

Inheritance I

class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that

we're not really representing
 Both Lecturers and Students are people

(no, really).
 We can view each as a kind of

specialisation of a general person
 They have all the properties of a

person
 But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II

class Person {
 public int age;
 Public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

 We create a base class (Person)
and add a new notion: classes
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of

Lecturer and Student
 Lecturer and Student subclass

Person

Representing Inheritance Graphically

name
age
exam_score

Student

name
age
salary

Lecturer

name
age

Person Also known as an “is-a”
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

Inherited fields

Casting/Conversions

 As we descend our inheritance tree we specialise by adding
more detail (a salary variable here, a dance() method there)

 So, in some sense, a Student object has all the information we
need to make a Person (and some extra).

 It turns out to be quite useful to group things by their common
ancestry in the inheritance tree

 We can do that semantically by expressions like:

Student s = new Student();
Person p = (Person)s;

Person p = new Person();
Student s = (Student)p;

This is a widening conversion (we
move up the tree, increasing
generality: always OK)

This would be a narrowing
conversion (we try to move down
the tree, but it's not allowed here
because the real object doesn't
have all the info to be a Student)x

Fields and Inheritance

class Person {
 public String mName;
 protected int mAge;
 private double mHeight;
}

class Student extends Person {

 public void do_something() {
 mName=”Bob”;
 mAge=70;
 mHeight=1.70;
 }

}

Student inherits this as a
public variable and so can
access it

Student inherits this as a
protected variable and so can
access it

Student inherits this but as a
private variable and so cannot
access it

Fields and Inheritance: Shadowing
class A { public int x; }

class B extends A {
 public int x;
}

class C extends B {
 public int x;

 public void action() {
 // Ways to set the x in C
 x = 10;
 this.x = 10;

 // Ways to set the x in B
 super.x = 10;
 ((B)this).x = 10;

 // Ways to set the x in A
 ((A)this.x = 10;
 }
}

Methods and Inheritance: Overriding

 We might want to require that every Person can dance. But
the way a Lecturer dances is not likely to be the same as the
way a Student dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
}

Person defines a
'default'
implementation of
dance()

Lecturer just
inherits the default
implementation and
jiggles

Student overrides
the default

Polymorphic Methods

 Assuming Person has a
default dance() method,
what should happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 General problem: when we refer to an object via a
parent type and both types implement a particular
method: which method should it run?

Polymorphic Concepts I

 Static polymorphism
 Decide at compile-time
 Since we don't know what the true type of the

object will be, we must just run the parent method
 Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler says “p is of type
Person”

 So p.dance() should do the
default dance() action in
Person

Polymorphic Concepts II

 Dynamic polymorphism
 Run the method in the child
 Must be done at run-time since that's when we

know the child's type
 Type errors cause run-time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler looks in memory
and finds that the object is
really a Student

 So p.dance() runs the
dance() action in Student

