
Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collections. They
define a set of operations that all classes in
the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces I

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces II

 <<interface>> Map
 Like relations in DM 1, or dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
...
for (int i=0; i<list.size(); i++) {
 Object next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Object o : list) {

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {
 If (i==3) list.remove(i);
}

Iterator it = list.iterator();

while(it.hasNext()) {Object o = it.next();}

for (; it.hasNext();) {Object o = it.next();}

while(it.hasNext()) {
 it.remove();
}

Collections and Types I

 The original Collections
framework just dealt with
collections of Objects
 Everything in Java “is-a”

Object so that way our
collections framework will
apply to any class

 But this leads to:
 Constant casting of the

result (ugly)
 The need to know what

the return type is
 Accidental mixing of types

in the collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Collections and Types II

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

Java Generics

 To help solve this sort of problem, Java introduced
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is
supposed to go in the Collection

 So it can generate an error at compile-time, not run-time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
 Integer i = it.next();
}

Won't even compile

No need to cast :-)

Generics Declaration and Use

public class Coordinate <T> {
 private T mX;
 private T mY;

 public Coordinate(T x, T y) {
 mX=x; mY=y;
 }

 public T getX() { return mX; }
 public T getY() { return mY; }
}

Coordinate<Double> c =
 New Coordinate<Double>(1.0,1.0);

Double d = c.getX();

Generics and SubTyping

// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;

<<interface>>
Collection

Person

<<interface>>
Collection

So a list of Persons is a list of Animals, yes?

Animal

Section: Comparing Java Classes

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??
 Test whether they point to the same object?
 Test whether the objects they point to have the

same state?

Option 1: a==b, a!=b

 These compare the references directly

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Option 2: The equals() Method

 Object defines an equals() method. By default, this method
just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly

implemented equals() methods
public EqualsTest {
 public int x = 8;

 public boolean equals(Object o) {
 EqualsTest e = (EqualsTest)o;
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 System.out.println(t1==t2);
 System.out.println(t1.equals(t2));
 }
}

