Object Oriented Programming
Dr Robert Harle

A CST, PPS (CS) and NST (CS)
Lent 2011/12

The OOP Course

= Last term you studied functional programming (ML)

= This term you are Iooklng at |mperahve programming
(Java primarily).

» You adlready have a few weeks of Java experience

= This course is hopefully going to let you separate
the fundamental software design principles from
Java's quirks and specifics

= Four Parts
= From Functional to Imperative
= Object-Oriented Concepts
= The Java Platform
= Design Patfterns and OOP design examples

Java Practicals

* This course is meant fo complement your
practicals in Java

* Some material appears only here
* Some material appears only in the practicals

= Some material appears in both:
deliberately*!

* Some material may be repeated unintentionally. If so | will claim it was deliberate.

Books and Resources |

= OOP Concepts

= ook for books for those learning to first program in an OOP
language (Java, C++, Python)

= Java: How to Program by Deitel & Deitel (also C++)
» Thinking in Java by Eckels

= Javain a Nufshell (O' Reillly) if you already know another OOP
language

= Java specification book: http://java.sun.com/docs/books/|ls/
= | otfs of good resources on the web

= Design Patterns
= Design Pafterns by Gamma et al.
= | otfs of good resources on the web

Books and Resources |l

= Also check the course web page
* Updated notes (with annotations where possible)
* Code from the lectures
= Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1112/O0Prog/

Section: From Functional to Imperative Programming

Explicit Start Points

S dor d
s

Java: public static void main(String args[])

I

ATjV\.Mb

C/C++: int main(int argc, char **argv)
- -

python: def main():
main code here

Immutable to Mutable Data
" -val x=5; — 7 / S *\

> valx=5:int

X=17 ;7 S —
> val it = false : bool @/7—“(’ (9 j
- val x=9; g

> valx=9:int

Types and Variables

= We write code like: /\/\@WM(63/>€5

%12;
nty = 200;

int z = x+y;

* The high-level language has a series of primitive
(built-in) types that we use to signity what's in the
memory

* The compiler then knows what to do with them
= E.g. AnYint” is a primitive type in C, C++, Java and many
languages. It's usually a 32-bit signed integer

* A variable is a hame used in the code fo refer to @
specific instance of a type

" X,y,z are variables above
* They are all of type int

“Primitive” types are the built in ones.

= They are building blocks for more complicated types
that we will be looking at soon.

boolean - 1 bit (true, false)

char - 16 bits ¢ UNCo D &g

byte - 8 bits as a signed integer (-128 to 127)
short - 16 bits as a signed integer

int - 32 bits as a signed integer

long - 64 bits as a signed integer \
float - 32 bits as a floating point number

double - 64 bits as a floating point number

See Workbook 1

N GVSOVIXO0
-
S PYSIVIX0
?
¢ EVSOVIXO0
R ZYSOVIXO0
QAN
TVSOVIXO0
OVSOVIX0
RS 66SOVIX0
o Y
=5 86SIVIX0
— O
2 =
23 L6SIVIXO
S C
2
c 96SIVIX0
'S
2 G6SOVIX0
=R
% 76SIVIX0
® ©
2
> 2™
0O O

Functions to Procedures

Maths: m(x,y) =xy

ML: fun m(x,y) = x*y; ./

Java: public int m(int x, inty) = x*y; -~

inty =7;

public int(mix) {
y=y+1;

return x*y;

The Call Stack
A {Om(’ 0\" t“DVD
. Y&

AR

peiniess Local Nonables
(Ze\—._,\,-n adh—es ¢
MX\DV\
Gegurents
Stac ke
Frame

(f Fo,(Q/\I\CI";DV\}

The Call Stack: Example

in int d) return 2*d;
int tripre(int d) return 3*d; Ao e)

int a=50; —
int b = double(a);
int ¢ = triple(a);

,L o
e

\\V‘L [—————‘b

oOoulh, WN -

Nested Functions

SR\ Cust Aoo& (C()

int double(int d) return 2%d; o /
int quadruple(int d) return double(double(d)); ,
int a= 50
intb = quadruple(a j T\ 2.uad
= - -

sacond
— [
R T

b wWNBRE

B

mm—

