


Inheritance I

class Student {
   public int age;
   public String name;
   public int grade;   
}

class Lecturer {
   public int age;
   public String name;
   public int salary;    
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that 

we're not really representing
 Both Lecturers and Students are people 

(no, really).
 We can view each as a kind of 

specialisation of a general person
 They have all the properties of a 

person
 But they also have some extra stuff 

specific to them

(I should not have used public variables here, but I did it to keep things simple)



Inheritance II

class Person {
   public int age;
   Public String name;
}

class Student extends Person {
   public int grade;   
}

class Lecturer extends Person {
   public int salary;    
}

 We create a base class (Person) 
and add a new notion: classes 
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of 

Lecturer and Student
 Lecturer and Student subclass 

Person



Representing Inheritance Graphically
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Casting/Conversions

 As we descend our inheritance tree we specialise by adding 
more detail ( a salary variable here, a dance() method there)

 So, in some sense, a Student object has all the information we 
need to make a Person (and some extra).

 It turns out to be quite useful to group things by their common 
ancestry in the inheritance tree

 We can do that semantically by expressions like:

Student s = new Student();
Person p = (Person)s;

Person p = new Person();
Student s = (Student)p;

This is a widening conversion (we 
move up the tree, increasing 
generality: always OK)

This would be a narrowing 
conversion (we try to move down 
the tree, but it's not allowed here 
because the real object doesn't 
have all the info to be a Student)x



Fields and Inheritance

class Person {
   public String mName;
   protected int mAge;
   private double mHeight;
}

class Student extends Person {

  public void do_something() {
    mName=”Bob”;
    mAge=70;
    mHeight=1.70;
  }

}

Student inherits this as a 
public variable and so can 
access it

Student inherits this as a 
protected variable and so can 
access it

Student inherits this but as a 
private variable and so cannot 
access it



Fields and Inheritance: Shadowing
class A {   public int x; }

class B extends A {
   public int x;
}

class C extends B {
  public int x;

  public void action() {
      // Ways to set the x in C
      x = 10;
      this.x = 10;

      // Ways to set the x in B
      super.x = 10;
      ((B)this).x = 10;

      // Ways to set the x in A
      ((A)this.x = 10;
  }
}



Methods and Inheritance: Overriding

 We might want to require that every Person can dance.  But 
the way a Lecturer dances is not likely to be the same as the 
way a Student dances...

class Person {
   public void dance() {
      jiggle_a_bit();
   }
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
}

Person defines a 
'default' 
implementation of 
dance()

Lecturer just 
inherits the default 
implementation and 
jiggles

Student overrides 
the default



Polymorphic Methods

 Assuming Person has a 
default dance() method, 
what should happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 General problem: when we refer to an object via a 
parent type and both types implement a particular 
method: which method should it run? 



Polymorphic Concepts I

 Static polymorphism
 Decide at compile-time
 Since we don't know what the true type of the 

object will be, we must just run the parent method
 Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler says “p is of type 
Person”

 So p.dance() should do the 
default dance() action in 
Person



Polymorphic Concepts II

 Dynamic polymorphism
 Run the method in the child
 Must be done at run-time since that's when we 

know the child's type
 Type errors cause run-time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler looks in memory 
and finds that the object is 
really a Student

 So p.dance() runs the 
dance() action in Student


