirable

• Some processors allocate and schedule dynamically

• Reverse engineering is used to extract source code
and specifications from executable code

• Existing copyright legislation may permit limited
reverse-engineering for interoperability purposes

