OOP Sample Question 1 Solution(RKH)

Note: This question was updated for clarity on 27/04/11

(a)

Information hiding is the idea that data should only be accessible via a
stable, well-specified set of functions. Your example should show a class
with a private data structure and one or more public functions that
access or mutate it in some way.

Inheritance is the idea that one class may automatically inherit state
and behaviour from another. This is useful to represent a concept that
is a specialisation of another. A simple example of two Java classes is
sufficient.

(#i) A child class may override any behaviour it inherits from its parent,

meaning the parent and child have different behaviours for the same
mathod. Dynamic or ad-hoc polymorphism is when the appropriate
version of the method is determined at run time, based on the most
derived type of an object. A simple example of polymorphism (perhaps
using two classes and a function that prints text) would be sufficient.

(#ii) Static polymorphism applies when we have code that is written

generically e.g. a template for a data structure that could be applied
to a range of types. For each instance, the type is determined at compile
time. A good example of Generics in Java might involve a LinkedList
of a specific type.

Because an int is a primitive type. We want the list to work for all
objects, but this necessitates a ‘wrapper’ class for the primitive types
(which are obviously not objects).

The identifier i is reused, and we call intValue() on the wrong object.
The code should be:

public void StripNegatives(List intlist) {

for (int i=0; i<intlist.size(); i++) {
Object o = intlist.get(i);

Integer x = (Integer)o;

if (x.intValue()<0) intlist.remove(i);

}



(#ii) There is, however, a more insidious problem, that occurs when we have
two negatives in a row. The first one will be strippoed out, and the
counter incremented by one. Simultaneously the size of the list will fall
by one, so the next item is not checked!

E.g. {1,-2-3, 4}.

First loop: intList.size() is 4, i is 0. We check the number 1 and
proceed to increment i.

Second loop: intList.size() is 4, i is 1. We check the number -1 and
strip it out. We increment i.

Third loop: intList.size() is now 3, i is 2. So now we check the
number 4—i.e. we skipped the check of the number -3.

(#ii) The looping problem is solved by:

public void StripNegatives(List intlist) {
Iterator it = 1l.iterator();
while (it.hasNext()) {
Integer x = (Integer)it.next();
if (x.intValue()<0) it.remove();
}

(iv) Something like:

public void StripNegatives(List<Integer> intlist) {
Iterator<Integer> it = l.iterator();
while (it.hasNext()) {
Integer x = it.next();
if (x.intValue()<0) it.remove();

}



