!
O\

S \.
/ 4
g B X P¥e .
)
"
S|,
L\
_9 N ~
< T N A
c /N
N
)
A\ 4
ST
Sl7 TN
3 ANERN .
<) LN V\
<)
-
&=
A NEEA
< AN
—-— ~ — \v
d

Q /)

\Y) ok)
S r - s 1
T 2 O 1Y

ﬂv.Av = b \ M\
N.N o™ J e
) < ~J Av r‘

D ﬁ). ﬂu

The Canonical Example |

= A drawing program that can draw
circles, squares, ovals and stars

* |t would presumably keep a list of all
the drawing objects

Circle " Option 1
T drawl) = Keep a list of Circle objects, a list of
Square objects,...

Square * |terate over each list drawing each
+ drawd object in turn

Oval * What has to change if we want to
+ draw() add a new shape?¢

Star
+ draw()

The Canonical Example |I

Shape = Option 2
* Keep asingle list of Shape
references

A " Figure out what each object really is,
Circle narrow the reference and then
+ draw() draw()

for every Shape s in myShapelList

If (s is really a Circle)
Circle c = (Circle)s;
c.draw();

else if (s is really a Square)
Square sq = (Square)s;
sq.draw();

else if...

= What if we want to add a new
shapee

Square

+ draw()

Oval

+ draw()

Star

+ draw()

The Canonical Example Il

= Option 3 (Polymorphic)

Shape
- X_position: int = Keep d Siﬂgle list of ShCIpe
-y _position: int
- references
+ draw() . .
A * Let the compiler figure out what to
_ do with each Shape reference
Circle
+ draw()
For every Shape s in myShapelList
Square s.draw();
+ draw()
Oval
+ drawl) = What if we want to add a new
]
tar shapes
+ draw()

Implementations

= Java

= All methods are dynamic polymorphic.
= Python

= All methods are dynamic polymorphic.
= C++

= Only functions marked virtual are dynamic
polymorphic

* Polymorphism in OOP is an extremely important
concept that you need to make sure you
understand...

Abstract Methods

class Person {

}

‘QD\/{XP&’\ -

public void dance();

class Student extends Person {
public void dance() {

}

}

body_pop();

class Lecturer extends Person {
public void dance() {

}

}

jiggle_a_bit();

There are times when we have a
definite concept but we expect every
specialism of it to have a different
implementation (like the draw()
method in the Shape example). We
want to enforce that idea without
providing a default method

E.g. We want to enforce that all objects
with Person in their ancestry support a
dance() method

= But there isn't now a default dance()

We specify an abstract dance method
in the Person class

" j.e.we don'tfillin any
implementation (code) at all in
Person.

Abstract Classes

* Before we could write Person p = new Person()
* But now p.dance() is undefined

* Therefore we have implicitly made the class abstract ie. It
cannot be directly instantiated to an object

* Languages require some way to tell them that the class is
meant to be abstract and it wasn't a mistake:

. class Person
public abstract class Person { {

| : public:
} public abstract void dance(); virtual void dance('

Java } C++

= Note that an abstract class can contain state variables
that get inherited as normal

= Note also that, in Java, we can declare a class as abstract
despite not specifying an abstract method in it!!

Representing Abstract Classes

Person

Iltalics indicate the
+ dance() <& class or method is
abstract
Student Lecturer

+ dancel() + dancel()

Student Lecturer = What if we have a Lecturer who

studies for another degree?
" StudentlLecturer inherits two

A A dance() methods... which does
it doe

" The Java solution? You can only
extend (inherit) from one class in
Java

" (which may itself inherit from

StudentLecturer anofther...)

" This is Java-specific (C++

allows multiple class
iInheritance)

P\V\M\’LLK /E('e_c/(-vic} an E)mmple_

— S &M \
1 rodesmen \J= “\d\/
e HMA‘LQ P O) 'D'(dxv\l/ -
VAN =
|
Plurbes Elachncion
p;x Leo\km @\'x Lﬁj‘/\H()
) Z\
A — 1
Plurbbrcon (
— /

Interfaces (Java only)

= Java has the notion of an interface which is like a class but
with no state and all methods abstract

" For an interface, there can then be no clashes of methods or
variables to worry about, so we can allow multiple inheritance

Interface Drivable {

<<interface>> <<interface>> public void turn(); abstract
Drivable Identifiable } public void brake(); 2csumed for
+ turn() + getldentifier() interfaces
+ brake() Interface Identifiable {
public void getldentifier();
JAN }
class Bicycle implements Drivable {
public void turn() {...}
public void brake() {... }
Bicycle Car }
+ turn() N tbur;rf((;() class Car implements Drivable, Identifiable {
+ brake() - : :
+ getldentifier() public void turn() {...}

public void brake() {... }
public void getldentifier() {...}

}

Mc’,!

Figine Wit [r\LuFa\c/LS

Zinkefote 7> | — < inlerface >> |
Planab Int [Fodesmeon Eleclat |
’y . .ﬁ" xL\thO
.L."KLeak.” Ll L_\ ﬁ‘\ /‘
S | _\‘_{“\U e
A A M phn gt — - K.’I-’em
| || . ;
\ Plumb o~ < Elachncion //
\ ixclenk () 3 Pix Lighth /
\ F 2 Y
A Vv 4
Te~— /

'> —
D

5|
\

s
3.
S5
;

Q’ X1fe (A);H\ (AL{/F:;\C/LS
N\

Trodesmon

VAN

|

P(MMLQI-

Elechicion

P;x .Lee\l(()

Lox LT&\/\H()

* Important OOP concepts you need to
understand:

* Modularity (classes, objects)
* Data Encapsulation

* Inheritance

= Abstraction

" Polymorphism

