
Section: Object Oriented Programming

Custom Types

 You saw that there was an advantage to
declaring your own types in ML
 First you declared a type and then you wrote

functions that could act on it

 In OOP we go a step further
 We think of types as having both state and

procedures
 The idea is that each type groups together related

state and procedures, providing a complete
implementation of a single concept

 We call our types classes
See Workbook 3

Classes, Instances and Objects I

 Primitive types are pre-defined e.g. int defines
32-bit integer in Java

 We create instances of a primitive type by
declaring a variable of that type
 E.g.

declares two instances of type int

int x=7;
int y=6;

Classes, Instances and Objects II

 Classes are basically templates for various concepts

 We create instances of classes in a similar way.
e.g.

makes two instances of class MyCoolClass.
 An instance of a class is called an object

MyCoolClass m = new MyCoolClass();
MyCoolClass n = new MyCoolClass();

Loose Terminology (again!)

Classes

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using grammar
 Noun → Object
 Verb → Method

“Write a simulation of the Earth's orbit around the Sun”

Representing a Class Graphically (UML)

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more
students”

 Arrow going right to left says “a Student has exactly 1
College”

 What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that
references a College object.

 Note that we are only linking classes: we don't start
drawing arrows to primitive types.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties
that an object has such as
colour or size)

Class behaviour (actions
an object can do)

'Magic' start point
for the program
(named main by
convention)

Create an object of
type MyFancyClass in
memory and get a
reference to it

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour

'Magic' start point
for the program

Create an object of
type MyFancyClass

Section: OOP Concepts

OOP Concepts

 OOP provides the programmer with a
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Modularity and Code Re-Use

 You've long been taught to break down
complex problems into more tractable sub-
problems.

 Each class represents a sub-unit of code that (if
written well) can be developed, tested and
updated independently from the rest of the
code.

 Indeed, two classes that achieve the same
thing (but perhaps do it in different ways) can
be swapped in the code

 Properly developed classes can be used in
other programs without modification.

Encapsulation I

 Here we create 3 Student
objects when our program runs

 Problem is obvious: nothing
stops us (or anyone using our
Student class) from putting in
garbage as the age

 Let's add an access modifier
that means nothing outside the
class can change the age

class Student {
 int age;
};

void main() {
 Student s = new Student();
 s.age = 21;

 Student s2 = new Student();
 s2.age=-1;

 Student s3 = new Student();
 s3.age=10055;
}

Encapsulation II

 Now nothing outside the class
can access the age variable
directly

 Have to add a new method to
the class that allows age to be
set (but only if it is a sensible
value). i.e. SetAge()

 Also needed a GetAge()
method so external objects can
find out the age.

class Student {
 private int age;

 boolean SetAge(int a) {
 if (a>=0 && a<130) {

age=a;
return true;

 }
 return false;
 }

 int GetAge() {return age;}
}

void main() {
 Student s = new Student();
 s.SetAge(21);
}

Encapsulation III

 We hid the state implementation to the outside world
(no one can tell we store the age as an int without
seeing the code), but provided mutator methods to...
errr, mutate the state!

 This is data encapsulation
 We define interfaces to our objects without

committing long term to a particular implementation
 Advantages

 We can change the internal implementation
whenever we like so long as we don't change the
interface other than to add to it (E.g. we could
decide to store the age as a float and add
GetAgeFloat())

 Encourages us to write clean interfaces for things to
interact with our objects

Access Modifiers

 e.g. public, protected, private in Java and C++
 Can apply to fields and methods

 If a method implementation gets very long,
you might want to split it into smaller
methods. We make the shorter methods
private so no one can call them externally,
and expose a public method (that makes
use of those private methods)

 Not all OO languages have full access control
 If interested, take a look at the mess in the

python language...

Vector2D Example

 We will create a class that represents a 2D vector

Vector2D

- mX: float
- mY : float

+ Vector2D(x:float, y:float)
+ GetX() : float
+ GetY() : float
+ Add(Vector2D v) : void

Inheritance I

class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that

we're not really representing
 Both Lecturers and Students are people

(no, really).
 We can view each as a kind of

specialisation of a general person
 They have all the properties of a

person
 But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II

class Person {
 public int age;
 Public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

 We create a base class (Person)
and add a new notion: classes
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of

Lecturer and Student
 Lecturer and Student subclass

Person

Representing Inheritance Graphically

name
age
exam_score

Student

name
age
salary

Lecturer

name
age

Person Also known as an “is-a”
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

Inherited fields

