
Note that this is essentially the same UML as the State pattern! The intent of each of the two patterns is
quite different however:

• State is about encapsulating behaviour that is linked to specific internal state within a class.

• Different states produce different outputs (externally the class behaves differently).

• State assumes that the state will continually change at run-time.

• The usage of the State pattern is normally invisible to external classes. i.e. there is no setState(State s)
function.

• Strategy is about encapsulating behaviour in a class. This behaviour does not depend on internal
variables.

• Different concrete Strategys may produce exactly the same output, but do so in a different way. For
example, we might have a new algorithm to compute the standard deviation of some variables. Both the
old algorithm and the new one will produce the same output (hopefully), but one may be faster than the
other. The Strategy pattern lets us compare them cleanly.

• Strategy in the strict definition usually assumes the class is selected at compile time and not changed
during runtime.

• The usage of the Strategy pattern is normally visible to external classes. i.e. there will be a setStrat-
egy(Strategy s) function or it will be set in the constructor.

However, the similarities do cause much debate and you will find people who do not differentiate between the
two patterns as strongly as I tend to.

149



4.7 Composite Pattern

Problem: We want to support entire groups of products. e.g. The Lord of the Rings gift set might contain all
the DVDs (plus a free cyanide capsule).

Solution 1: Give every Product a group ID (just an int). If someone wants to buy the entire group, we
search through all the Products to find those with the same group ID.

4 Does the basic job.

7 What if a product belongs to no groups (which will be the majority case)? Then we are wasting memory
and cluttering up the code.

7 What if a product belongs to multiple groups? How many groups should we allow for?

Solution 2: Introduce a new class that encapsulates the notion of groups of products:

150



If you’re still awake, you may be thinking this is a bit like the Decorator pattern, except that the new class
supports associations with multiple Products (note the * by the arrowhead). Plus the intent is different – we
are not adding new functionality but rather supporting the same functionality for groups of Products.

4 Very powerful pattern.

7 Could make it difficult to get a list of all the individual objects in the group, should we want to.

151





4.7.1 Generalisation

This is the Composite pattern and it is used to allow objects and collections of objects to be treated uniformly.
Almost any hierarchy uses the Composite pattern. e.g. The CEO asks for a progress report from a manager,
who collects progress reports from all those she manages and reports back.

Notice the terminology in the general case: we speak of Leafs because we can use the Composite pattern to
build a tree structure. Each Composite object will represent a node in the tree, with children that are either
Composites or Leafs.

152



This pattern crops up a lot, and we will see it in other contexts later in this course.

153



4.8 Singleton Pattern

Problem: Somewhere in our system we will need a database and the ability to talk to it. Let us assume there
is a Database class that abstracts the difficult stuff away. We end up with lots of simultaneous user Sessions,
each wanting to access the database. Each one creates its own Database object and connects to the database
over the network. The problem is that we end up with a lot of Database objects (wasting memory) and a lot
of open network connections (bogging down the database).

What we want to do here is to ensure that there is only one Database object ever instantiated and every
Session object uses it. Then the Database object can decide how many open connections to have and can
queue requests to reduce instantaneous loading on our database (until we buy a half decent one).

Solution 1: Use a global variable of type Database that everything can access from everywhere.

7 Global variables are less desirable than David Hasselhoff’s greatest hits.

7 Can’t do it in Java anyway...

Solution 2: Use a public static variable that everything uses (this is as close to global as we can get in Java).

public class System {

public static Database database;

}

154



...

public static void main(String[]) {

// Always gets the same object

Database d = System.database;

}

7 This is really just global variables by the back door.

7 Nothing fundamentally prevents us from making multiple Database objects!

Solution 3: Create an instance of Database at startup, and pass it as a constructor parameter to every
Session we create, storing a reference in a member variable for later use.

public class System {

public System(Database d) {...}

}

public class Session {

public Session(Database d) {...}

}

155



...

public static void main(String[]) {

Database d = new Database();

System sys = new System(d);

Session sesh = new Session(d);

}

7 This solution could work, but it doesn’t enforce that only one Database be instantiated – someone could
quite easily create a new Database object and pass it around.

7 We start to clutter up our constructors.

7 It’s not especially intuitive. We can do better.

Solution 4: (Singleton) Let’s adapt Solution 2 as follows. We will have a single static instance. However we
will access it through a static member function. This function, getInstance() will either create a new Database
object (if it’s the first call) or return a reference to the previously instantiated object.

Of course, nothing stops a programmer from ignoring the getInstance() function and just creating a new
Database object. So we use a neat trick: we make the constructor private or protected. This means code like
new Database() isn’t possible from an arbitrary class.

