A g‘,MM\O»‘\-O’/\ OL(\& \ﬁSV\a\(‘.3aH0“\ O\C A MD\F‘\V‘j E"\H

7 JisualicaRon
)QM/ICJW\ U : j

7/

2 A >§ T Jeckor2 D)
|

|005 \/@J—.{ZB
Ve l VQJV(ZD (
alc Vo ZD

S —

—

Inheritance |

class Student {
public int age;
public String name;
public int grade;

}

class Lecturer {
public int age;
public String name;
public int salary;

}

There is a lot of duplication here

Conceptually there is a hierarchy that
we're not really representing

Both Lecturers and Students are people
(no, really).

We can view each as a kind of
specialisation of a general person

" They have all the properties of a
person

" But they also have some extra stuff
specific fo them

(I should not have used public variables here, but | did it to keep things simple)

Inheritance |l

class Person { * We create a base class (Person)
pugll_lc 3|3ntt_age; | and add a new notion: classes
}f“ 'C String Name; can inherit properties from it

" Both state and functionality
class Student extends Person {

public int grade; " We say:
} " Person is the superclass of
class Lecturer extends Person { Lecturer and Student

public int salary;

) " | ecturer and Student subclass

Person

Representing Inheritance Graphically

Person Also known as an “is-a”
relation
name
age As in “Student is-a Person”
)
@ I w3
s IS © O
— D Q[
o A ‘ Q.
C - Q
Ol 5 =
Student Lecturer o =
name name
age age
exam_score salary

Inherited fields

Casting/Conversions

" Aswe descend our inheritance free we specialise by adding
more detail (a salary variable here, a dance() method there)

= S0, in some sense, a Student object has all the information we
need to make a Person (and some exira).

" | furns out to be quite useful to group things by their common
ancestry in the inheritance free

" We can do that semantically by expressions like:

Student s = new Student(); This is a widening conversion (we
Person p = (Persph)s; = move up the tree, increasing
\/gh ' generality: always OK)

This would be a narrowing

conversion (we try to move down
Person p = new Person().e— the tree, but it's not allowed here
Student s = (Student)p; because the real object doesn't
X have all the info to be a Student)

Fields and Inheritance

class Person { ~ Student inherits this as a
public String mName; <€ public variable and so can
' access it

protected int mAge;

y private double mHeigwt;\ Student inherits this as a

protected variable and so can
access it

class Student extends Person {

public void do_something()

mz;;nf;O;B'O/b ; Student inherits this but as a

_ private variable and so cannot
}
}

Flelds and Inheritance: Shadowing

class A { publicint x; }

class B extends A {
public int x;,_

) 9=
class C extends B {
public int x; &
public void action() {
/| Ways to set the x in C
x = 10;
this.x = 10;
/| Ways to set the x in B
super.x = 10;
((B)this).x = 10;/

/| Ways to set the x in A
((A)this)x ~ 10:

Methods and Inheritance: Overriding

We might want to require that every Person can dance. But
the way a Lecturer dances is not likely to be the same as the
way a Student dances...

class Person .
{ Person defines a

public void dance() { ‘default’
jiggle_a_bit(); implementation of
} dance()

}

class Student extends Person {

public void dance() { Student overrides

}
} |
Lecturer just
class Lecturer extends Person { inherits the default
} - implementation and

jiggles

Polymorphic Methods

Student s = new Student(); ® Assuming Person has a
Person p = (Person)s; default dance() method,
p.dance(); what should happen here?2?2

" General problem: when we refer to an object via a
parent type and both types implement a particular
method: which method should it rune

X 7
T | o \"/ kﬂaot\mq\\ Kw\ S
e

’7

LDJLJ

7

Polymorphic Concepfs |

= Static polymorphism
» Decide at compile-time

= Since we don't know what the true type of the
object will be, we must just run the parent method

» Type errors give compile errors

Student s = new Student(); ®* Compiler says “p is of type

Person p = (Person)s; Person”

p.dance(); " So p.dance() should do the
default dance() action in
Person

Polymorphic Concepfts I

* Dynamic polymorphism
* Run the method in the child

" Must be done at run-time since that's when we
know the child's type

" Type errors cause run-time faults (crashes!)

Student s = new Student(): * Compiler looks in memory
Person p = (Person)s; and finds that the object is
p.dance(); really a Student

" So p.dance() runs the
dance() action in Student

