
Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collections. They
define a set of operations that all classes in
the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces I

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces II

 <<interface>> Map
 Like relations in DM 1, or dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
...
for (int i=0; i<list.size(); i++) {
 Object next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Object o : list) {

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {
 If (i==3) list.remove(i);
}

Iterator it = list.iterator();

while(it.hasNext()) {Object o = it.next();}

for (; it.hasNext();) {Object o = it.next();}

while(it.hasNext()) {
 it.remove();
}

Collections and Types I

 The original Collections
framework just dealt with
collections of Objects
 Everything in Java “is-a”

Object so that way our
collections framework will
apply to any class

 But this leads to:
 Constant casting of the

result (ugly)
 The need to know what

the return type is
 Accidental mixing of types

in the collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Collections and Types II

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

Java Generics

 To help solve this sort of problem, Java introduced
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is
supposed to go in the Collection

 So it can generate an error at compile-time, not run-time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
 Integer i = it.next();
}

Won't even compile

No need to cast :-)

Generics Declaration and Use

public class Coordinate <T> {
 private T mX;
 private T mY;

 public Coordinate(T x, T y) {
 mX=x; mY=y;
 }

 public T getX() { return mX; }
 public T getY() { return mY; }
}

Coordinate<Double> c =
 New Coordinate<Double>(1.0,1.0);

Double d = c.getX();

Generics and SubTyping

// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;

<<interface>>
Collection

Person

<<interface>>
Collection

So a list of Persons is a list of Animals, yes?

Animal

Section: Comparing Java Classes

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??
 Test whether they point to the same object?
 Test whether the objects they point to have the

same state?

Option 1: a==b, a!=b

 These compare the references directly

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Option 2: The equals() Method

 Object defines an equals() method. By default, this method
just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly

implemented equals() methods
public EqualsTest {
 public int x = 8;

 public boolean equals(Object o) {
 EqualsTest e = (EqualsTest)o;
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 System.out.println(t1==t2);
 System.out.println(t1.equals(t2));
 }
}

