

The Canonical Example I

 A drawing program that can draw
circles, squares, ovals and stars

 It would presumably keep a list of all
the drawing objects

 Option 1
 Keep a list of Circle objects, a list of

Square objects,...
 Iterate over each list drawing each

object in turn
 What has to change if we want to

add a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape

references
 Figure out what each object really is,

narrow the reference and then
draw()

 What if we want to add a new
shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
 if (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 else if...

The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape

references
 Let the compiler figure out what to

do with each Shape reference

 What if we want to add a new
shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations

 Java
 All methods are dynamic polymorphic.

 Python
 All methods are dynamic polymorphic.

 C++
 Only functions marked virtual are dynamic

polymorphic

 Polymorphism in OOP is an extremely important
concept that you need to make sure you
understand...

Abstract Methods

 There are times when we have a
definite concept but we expect every
specialism of it to have a different
implementation (like the draw()
method in the Shape example). We
want to enforce that idea without
providing a default method

 E.g. We want to enforce that all objects
with Person in their ancestry support a
dance() method
 But there isn't now a default dance()

 We specify an abstract dance method
in the Person class
 i.e. we don't fill in any

implementation (code) at all in
Person.

class Person {
 public void dance();
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

Abstract Classes

 Before we could write Person p = new Person()

 But now p.dance() is undefined

 Therefore we have implicitly made the class abstract ie. It
cannot be directly instantiated to an object

 Languages require some way to tell them that the class is
meant to be abstract and it wasn't a mistake:

 Note that an abstract class can contain state variables
that get inherited as normal

 Note also that, in Java, we can declare a class as abstract
despite not specifying an abstract method in it!!

public abstract class Person {
 public abstract void dance();
}

class Person {
 public:
 virtual void dance()=0;
}Java C++

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the
class or method is
abstract

Multiple Inheritance

Student Lecturer

StudentLecturer

 What if we have a Lecturer who
studies for another degree?

 StudentLecturer inherits two
dance() methods... which does
it do?

 The Java solution? You can only
extend (inherit) from one class in
Java
 (which may itself inherit from

another...)
 This is Java-specific (C++

allows multiple class
inheritance)

Interfaces (Java only)
 Java has the notion of an interface which is like a class but

with no state and all methods abstract

 For an interface, there can then be no clashes of methods or
variables to worry about, so we can allow multiple inheritance

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
 public void turn();
 public void brake();
}

Interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 public void getIdentifier() {...}
}

abstract
assumed for
interfaces

Recap

 Important OOP concepts you need to
understand:

 Modularity (classes, objects)
 Data Encapsulation
 Inheritance
 Abstraction
 Polymorphism