156



4 Guarantees that there will be only one instance.

4 Code to get a Database object is neat and tidy, and intuitive to use. e.g. (Database d=Database.getInstance();)

4 Avoids clutter in any of our classes.

7 Must take care in Java. Either use a dedicated package or a private constructor (see below).

7 Must remember to disable clone()-ing!

4.8.1 Generalisation

This is the Singleton pattern. It is used to provide a global point of access to a class that should be instantiated
only once.

157



There is a caveat with Java. If you choose to make the constructor protected (this would be useful if you wanted
a singleton base class for multiple applications of the singleton pattern, and is actually the ‘official’ solution)
you have to be careful.

Protected members are accessible to the class, any subclasses, and all classes in the same package. Therefore,
any class in the same package as your base class will be able to instantiate Singleton objects at will, using the
new keyword!

Additionally, we don’t want a crafty user to subclass our singleton and implement Cloneable on their version.
The examples sheet asks you to address this issue.

158



4.9 Proxy Pattern(s)

The Proxy pattern is a very useful set of three patterns: Virtual Proxy, Remote Proxy, and Protection
Proxy.

All three are based on the same general idea: we can have a placeholder class that has the same interface as
another class, but actually acts as a pass through for some reason.

159



4.9.1 Virtual Proxy

Problem: Our Product subclasses will contain a lot of information, much of which won’t be needed since 90%
of the products won’t be selected for more detail, just listed as search results.

Solution : Here we apply the Proxy pattern by only loading part of the full class into the proxy class (e.g.
name and price). If someone does want to access more information, the associated get() methods in the proxy
object automatically retrieve them from the database.

4.9.2 Remote Proxy

Problem: Our server is getting overloaded.

Solution : We want to run a farm of servers and distribute the load across them. Here a particular object
resides on server A, say, whilst servers B and C have proxy objects. Whenever the proxy objects get called,
they know to contact server A to do the work. i.e. they act as a pass-through.

Note that once server B has bothered going to get something via the proxy, it might as well keep the result
locally in case it’s used again (saving us another network trip to A). This is caching and we’ll return to it
shortly.

160



4.9.3 Protection Proxy

Problem: We want to keep everything as secure as possible.

Solution : Create a User class that encapsulates all the information about a person. Use the Proxy pattern
to fill a proxy class with public information. Whenever private information is requested of the proxy, it will
only return a result if the user has been authenticated.

In this way we avoid having private details in memory unless they have been authorised.

161



4.10 Observer Pattern

Problem: We use the Remote Proxy pattern to distribute our load. For efficiency, proxy objects are set to
cache information that they retrieve from other servers. However, the originals could easily change (perhaps
a price is updated or the exchange rate moves). We will end up with different results on different servers,
dependent on how old the cache is!!

Solution 1: Once a proxy has some data, it keeps polling the authoritative source to see whether there has
been a change (c.f. polled I/O).

7 How frequently should we poll? Too quickly and we might as well not have cached at all. Too slow and
changes will be slow to propagate.

Solution 2: Modify the real object so that the proxy can ‘register’ with it (i.e. tell it of its existence and the
data it is interested in). The proxy then provides a callback function that the real object can call when there
are any changes.

162



4.10.1 Generalisation

This is the Observer pattern, also referred to as Publish-Subscribe when multiple machines are involved.
It is useful when changes need to be propagated between objects and we don’t want the objects to be tightly
coupled. A real life example is a magazine subscription — you register to receive updates (magazine issues)
and don’t have to keep checking whether a new issue has come out yet. You unsubscribe as soon as you realise
that 4GBP for 10 pages of content and 60 pages of advertising isn’t good value.

163



164



4.11 Abstract Factory

Assume that the front-end part of our system (i.e. the web interface) is represented internally by a set of classes
that represent various entities on a web page:

Let’s assume that there is a render() method that generates some HTML which can then be sent on to web
browsers.

165



Problem: Web technology moves fast. We want to use the latest browsers and plugins to get the best effects,
but still have older browsers work. e.g. we might have a Flash site, a SilverLight site, a DHTML site, a
low-bandwidth HTML site, etc. How do we handle this?

Solution 1: Store a variable ID in the InterfaceElement class, or use the State pattern on each of the
subclasses.

4 Works.

7 The State pattern is designed for a single object that regularly changes state. Here we have a family of
objects in the same state (Flash, HTML, etc.) that we choose between at compile time.

