
Object Oriented Programming
Dr Robert Harle

IA CST, PPS (CS) and NST (CS)
Lent 2011/12

The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative programming

(Java primarily).
 You already have a few weeks of Java experience
 This course is hopefully going to let you separate

the fundamental software design principles from
Java's quirks and specifics

 Four Parts
 From Functional to Imperative

 Object-Oriented Concepts

 The Java Platform

 Design Patterns and OOP design examples

Java Practicals

 This course is meant to complement your
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both:

deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP

language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Java specification book: http://java.sun.com/docs/books/jls/

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1112/OOProg/

Section: From Functional to Imperative Programming

Explicit Start Points

Java: Java: public static void main(String args[])

C/C++: C/C++: int main(int argc, char **argv)

python: def main():
 # main code here

 if __name__ == "__main__":
 main()

Immutable to Mutable Data

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5;
x=7;

int x=9;

Java

ML

Types and Variables

 We write code like:

 The high-level language has a series of primitive
(built-in) types that we use to signify what’s in the
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 bits as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

See Workbook 1

Arrays

byte[] arraydemo = new byte[6];
byte arraydemo2[] = new byte[6];

0
x
1
A

C
5
9
4

0
x
1
A

C
5
9
5

0
x
1
A

C
5
9
6

0
x
1
A

C
5
9
7

0
x
1
A

C
5
9
8

0
x
1
A

C
5
9
9

0
x
1
A

C
5
A

0

0
x
1
A

C
5
A

1

0
x
1
A

C
5
A

2

0
x
1
A

C
5
A

3

0
x
1
A

C
5
A

4

0
x
1
A

C
5
A

5

Functions to Procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: public int m(int x, int y) = x*y;

int y = 7;
public int m(x) {

y=y+1;
return x*y;

}

The Call Stack

The Call Stack: Example

1 int double(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a=50;
4 int b = double(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

Nested Functions

0 0
a=50

0
a=50

d=50
5

0
a=50

d=50
5

d=50
2

100

0
a=50

d=50
5

d=100
2

200

0
a=50

d=50
5

a=200

0
a=50

b=200

1 int double(int d) return 2*d;
2 int quadruple(int d) return double(double(d));
3 int a=50;
4 int b = quadruple(a);
5 ...

