Java Class Library

= Java the platform contains around 4,000
classes/interfaces

= Data Structures

= Networking, Files

» Graphical User Interfaces

= Security and Encryption

" Image Processing

" Multimedia authoring/playback
= And more...

= All neatly(ish) arranged into packages (see API docs)

<<interface>>
Iterable

~

<<jnterface>>
Collection

Important chunk of the class library
A collection is some sort of grouping of
things (objects)

Usually when we have some grouping we
want to go through it (“iterate over it")

The Collections framework has two main
intferfaces: lterable and Collections. They
define a set of operations that all classes in
the Collections framework support

add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces |

" <<interface>> Set
* Like a mathematical setin DM 1
* A collection of elements with no duplicates
* Various concrete classes like TreeSet (which keeps the set elements sorted)

s <<interface>> List E»

* An ordered collection of elements that may contain duplicates
* Arraylist, Vector, LinkedList, etfc.

" <nterface>> Queue

* An ordered collection of elements that may contain duplicates and supports
removal of elements from the head of the queue

* PriorityQueue, LinkedLIst, etc. C

Major Collections Intertaces I

" interface>> Map
* Like relationsin DM 1, or dictionaries in ML
* Maps key objects to value objects
* Keys must be unique
* Values can be duplicated and (sometimes) null.

" for loop
LinkedList list = new LinkedList();

for (int i=0: i<list.size(); i++) {
Object next = list.get(i);
}

* foreach loop (Java 5.0+)

: oA LS F
LinkedList list = new LinkedList(); i¢h= nu Cin)‘“”\L<z»kJe«>
for (Object o : list) { ,ﬁ,«(ln\%ju - |"5|'>

}

lTerators

= What if our loop changes the structure?

for (int 1=0; i<list.size(); i++) {
If (i==3) list.remove(i);

}
» Java introduced the lterator class

lterator it = list.iterator();
while(it.hasNext()) {Object o = it.next();}
for (; it.hasNext();) {Object o = it.next();}

= Safe to modify structure

while(it.hasNext()) {
it.remove();

}

Collections and Types |

/| Make a TreeSet object * The original Collections
TreeSet ts = new TreeSet(); framework just dealt with
// Add integers to it collections of Objects
ts.add(new Integer(3)); = Everything in Java “is-a”

Object so that way our
collections framework will
apply to any class

// Loop through
iterator it = ts.iterator(); -
while(it.hasNext()) {

Object o = it.next(); ¢ = But this leads fo:
Integer i = (Integer)o; f = Constant casting of the
} result (ugly)

" The need to know what
the return type is

= Accidental mixing of types
in the collection

Collections and Types |

/[Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();

while(it.hasNext()) { ooing to fail for the
Object o = it.next(); _gum= (5t it will compile:
Integer i = (Integer)o; the error will be at

} runtime)

Java Generics

" To help solve this sort of problem, Java intfroduced
Generics in JDK 1.5

= Basically, this allows us to tell the compiler what is
supposed to go in the Collection

= So it can generate an error at compile-time, not run-time

/| Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));

Won't even compile
ts.add(new Person(“Bob”)): K

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {

Integer i = it.next(); o ——m No need to cast :-)
} "

Generics Declaration and Use

public class Coordinate <T> {

privaté Pk Mok of Uy
private T mY;
as 3@#5
public Coordinate(T x, Ty) { r\ef'aceJ\
mX=X; mY=y;
}

public T getX() { return mX; }
public T getY() { return mY; }

}

Coordinate<Double> ¢ =
New Coordinate<Double>(1.0,1.0);

Double d = c.getX();

Generics and SubTyping

Animal // Object casting

Person p = new Person(); /
4 Animal o = (Animal) p;

// List casting

Person List<Person> plist = new LinkedList<Person>(); H
List<Animal> alist = (List<Animal>)plist;

So a list of Persons is a list of Animals, yes?

o0 l())]
b (oo 0000
ot
co™

|
P

Section: Comparing Java Classes

Comparing Primifives

> Greater Than

>= Greater than or equal to
== Equal to

I= Not equal to

< Less than

<= Less than or equal to

» Clearly compare the value of a primifive
= But what does (refl==ref2) do¢¢
» Test whether they point to the same object?

» Test whether the objects they point to have the
same statee

Option 1: a==b, al=b

" These compare the references directly

Person pl = new Person(“Bob”);
Person p2 = new Person(“Bob”);

False (references differ)
(pl==p2); /

(pl!=p2);, - True (references differ)

(pl==pl); <
True

Option 2: The equals() Method

* QObject defines an equals() method. By default, this method
just does the same as ==.

" Returns boolean, so can only test equality
= Qverride it if you want it to do something different

= Most (alle) of the core Java classes have properly
implemented equals() methods

public EqualsTest {
public int x = 8;

public boolean equals(Object o) {
EqualsTest e = (EqualsTest)o;
return (this.x==e.x);

}

public static void main(String args[]) {
. EqualsTest t1 = new EqualsTest();
- EqualsTest t2 = new EqualsTest();
System.out.printin(tl==t2);
System.out.printin(tl.equals(t2));