7 Doesn’t stop us from mixing FlashButton with HTMLButton, etc.

Solution 2: Create specialisations of InterfaceElement:

166



7 Lots of code duplication.

7 Nothing keeps the different TextBoxes in sync as far as the interface goes.

167



7 A lot of work to add a new interface component type.

7 Doesn’t stop us from mixing FlashButton with HTMLButton, etc.

Solution 3: Create specialisations of each InterfaceElement subclass:

4 Standardised interface to each element type.

7 Still possible to inadvertently mix element types.

168



Solution 4: Apply the Abstract Factory pattern. Here we associate every WebPage with its own ‘factory’
— an object that is there just to make other objects. The factory is specialised to one output type. i.e.
a FlashFactory outputs a FlashButton when create button() is called, whilst a HTMLFactory will return an
HTMLButton() from the same method.

169



4 Standardised interface to each element type.

4 A given WebPage can only generate elements from a single family.

4 Page is completely decoupled from the family so adding a new family of elements is simple.

7 Adding a new element (e.g. SearchBox) is difficult.

7 Still have to create a lot of classes.

4.11.1 Generalisation

This is the Abstract Factory pattern. It is used when a system must be configured with a specific family of
products that must be used together.

170



171



Note that usually there is no need to make more than one factory for a given family, so we can use the Singleton
pattern to save memory and time.

172



4.12 Summary

From the original Design Patterns book:

Decorator Attach additional responsibilities to an object dynamically. Decorators provide flexible alternatives
to subclassing for extending functionality.

State Allow and object to alter its behaviour when its internal state changes.

Strategy Define a family of algorithms, encapsulate each on, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that use it.

Composite Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients
treat individual objects and compositions of objecta uniformly.

Singleton Ensure a class only has one instance, and provide a global point of access to it.

Proxy Provide a surrogate or placeholder for another object to control access to it.

Observer Define a one-to-many dependency between objects so that when one object changes state, all its
dependents are notified and updated accordingly.

Abstract Factory Provide an interface for creating families of related or dependent objects without specifying
their concrete classes.

173



4.12.1 Classifying Patterns

Often patterns are classified according to what their intent is or what they achieve. The original book defined
three classes:

Creational Patterns . Patterns concerned with the creation of objects (e.g. Singleton, Abstract Factory).

Structural Patterns . Patterns concerned with the composition of classes or objects (e.g. Composite,
Decorator, Proxy).

Behavioural Patterns . Patterns concerned with how classes or objects interact and distribute responsibility
(e.g. Observer, State, Strategy).

4.12.2 Other Patterns

You’ve now met eight Design Patterns. There are plenty more (23 in the original book), but this course will
not cover them. What has been presented here should be sufficient to:

• Demonstrate that object-oriented programming is powerful.

• Provide you with (the beginnings of) a vocabulary to describe your solutions.

• Make you look critically at your code and your software architectures.

• Entice you to read further to improve your programming.

174



Of course, you probably won’t get it right first time (if there even s a ‘right’). You’ll probably end up refactoring
your code as new situations arise. However, if a Design Pattern is appropriate, you should probably use it.

4.12.3 Performance

Note that all of the examples here have concentrated on structuring code to be more readable and maintainable,
and to incorporate constraints structurally where possible. At no point have we discussed whether the solutions
perform better. Many of the solutions exploit runtime polymorphic behaviour, for example, and that carries
with it certain overheads.

This is another reason why you can’t apply Design Patterns blindly. [This is a good thing since, if it wasn’t
true, programming wouldn’t be interesting, and you wouldn’t get jobs!].

Once we have compiled our Java source code, we end up with a set of .class files; these contain bytecode. We
can then distribute these files without their source code (.java) counterparts.

In addition to javac you will also find a javap program which allows you to poke inside a class file. For example,
you can disassemble a class file to see the raw bytecode using javap -c classfile:

Input:

public class HelloWorld {

public static void main(String[] args) {

175



System.out.println("Hello World");

}

}

javap output:

Compiled from "HelloWorld.java"

public class HelloWorld extends java.lang.Object{

public HelloWorld();

Code:

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

public static void main(java.lang.String[]);

Code:

0: getstatic #2; //Field java/lang/System.out:

//Ljava/io/PrintStream;

3: ldc #3; //String Hello World

5: invokevirtual #4; //Method java/io/PrintStream.println:

//(Ljava/lang/String;)V

8: return

}

176



This probably won’t make a lot of sense to you right now: that’s OK. Just be aware that we can view the
bytecode and that sometimes this can be a useful way to figure out exactly what the JVM will do with a bit of
code. You aren’t expected to know bytecode.

177


